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Abstract

The notion of concept similarity is central to several ontology tasks and
can be employed to realize relaxed versions of classical reasoning services.
In this paper we investigate the reasoning service of answering instance
queries in a relaxed fashion, where the query concept is relaxed by means of
a concept similarity measure (CSM). To this end we investigate CSMs that
assess the similarity of EL-concepts defined w.r.t. a general EL-TBox. We
derive such a family of CSMs from a family of similarity measures for finite
interpretations and show in both cases that the resulting measures enjoy
a collection of formal properties. These properties allow us to devise an
algorithm for computing relaxed instances w.r.t. general EL-TBoxes, where
users can specify the ‘appropriate’ notion of similarity by instanciating our
CSM appropriately.

1 Introduction

Description Logics (DL) are a family of knowledge representation formalisms used
to describe terminologies in various application areas in a way that can be used
for reasoning. For this, each DL provides a set of constructors that can be used
to create concept descriptions from sets of concepts and role names. The ter-
minological knowledge is captured by describing relations between these concept
descriptions. These axioms are collected in a so-called TBox. Additionally, DLs
allow to model specific individuals as instances of concepts from the TBox, and
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specific relationships between different individuals in the so-called ABox. TBox
and ABox together form a knowledge base (KB). Besides providing the user with
a formal language to model their application domains, DL systems also provide
a variety of inference services, e.g. computing sub-concept relationships between
the concepts described by the terminology or checking whether individuals given
in the ontology are instances of a given concept.

However, in many cases, these standard inferences are too restricted. Assume for
example a service platform, where individual services running on different plat-
forms are described by means of a DL knowledge base. Clients want to select
different services based on their preferences and requirements, for example by
specifying a query concept that is matched against all services and returns exactly
those, that meet all requirements (the instances of the query concept). However,
if no service matches the query concept, it can be still be preferable to return
similar services. These would only fulfill most of the requirements, but cannot
guarantee e.g. the specified QoS, instead of returning no services at all. This kind
of reasoning service is what we call relaxed instance query answering.

Ideally, it needs to be possible to specify which features are deemed more impor-
tant, and which features might be relaxed. Additionally, one needs to be able
to specify, how much relaxation is allowed. Both of this can be solved by using
a concept similarity measure (CSM). A concept similarity measure assigns to a
pair of concepts a value between 0 and 1, where a higher value indicates stronger
similarity. Now, to guide the relaxation by the use of CSMs, also a threshold is
needed that sets the minimal required degree of similarity. Matching individuals
must be similar to the query concept w.r.t. this degree. In this setting, especially
parameterizable similarity measures are useful, as they allow users to adjust their
measure according to preferences, requirements and application task. For instance,
by assigning different weights to different features of a concept or by specifying a
primitive similarity between different names appearing in the concepts.

CSMs are an interesting ontology services in their own right. They play an impor-
tant role for ontology alignment, where for two given ontologies the task is to find
the corresponding concepts across the ontologies. Furthermore CSMs are used in
the bio-medical field. In context of the Gene Ontology [6] CSMs are employed to
find genes that are similar and thus might realize a similar functionality [11, 13].

However, previously defined concept similarity measures often lack formal seman-
tics (see [9] for a study on this). Most CSMs for DLs can be divided in two groups:
The first group, structural measures, compute the similarity value by recursively
following the syntax trees of concepts. Semantic similarity measures, on the other
hand, use the interpretation of concepts, e.g. the set of all objects that the concepts
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have as instance, to compare them. This however means, that primitive concepts
that cannot be distinguished by the modeled objects always have the similarity
1. However, just because for a certain service provider, the services that provide
a certain functionality are exactly those that run on Linux servers, doesn’t mean
that we want to treat those concepts as equivalent.

For structural CSMs properties such as equivalence invariance, i.e., treating equiv-
alent concepts exactly the same, are—to the best of our knowledge—only inves-
tigated for concepts or concepts defined w.r.t. unfoldable TBoxes (i.e., termini-
nologies). In this case the concepts using defined concepts can be expanded w.r.t.
the unfoldable TBox. Then the syntax tree of the expanded concepts can be tra-
versed to obtain the similarity without considering the TBox any further. This
unfolding-based approach is not possible as soon as cyclic or general TBoxes are
considered.

This paper pursues two main goals. The first is to introduce a new parameterizable,
structural CSM that assesses the similarity of concepts defined w.r.t. general EL-
TBoxes, while taking the whole information from the TBox into account. There
exists prior work on CSMs that work in regard of general TBoxes, but these are
merely using the concept hierarchy (e.g. [1, 4]) and not the complete information
from the TBox. For our CSM w.r.t. general EL-TBoxes, we use the canonical
models of the TBox and the concepts that should be compared. Then, one can use
similarity measures on the elements of those canonical models to derive a similarity
value for the concepts. We define ∼i, a family of interpretation similarity measures
that are parameterizable in several ways. We transfer the useful properties given
in [9] for CSMs to interpretation similarity measures and show that the measure
∼i exhibits many of these properties. Based on ∼i we define a parameterizable
CSM such that these properties are preserved. The second goal of this paper is
to show how the problem of relaxed instance query answering can be solved w.r.t.
general EL-TBoxes. To this end we employ our newly introduced CSM derived
from ∼i.

The paper is structured as follows: In the next section we introduce the basic
notions required; this includes the description logic EL and various inferences; the
notion of simulations and canonical models in EL and their connection to sub-
sumption; and finally concept similarity measures and their properties. Section 3
defines interpretation similarity measures (ISM) and transfers the properties given
for CSMs to this setting. We introduce our ISM ∼i and show that ∼i is a well-
defined measure that enjoys many of these properties. Based on this ISM, Section 4
will introduce the concept similarity measure ∼c that works on general EL-TBoxes.
This measure is then used to show how relaxed instance queries can be answered
w.r.t. general EL-TBoxes. We devise an iterative algorithm, for which we show

3



Constructor Syntax Semantics

top concept > ∆I

concept name A AI ⊆ ∆I

conjunction C uD CI ∩DI
existential restriction ∃r.C {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}

general concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI
role assertion r(a, b) (aI , bI) ∈ rI

Table 1: Concept constructors, TBox axioms and ABox assertions for EL.

soundness and completeness and discuss its complexity. We end the report with
some conclusions and pointer to future work.

2 Preliminaries

In this section we introduce the basic notions of Description Logics and some of
the inference services and properties that we need throughout the paper. We start
by defining the syntax and semantics of the lightweight DL EL.

2.1 The Description Logic EL

EL-concept descriptions are constructed from two countable sets: The set NC of
concept names and the set NR of role names. Given these, the constructors from
the upper part of Table 1 can be applied to build complex concept descriptions.
For example, the concept

Human u ∃gender.Male u ∃hasChild.(Human u ∃gender.Female)

describes men who have a daughter. With C(EL) we denote the set of all EL-
concept descriptions.

Using these concept descriptions, one can specify the domain knowledge as a TBox,
which is a set of general concept inclusions (GCIs, see again Table 1). Basically,
a GCI C v D says that anything that belongs to concept C must also belong to
concept D. We use the notion C ≡ D as an abbreviation for the two GCIs C v D
and D v C, to express that the concepts C and D are equivalent. For example,
the following TBox expresses that a man is defined as a human with male gender
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and that a grandfather always has a child (but not every person that has a child
is a grandfather):

T = {Man ≡ Human u ∃gender.Male,

Grandfather v ∃hasChild.>}

Semantics of EL-concept descriptions are introduced by means of interpretations
I = (∆I , ·I), consisting of a non-empty set ∆I of elements, called the domain, and
an interpretation function ·I which assigns subsets of ∆I to concept names and
binary relations over ∆I to role names. We denote the set of all interpretations
as I. This interpretation function of an interpretation I is extended to the set of
concept descriptions as shown in Table 1. We say that an interpretation I satisfies
the GCI C v D, denoted I |= C v D, if CI ⊆ DI , and it is a model of the TBox
T , denoted I |= T , if it satisfies all GCIs occurring in T .

Description Logics also allow to describe individual objects. For this, another set
NI of individual names is needed. Using these, one can express that an individual
a is an instance of a concept description C using the concept assertion C(a), and
that two individuals a and b are related via a role r using the role assertion r(a, b).
Interpretations I then additionally assign an element of the domain ∆I to each
individual name, and assertions are interpreted as expected (see the lower part
of Table 1). A set of concept and role assertions is called an ABox. Similarly to
TBoxes, we say that an interpretation I is a model of an ABox A, denoted I |= A,
if it satisfies all assertions occurring in A.

Taken together, an ABox A and a TBox T result in a knowledge base K = (T ,A).
An interpretation I is a model of a knowledge base K, I |= K, if I is a model
of both T and A. With Sig(K) we denote the signature of a knowledge base
K, i.e., the set of all concept, role, and individual names occurring in K. We
write SigC(K), SigR(K), and SigI(K) instead of Sig(K) ∩ NC , Sig(K) ∩ NR, and
Sig(K)∩NI , to refer to only one type of name. Similarly, we denote the signature
of a TBox T , an ABox A and a concept description C with Sig(T ), Sig(A), and
Sig(C), respectively.

DL systems offer a variety of reasoning services. Core inferences, that most systems
provide, are subsumption and instance checking. Subsumption tests, given a TBox
T and two concept descriptions C and D, whether C subsumes D w.r.t. T (denoted
as C vT D), i.e., whether CI ⊆ DI for all models I of T . Similarly, for a given
knowledge base K, an individual a and a concept description C, instance checking
tests whether a is an instance of C w.r.t. K (denoted K |= C(a)), i.e., whether
aI ∈ CI for all models I of K. Given a KB K = (T ,A) and a concept description
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C, instance retrieval returns all individuals from A that are instances of C. This
last instance is sometimes also called instance queries and is the one for which we
want to provide a relaxed version in this paper. However, there also exist useful
non-standard inferences, like the most specific concept.

Definition 1 (most specific concept). Let K = (T ,A) be an EL-knowledge base,
C be an EL-concept description, and a be an individual occurring in A. The EL-
concept description M is the most specific concept of a w.r.t. the KB K (denoted
mscK(a)), iff:

1. K |= M(a), and

2. for all EL-concept descriptions E with K |= E(a) we have M vT E.

For EL, the msc may not always exist due to cycles in the TBox or between
individuals in the ABox, but if it does exist, it is unique up to equivalence, see [2,
12].

Consider for example the knowledge base K = (T ,A) with:

T = { C v A u ∃r.B, D v C u ∃r.D }
A = { D(a), C(b), r(a, b),

B(c), r(c, c) }.

Then the msc of a w.r.t. K is D u ∃r.C, while the msc of c would be an infinite
concept description Bu∃r.(Bu∃r.(Bu∃r. . . .)) and therefore does not exist in EL.

2.2 Simulations and Canonical Models

Another useful notion when dealing with interpretations in DLs are simulations,
which relate elements of different interpretations and characterize inferences like
subsumption and generalizations. In the following, we describe those simulations
used to describe inferences in EL.

Definition 2 (simulation). Let I and J be interpretations. A relation S ⊆
∆I ×∆J is a simulation between I and J , if the following conditions hold:

1. for all (d, e) ∈ S and A ∈ NC , if d ∈ AI , then e ∈ AJ ; and

2. for all (d, e) ∈ S, r ∈ NR and (d, d′) ∈ rI , there is an (e, e′) ∈ rJ with
(d′, e′) ∈ S.
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A pointed interpretation p = (I, d) consists of an interpretation I and a designated
element d ∈ ∆I . With P we denote the set of all pointed interpretations, i.e.
P = {(I, d) | I ∈ I, d ∈ ∆I}. Given a pointed interpretation p = (I, d), we
denote with C(p) = {C ∈ C(EL) | d ∈ CI} the set of all EL-concept descriptions
that have d as an instance in I.

For two pointed interpretations p = (I, d) and q = (J , e), we say that p simulates
q (denoted p . q), if there exists a simulation S ⊆ ∆I ×∆J between the interpre-
tations I and J with (d, e) ∈ S. If p and q simulate each other, i.e., p . q and
q . p, we write p ' q and say that p and q are equisimilar.

In [10] the strong connection between simulations, pointed interpretations and
their concept sets were shown.

Theorem 3 ([10]). Let p and q be two pointed interpretations. Then:

1. p . q iff C(p) ⊆ C(q), and

2. p ' q iff C(p) = C(q).

For an EL knowledge base K = (T ,A), one can create a canonical model for a
concept description C or the ABox A with respect to the TBox T , called IC,T and
IK. The canonical model IC,T is always a model of T and contains an element
dC ∈ ∆IC,T which is an instance of C. Similarly, IK is always a model of both the
TBox T and the ABox A, and, necessarily, contains an element da ∈ ∆IK for each
individual a in A such that da = aIK .

Definition 4 (canonical models). Let K = (T ,A) be an EL-KB consisting of a
TBox T and ABox A, and C be an EL-concept description. With sub(C) (sub(T ),
sub(A)) we denote the set of all subconcepts of the concept C (all subconcepts of
concepts occurring in T or A, respectively).

The canonical model IC,T of C w.r.t. the TBox T consists of the domain ∆IC,T

and the interpretation function ·IC,T defined as follows:

• ∆IC,T = {dC} ∪ {dD | ∃r.D ∈ sub(C) ∪ sub(T )}

• AIC,T = {dD | D vT A}, and

• rIC,T = {(dD, dE) | D vT ∃r.E}.

The canonical model IK of the knowledge base K = (T ,A) consists of the domain
∆IK and the interpretation function ·IK defined as follows:
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• ∆IK = {da | a ∈ SigIA} ∪ {dC | ∃r.C ∈ sub(A) ∪ sub(T )},

• AIK = {dD | D vT A} ∪ {da | K |= A(a),

• rIK = {(dD, dE) | D vT ∃r.E} ∪ {(da, dD) | K |= ∃r.D(a)} ∪
{(da, db) | r(a, b) ∈ A}.

The canonical model IC,T is in some sense the most general model for the concept
description C w.r.t. T , as any other model J of T with an element d ∈ CJ can
be simulated by the element dC in IC,T . Similarly, any other model J of T and
an ABox A with d = aJ for an individual a is simulated by the element da in the
canonical model IK.

Theorem 5 (from [10]). Let T be an EL-TBox, C and D be EL-concept descrip-
tions. Then:

1. for all models I of T and all elements d ∈ ∆I holds d ∈ CI iff
(IC,T , dC) . (I, d); and

2. C vT D iff dC ∈ DIC,T

(or equivalently: D ∈ C(IC,T , dC)) iff (ID,T , dD) . (IC,T , dC).

Note that canonical models for EL-knowledge bases are always finite.

2.3 Concept Similarity Measures

A concept similarity measure for a DL L w.r.t. a TBox T is a function ∼C :
C(L)×C(L)→ [0, 1] that assigns to each pair of L-concept descriptions a similarity
value from the unit interval. A value C ∼C D = 0 means that the concepts C
and D are totally dissimilar, while a value of 1 denotes total similarity. For any
concept description C ∈ C(L), C ∼C C needs to be 1 for ∼C to be a well-defined
measure. However, concept similarity measures can have additional properties,
which could be useful depending on the application in which they are used. In
particular, a concept similarity measure ∼C is:

• symmetric, iff C ∼C D = D ∼C C for all C,D ∈ C(L);

• equivalence invariant, iff for all C,D,E ∈ C(L) with C ≡T D it holds that
C ∼C E = D ∼C E;

• equivalence closed, iff C ≡T D ⇐⇒ C ∼C D = 1 for all C,D ∈ C(L);
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• bounded, iff the existence of E 6= > with C vT E and D vT E implies
C ∼C D > 0 for all C,D ∈ C(L);

• dissimilar closed, iff C,D 6= > and there is no E 6= > with C vT E and
D vT E imply that C ∼C D = 0 for all C,D ∈ C(L);

• subsumption preserving, iff C vT D vT E implies C ∼C D ≥ C ∼C E for all
C,D,E ∈ C(L);

• reverse subsumption preserving, iff C vT D vT E implies D ∼C E ≥ C ∼C

E for all C,D,E ∈ C(L); and

These properties were listed and investigated for unfoldable EL-TBoxes in [9].
However, for general TBoxes some properties need to be adapted to subsumption
w.r.t. a TBox. In case of the properties bounded and dissimilar closed one could
also have required equivalence (w.r.t. T ) to > instead of being syntactic equal.
We chose the syntactic option, since in our opinion, if two concepts share a feature
(even if it is equivalent to top), this still means they have something in common
and should have a similarity value greater than 0. To guarantee formal properties
as the ones above help making concept similarity measures more predictable and
therefore more useful. Concept similarity measures should be parameterizable de-
pending on the application domain, as often some properties of concepts are much
more important than others for assessing the similarity. Furthermore, users often
have an goal how the similarity between some particular concept pairs should be
counted. The parameterizable similarity measures that we develop in the follow-
ing sections allow ontology users to adapt the CSM to fit their expectations, while
keeping (most of) the above properties.

3 Interpretation Similarity Measures

To define a concept similarity measure that works on general EL-TBoxes, we first
consider similarity measures on pointed interpretations. In general, an interpre-
tation similarity measure is defined as a function of the type P ×P → [0, 1]. It
maps any pair of pointed interpretations to a similarity value between 0 and 1.
We denote interpretation similarity measures by ∼P.

There are various formal properties that interpretation similarity measures can
have. Most of these transfer directly from the properties of concept similarity
measures introduced by before. Given a DL L, we define

CL((I, d)) = {C ∈ C(L) | d ∈ CI}
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as the set of all L-concept descriptions that have d as an element in I. Given
suitable relations on pointed interpretations .L and 'L that characterize sub-
sumption and concept equivalence (like those from Definition 2 for EL), we call an
interpretation similarity measure:

• symmetric, iff p ∼i q = q ∼i p for all p, q ∈ P;

• bounded, iff CL(p) ∩ CL(q) ⊃ {>} implies p ∼i q > 0 for all p, q ∈ P;

• dissimilar closed, iff CL(p) ∩ CL(q) = {>} implies p ∼i q = 0 for all p, q ∈ P
with CL(p) ⊃ {>} and CL(q) ⊃ {>};

• equisimulation invariant, iff p 'L q implies (p ∼i u) = (q ∼i u) for all
p, q, u ∈ P;

• equisimulation closed, iff p 'L q ⇐⇒ p ∼i q = 1 for all p, q ∈ P;

• simulation preserving, iff r .L q .L p implies (p ∼i q) ≥ (p ∼i r) for all
p, q, r ∈ P;

• reverse simulation preserving, iff r .L q .L p implies (q ∼i r) ≥ (p ∼i r) for
all p, q, r ∈ P.

The parameterizable ISM that we develop in the following has most of these prop-
erties.

3.1 The Similarity Measure ∼i for Finite Interpretations

In this section, we define a family of interpretation similarity measures ∼i with
a number of useful properties. Note that these properties are shown only for
the case of the simulation relations defined in Definition 2, which correspond to
subsumption and equivalence in EL. This is important when lifting those properties
to concept similarity measures (see Section 4.1). This interpretation similarity
measure only works on finite interpretations. Instead of explicitly stating this
over and over, we assume that all interpretations are finite for the rest of this
section.

Given a pointed interpretation (I, d), we denote with

CN((I, d)) =

{
{>} if there is no A ∈ NC with d ∈ AI

{A ∈ NC | d ∈ AI} otherwise

SC((I, d)) =
{

(r, (I, e)) ∈ NR × {(I, e) | e ∈ ∆I} | (d, e) ∈ rI
}

10



the set of concept names that d is an instance of in I, and the set of direct
successors of d in I, i.e., pairs of a role r and a pointed interpretation q = (I, e)
such that d and e are connected in I by an edge labeled with r. Note that CN(p)
is never empty, even if p is not an instance of any concept name, while SC(p) may
be empty if p has no outgoing edges.

For two pointed interpretations to be perfectly similar, their designated elements
need to have the same set of concept names and edges labeled with the same roles
going to perfectly similar successor elements. Otherwise, the most similar concept
names and the most similar direct successors are compared and a similarity value
is computed from this. For both cases, we need the notion of pairings:

A pairing P ⊆ X × Y is a total binary relation, where totality means that all
elements of X and all elements of Y appear in some tuple of P as the first
component or second component, respectively. For two pointed interpretations
p and q, we are interested in two types of pairings: the concept name pairing
PC(p, q) ⊆ CN(p) × CN(q) on the concept names that p and q are instances of;
and the successor pairing PS(p, q) on the direct successors SC(p) and SC(q) of
those elements. Thus the concept name pairing PC(p, q) always has at least one
element. Recall that SC(p) may be empty. If in this case SC(q) is not empty, then
the pairing PS cannot be built. In this case, we introduce a new successor, using
a new role r> not appearing in T and that is dissimilar to all other role names.
Thus, we define PS as follows:

PS(p, q) ⊆


SC(p)× SC(q) if SC(p) 6= ∅ ∧ SC(q) 6= ∅
SC(p)× {(r>, q)} if SC(p) 6= ∅ ∧ SC(q) = ∅
{(r>, p)} × SC(q) if SC(p) = ∅ ∧ SC(q) 6= ∅
∅ if SC(p) = ∅ ∧ SC(q) = ∅

The successor pairing PS(p, q) may be empty if both p and q have no successors.
However, as soon as one of p or q is instance of a concept name or has a direct
successor, this concept name or successor appears in the pairing PC or PS, since
those pairings are always total.

The interpretation similarity measure ∼i is defined based on a primitive measure,
i.e. a measure that assigns similarity values to each pair of basic concepts (i.e.,
concept names or >) and each pair of role names

Definition 6. A primitive measure is a function

∼prim : (NC ∪ {>})× (NC ∪ {>}) ∪NR ×NR → [0, 1]

that satisfies the following properties:

11



• x ∼prim x = 1 for any role name or basic concept x,

• > ∼prim A = A ∼prim > = 0 for all A ∈ NC , and

• r> ∼prim s = s ∼prim r> = 0 for all role names s 6= r>.

Additionally, in order to obtain a symmetric similarity measure ∼i, ∼prim needs
to be symmetric as well.

We introduce a default primitive measure, that simply assigns similarity 0 to pairs
of different basic concepts or role names:

x ∼default y =

{
1 if x = y

0 otherwise

However, other primitive measures could be useful as well. For example, one might
want to express that two colors Red and Orange are similar to some degree even
if they are modelled by different concept names.

Additionally, one can assign weights to different basic concepts and role names
using a weighting function g : NC∪{>}∪NR → R>0 to prioritize different features
in the similarity measure. This function g is extended to pairs of basic concepts
or role names as g(A,B) = max(g(A), g(B)) and g(r, s) = max(g(r), g(s)); this
means, if we compute the primitive similarity between two basic concepts A and B
(because those occur in the pairing PC), this value is multiplied with the maximum
weight of g(A) and g(B), and analogously for roles.

Finally, any primitive measure ∼prim and weighting function g can be extended
to a similarity measure on pointed interpretations by recursively traversing the
interpretation graphs, computing the primitive measure for the best concept name
and successor pairing at each element:

p ∼i q = max
PC(p,q)
PS(p,q)

 sim(PC) + sim(PS)∑
(A,B)∈PC

g(A,B) +
∑

((r,p′),(s,q′))∈PS

g(r, s)

 (1)

where

sim(PC) =
∑

(A,B)∈PC

g(A,B)(A ∼prim B)

sim(PS) =
∑

((r,p′),(s,q′))∈PS

g(r, s)(r ∼prim s)((1− w) + w(p′ ∼i q
′))

The constant w allows for discounting of successors, and has a value w ∈ (0, 1).
Figure 1 shows an example of which successors might be chosen by a successor
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Figure 1: Recursive computation of the similarity value between (I, a) and (J , e).

a
A
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BuC

c
B

r r
I : d

A

e
BuC
r

J :

∼i

∼i

∼i

Figure 2: Two pointed interpretations with (I, a) ' (J , d), where the naive application
of the similarity measure ∼i yields similarity values less than 1.

pairing to compute the maximal similarity value. Both designated elements a and
e have an r- and s-successor, for which the similarity value needs to computed as
well. The s-successors have s-successors on their own, yielding all pairs of pointed
interpretations over I and J , respectively, whose similarities affect the similarity
between a and e.

Note that by defining the similarity measure this way, it is not equisimulation
closed. The reason is that the successor pairing always connects successors sym-
metrically, which gives rise to problems for sibling successor nodes that are in
a subsumption relationship. For example, consider the pointed interpretations
in Figure 2. For these pointed interpretations, any complete successor pairing
must map the node c as a successor of a to the only successor of d: the node e.
The similarity between c and e is less than 1 and affects the resulting similarity
(I, a) ∼i (J , d), which might get also a value less than 1, even though (I, a) and
(J , d) clearly simulate each other.

There are multiple solutions to this problem: First, one can modify the similarity
measure to be more in line with the notion of simulations by computing a direc-
tional similarity between nodes and always return value 1 if all concept names
and successors from one node occur in the other node (and maybe even more).
However, this would complicate the whole algorithm. Instead we take a similar
approach to [9] and normalize the interpretations I and J before applying the
similarity measure.
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Definition 7 (normal form for interpretations). An interpretation I = (∆I , ·I) is
in normal form if there are no elements a, b, c ∈ ∆I with {(a, b), (a, c)} ⊆ rI and
(I, b) . (I, c), i.e., no node has two successor nodes for the same role name that
are in a simulation relation.

Any interpretation I can be transformed into normal form as follows:

1. remove all edges (a, b) ∈ rI in the interpretation graph, for which there exists
an edge (a, c) ∈ rI with (I, b) . (I, c) and (I, b) 6' (I, c)

2. for all edges (a, b0) ∈ rI , check if there are other edges (a, bi) ∈ rI , i > 0,
with (I, b0) ' (I, bi) and choose one representative bj; then remove all other
edges (a, bi), i 6= j, from rI .

Note that this normalization is well-defined, since we assume that the pointed
interpretations are always finite, and simulations can be computed in polynomial
time in the size of the interpretation [7]. If we always normalize the pointed
interpretations in a preprocessing step, we can show that the similarity measure
∼i is now equivalence closed. This is a direct consequence of the following lemma.

Lemma 8. Let (I, a) and (J , b) be two pointed interpretations and let I ′ and J ′
be the results of normalizing I and J , respectively. Then the following holds:

1. Normalization preserves simulations, i.e., if (I, a) . (J , b) then also (I ′, a) .
(J ′, b).

2. If (I, a) ' (J , b), then for any successor (r, p) ∈ SC((I ′, a)) there exists a
unique successor (r, q) ∈ SC((J ′, b)) with p ' q and vice versa. We denote
this property by saying that (I ′, a) and (J ′, b) are structurally equivalent.

Proof.

1. Let (I, a) and (J , b) be two pointed interpretations with (I, a) . (J , b).
Then for each concept name A, we have a ∈ AI′ ⇔ a ∈ AI ⇒ b ∈ AJ ⇔
b ∈ AJ ′

. Additionally, for each role name r, we have (a, a′) ∈ rI′ ⇒ (a, a′) ∈
rI ⇒ ∃b′ : (b, b′) ∈ rJ ∧ (I, a′) . (J , b′). If (b, b′) ∈ rJ

′
, we are done:

(I ′, a) . (J ′, b) follows directly.

Otherwise, we know by the construction of J ′, that there exists an element
c ∈ ∆J

′
with (b, c) ∈ rJ ′

and (J ′, b′) . (J ′, c) or (J ′, b′) ' (J ′, c). Since .
is transitive and (I ′, a′) . (I, a) . (J , c), this means that (I ′, a′) . (J ′, c)
and the claim, (I ′, a) . (J ′, b) again follows.
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2. Let (I, a) and (J , b) be two pointed interpretations with (I, a) ' (J , b). Let
further (a, c) ∈ rI′ , which also implies (a, c) ∈ rI . Since I ′ is in normal form,
this means that there is no c′ ∈ ∆I with (a, c′) ∈ rI and (I, c) . (I, c′),
and (I, c′) 6. (I, c). Since (I, a) ' (J , b), there exists an element d ∈ ∆J

with (b, d) ∈ rJ and (I, c) . (J , d), but not necessarily (b, d) ∈ rJ ′
. By the

construction of J ′, we know that there is an element e ∈ ∆J
′
with (b, e) ∈ rJ ′

and (J , d) . (J , e). Again, (I, a) ' (J , b) implies that a must have a
successor (a, f) ∈ rI with (J , e) . (I, f); however, since with (I, c) . (J , d)
and (J , d) . (J , e), this also means (I, c) . (I, f). Since we assumed that
there is no c′ ∈ ∆I with (a, c′) ∈ rI and (I, c) . (I, c′), this means that
f = c and thus (I, c) ' (J , e) and by point 1. also (I ′, c) ' (J ′, e). The
other direction is analogous.

In the following, whenever we write (I, a) ∼i (J , b), we implicitly assume that I
and J have been normalized first.

3.2 Properties of the ISM ∼i

Before discussing the properties of the similarity measure ∼i, we first show that it
is actually well-defined, even for cyclic interpretations.

Lemma 9. The similarity measure ∼i is well-defined, i.e., Equation (1) has a
unique solution for any two pointed interpretations (I, a) and (J , b).

Proof. If we fix the two interpretations I and J , we can view ∼i as an iterative
function that “refines” the similarities between any two elements (c, d) ∈ ∆I×∆J ,
i.e., a function on the vector space R|∆I×∆J |. In particular, since the value of
p′ ∼i q

′ in Equation 1 is always multiplied with w (there may be other factors,
which are always less than 1), ∼i is Lipschitz continuous with a Lipschitz constant
of at most w. Because w < 1, this means that ∼i is a contraction mapping on
R|∆I×∆J |. But then, the Banach fixed-point theorem implies that ∼i has a unique
fixed point in R|∆I×∆J |, and indeed the iteration of ∼i on any starting tuple (like
starting with a similarity of 0 between any pair of elements) converges to this fixed
point [3]. This unique fixed-point means that Equation (1) has a unique solution
for any (I, a) ∼i (J , b) (which corresponds exactly to the value between a and b
for the fixed point) and is thus well-defined.

Even though ∼i as given in Equation (1) is well-defined, it cannot be used directly
to compute the similarity value, since cycles in the interpretation would lead to
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infinite recursion. Instead, we will give an iterative algorithm to compute the simi-
larities between all elements of two interpretations I and J , whose values converge
to the fixed point. By iterating this algorithm a number of times, e.g. until a given
tolerance or a maximum number of iterations is reached, the exact similarity can
be approximated arbitrarily close. The correctness of this algorithm follows again
from the Banach fixed-point theorem given above, as does the convergence factor
of w:

• (I, d) ∼0
i (J , e) = 0 for all d ∈ ∆I and e ∈ ∆J ;

• (I, d) ∼n+1
i (J , e) = max

PC((I,d),(J ,e))
PS((I,d),(J ,e))

 sim(PC) + sim(PS)∑
(A,B)∈PC

g(A,B) +
∑

((r,p′),(s,q′))∈PS

g(r, s)


for all d ∈ ∆I and e ∈ ∆J , where:

sim(PC) =
∑

(A,B)∈PC

g(A,B)(A ∼prim B)

sim(PS) =
∑

((r,p′),(s,q′))∈PS

g(r, s)(r ∼prim s)((1− w) + w(p′ ∼n
i q
′))

We now show that this similarity measure has many of the nice properties given
at the beginning of this chapter.

Theorem 10. Let ∼i be an ISM instantiated with a constant w ∈ (0, 1), a weight-
ing function g and a primitive measure ∼prim. Then ∼i is bounded and equisimu-
lation invariant for EL-concepts defined w.r.t. an EL-TBox and ..

Proof. 1. bounded: ∼i is bounded, if C(p) ∩ C(q) ⊃ {>} implies p ∼i q > 0 for
all p, q ∈ P. Assume that there exists a concept C 6= > in C(p)∩C(q). Then,
there also exists either a concept name A or an existential restriction of the
form ∃r.> in C(p)∩C(q), since for all conjunctions C1 uC2 ∈ C(p)∩C(q) we
also have C1, C2 ∈ C(p) ∩ C(q) and for all ∃r.C ∈ C(p) ∩ C(q) we also have
∃r.> ∈ C(p) ∩ C(q).

However, for a concept name A ∈ C(p) ∩ C(q), we have that A ∼prim A = 1
and thus maxPC(p,q)

∑
(A,B)∈PC

g(A,B)(A ∼prim B) > 0. This yields p ∼i

q > 0. Correspondingly, for ∃r.> ∈ C(p) ∩ C(q), we have 1 = (r ∼prim

r) and thus g(r, s)(r ∼prim r)((1−w) + w(p′ ∼i q
′)) > 1 − w > 0 and

maxPS(p,q)

∑
((r,p′),(s,q′))∈PS

g(r, s)(r ∼prim s)((1−w)+w(p′ ∼n q
′)) > 0. Again,

this yields p ∼i q > 0.
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2. equisimulation invariant: ∼i is equisimulation invariant, if p ' q implies
p ∼i u = q ∼i u for all p, q, u ∈ P; This is a direct consequence of the
fact that if p ' q, then the normalized pointed interpretations do not just
simulate each other, but are structurally equivalent, as stated in point 2 in
Lemma 8.

The parameterizable ISM ∼i needs to be instantiated appropriately to enjoy some
of the remaining properties.

Theorem 11. For EL-concepts defined w.r.t. an EL-TBox and . the ISM ∼i is

• symmetric, if ∼i is instantiated with a constant w ∈ (0, 1), a weighting
function g and a symmetric primitive measure ∼prim.

• dissimilar closed, if ∼i is instantiated with a constant w ∈ (0, 1), a weighting
function g and a primitive measure ∼prim that does not assign a similarity
value greater than 0 to different concept or role names.

• equisimulation closed, if ∼i is instantiated with a constant w ∈ (0, 1), a
weighting function g and a primitive measure ∼prim that does not assign the
similarity value 1 to different concept or role names.

Proof. 1. symmetric: ∼i is symmetric, if the primitive measure ∼prim is sym-
metric, as the definition of ∼i only uses commutative operators.

2. dissimilar closed: ∼i is dissimilar closed, if C(p) ∩ C(q) = {>} implies p ∼i

q = 0 for all p, q ∈ P with C(p) ⊃ {>} and C(q) ⊃ {>}; of course, ∼i

can only be dissimilarity closed if the primitive measure does not assign a
similarity value greater than 0 to different concept or role names. Hence we
only show this property for the default primitive measure ∼default.

Let p, q ∈ P with C(p) ⊃ {>} and C(q) ⊃ {>}, i.e., both p and q are
instance of some concept name or have a successor. If C(p) ∩ C(q) = {>},
then A ∼default B = 0 for all A ∈ CN(p) and B ∈ CN(q). Similarly, as
there is no role name r with (r, p′) ∈ SC(p) and (r, q′) ∈ SC(q), we have
r ∼default s = 0 for all (r, p′) ∈ S(p) and (s, q′) ∈ S(q). This then yields
p ∼i q = 0.

3. equisimulation closed: The direction from left to right, i.e., p ' q implies
p ∼i q = 1, follows again by point 2 in Lemma 8. For the other direction,
that p ∼i q = 1 also implies p ' q, we need the property that the primitive
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measure does not assign a similarity value of 1 to different concept or role
names. In this case, assume that p 6' q for p = (I, a) and q = (J , b). Then,
w.l.o.g., we will have one of the following conditions:

(a) there exists a concept name A with a ∈ AI and b 6∈ AJ , or

(b) a has a successor (a, c) ∈ rI and there is no d with (b, d) ∈ rJ , or

(c) a has a successor (a, c) ∈ rI and for all successors t = (J , d) of b with
(b, d) ∈ rJ we have that s 6' t. In this case, there must be a finite chain
of such successors si, ti starting from a, b such that Condition 1 or 2
holds for sn, tn.

Now, we can prove inductively that p ∼i q < 1. In the first two cases a)
and b), Equation 1 directly gives a similarity value < 1, since the concept
name A in case a) or the role name r in case b) will always be matched with
a different concept or role name and ∼prim never assigns similarity 1 to this
match. In the third case, we assume that c ∼i d < 1 by induction for all
successors d of b. Then Equation 1 again yields a similarity value p ∼i q < 1.
Thus ∼i must equisimulation closed.

Observe that ∼i can be used for two pointed interpretations that do not only differ
in the designated elements, but that differ in the underlying interpretations. This
allows to employ∼i to compare different finite models and to assess their similarity.
Thus ∼i can be used for ontology alignment for EL-TBoxes, where named concepts
defined over one TBox are mapped to a corresponding named concept in another
TBox. One can compute the maximally similar pairs of nodes of both canonical
models for a domain specific instantiation of ∼i.

However, in this paper we want to use ∼i to derive a CSM that enables us to
devise a computation algorithm for relaxed instances in EL.

4 Relaxing Instance Queries using ∼c

Relaxed instance queries based on CSMs were recently introduced in [5]. They
generalize the notion of instance queries for a given query concept C by returning
not only the exact instances of C, but also individuals that are similar enough, i.e.,
being an instance of a concept that has a similarity greater than a given threshold
to the query concept C w.r.t. a given CSM.
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4.1 The Concept Similarity Measure ∼c

This type of inference service requires a similarity measure on concepts, since it
also includes a generalization: For an individual a to be a relaxed instance of C, we
require that the maximal similarity between the query concept and all of the con-
cepts that have a as an instance is larger than t. This notion cannot be captured
easily by interpretation similarity measures. We modify the interpretation simi-
larity measure ∼i to work on concept descriptions and employ canonical models
as means to translate arbitrary concept descriptions with respect to background
knowledge into pointed interpretations.

Using canonical models, we define a concept similarity measure ∼c on EL-concept
descriptions w.r.t. a general EL-TBox T as follows:

C ∼c D = (IC,T , dC) ∼i (ID,T , dD).

The concept similarity measure ∼c inherits the nice properties of ∼i, since the
properties for interpretation similarity measures were defined to correspond exactly
to the concept similarity properties given in Section 2.3.

Theorem 12 (Properties of ∼c). The concept similarity measure ∼c is symmetric,
bounded, dissimilar closed, equivalence invariant, and equivalence closed, if ∼i is
symmetric, bounded dissimilar closed, equisimulation invariant and equisimulation
closed, respectively.

Proof. We prove that the properties of ∼i transfer to ∼c:

1. symmetry: C ∼c D = (IC,T , dC) ∼i (ID,T , dD)
symmetry of ∼i= (ID,T , dD) ∼i

(IC,T , dC) = D ∼c C.

2. bounded: Assume that for two EL-concept descriptions C and D, there
exists a concept E 6= > with C vT E and D vT E. Then Theorem 5
yields E ∈ C(p) ∩ C(q) for p = (IC,T , dC) and q = (ID,T , dD). Therefore
boundedness of ∼i implies C ∼c D = p ∼i q > 0.

3. dissimilar closed: Assume that for two EL-concept descriptions C,D 6= >,
there is no concept description E 6= > with C vT E and D vT E. Then
Theorem 5 implies that C(p) ∩ C(q) = {>} for p = (IC,T , dC) and q =
(ID,T , dD), and thus, since ∼i is dissimilar closed (and thus the primitive
measure does not assign a similarity value greater than 0 to different concept
or role names), C ∼c D = p ∼i q = 0.
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4. equivalence invariant: Assume that C ≡T D. Then by Theorem 5 we have
(IC,T , dC) ' (ID,T , dD) and thus equisimulation invariance of ∼i implies
(IC,T , dC) ∼i (J , e) = (ID,T , dD) ∼i (J , e) for any pointed interpretation
(J , e), in particular pointed interpretations of the form (IE,T , dE). This
then yields C ∼c E = D ∼c E for any EL-concept description E.

5. equivalence closed: Assume that C ≡T D. Then by Theorem 5 we have
(IC,T , dC) ' (ID,T , dD) and thus (IC,T , dC) ∼i (ID,T , dD) = 1 since ∼i is
equisimulation closed. But then we also have C ∼c D = 1.

Similarly, assume that C ∼c D = (IC,T , dC) ∼i (ID,T , dD) = 1. Then
(IC,T , dC) ' (ID,T , dD) since∼i is equisimulation closed, and thus Theorem 5
yields C ≡T D.

4.2 Using ∼c for Relaxed Instance Queries

Concept similarity-based relaxed instance queries were first defined in [5].

Definition 13 (relaxed instance). Let L be a DL, ∼C be a CSM, and t ∈ [0, 1).
The individual a ∈ NI is a relaxed instance of the query concept Q w.r.t. the L-
knowledge base K, ∼C and the threshold t iff there exists a L-concept description
X ∈ C(L) such that Q ∼C X > t and K |= X(a). With Relax∼C

t (Q) we denote the
set of all individuals occurring in K that are relaxed instances of Q w.r.t. K, ∼C

and t.

In order to devise a computation algorithm for this inference, we need to introduce
some notions. The generalized concepts of a concept C =

d
i∈I Ai u

d
j∈J ∃rj.Cj

are of the form D =
d

i∈I′ Ai u
d

j∈J ′ ∃rj.Dj for I ′ ⊆ I, J ′ ⊆ J , and Dj are
generalized concepts of Cj for all j ∈ J ′. This means, generalized concepts of a
concept description C are always obtained by deleting concept names or existential
restrictions anywhere in C. A concept C is fully expanded w.r.t. the TBox T if
any concept description ∃r1 . . . ∃rn.E with C vT ∃r1 . . . ∃rn.D and there is a GCI
D v E in T is equivalent to a generalized concept of C (i.e., C contains all its
implications explicitly. It was also established in [5], that all concepts Q′ that have
a as an instance are equivalent to a generalized concept of the (possibly infinite
[8]) fully expanded mscK(a). The fully expanded mscK(a) in EL is exactly the tree
unraveling of IK starting from da (see [14]), and thus for any concept C we have

C ∼c mscK(a) = (I ′C,T , dC) ∼i (I ′K, da),

where I ′C,T and I ′K are the normalized canonical models of C and the TBox T or
of the KB K, respectively.
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To compute the maximal similarity between the query concept Q and generalized
concepts of the mscK(a) we can simply modify the definition of ∼i in Equation (1)
on page 12 to check all subsets of the concept names SCN ⊆ CN(q) and successors
SSC ⊆ SC(q) of the pointed interpretations q in the canonical model IK and
maximize ∼i over those subsets. This corresponds to checking generalized concepts
of the mscK(a).

Note however, that not all generalized concepts are checked, since the canonical
models are always finite and using the subset construction, only finitely many
generalized concepts can be created. Whereas the mscK(a) may be infinite and
thus can have infinitely many generalized concepts. However, to find the maximal
similarity, the above subset construction is sufficient, since any infinite mscK(a) is
at some point cyclic, and thus we can reuse the same subsets for recurring elements
(which correspond exactly to the same pair (p, q) of pointed interpretations).

The following Equations compute the maximal similarity between a pointed in-
terpretation p and all ‘generalized pointed interpretation’ obtained from q by the
subset construction.

p∼imax q = max
SCN⊆CN(q)
SSC⊆SC(q)

max
PC⊆CN(p)×SCN

PS⊆SC(p)×SSC

sim(PC) + sim(PS)∑
(A,B)∈PC

g(A,B) +
∑

((r,p′),(s,q′))∈PS

g(r, s)

where

sim(PC) =
∑

(A,B)∈PC

g(A,B)(A ∼prim B)

sim(PS) =
∑

((r,p′),(s,q′))∈PS

g(r, s)(r ∼prim s)((1−w) + w · (p′∼imax q
′)

A deterministic algorithm to compute relaxed instances for ∼c is given in Figure 3.

The maxsimi values computed in the algorithm converge monotonically from be-
low to the maximal similarities between generalized concepts of the most specific
concept of an individual and the query concept. Thus, for any individual a, which
is a relaxed instance of Q with a threshold strictly larger than t, there exists i ∈ N
such that for all j > i we have maxsimj(Q, a) > t. Thus, the algorithm is sound
and complete in the following sense:

Theorem 14. Let ∼c be the CSM derived from ∼i with the primitive measure
∼prim, the weighting function g and the discounting factor w. The algorithm
relaxed-instances is sound and complete:

1. Soundness: If a ∈ relaxed-instances(Q,K, t,∼prim, g, w) for a number n of
iterations, then a ∈ Relax∼c

t (Q).
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Procedure: relaxed-instances (Q,K, t,∼prim, g, w)
Input: Q: EL-concept description; K = (T ,A): EL-KB; t ∈ [0, 1]: threshold;
∼prim: primitive measure; w ∈ (0, 1): discounting factor

Output: individuals a ∈ Relax∼c
t (Q)

1: compute canonical models IQ,T and IK
2: normalize canonical models to I ′Q,T and I ′K
3: maxsim0(d, e)← 0 for all d ∈ ∆I

′
Q,T and e ∈ ∆I

′
K

4: for i← 1 to n do
5: for all d ∈ ∆I

′
Q,T and e ∈ ∆I

′
K do

6: maxsimi(d, e)← max
SCN⊆CN(e)
SSC⊆SC(e)

max
PC⊆CN(d)×SCN

PS⊆SC(d)×SSC

similarity(PC , PS,∼prim, g, w, i)

7: end for
8: end for
9: return {a ∈ SigI(A) | maxsimn(dQ, da) ≥ t}

Procedure: similarity (PC , PS,∼prim, g, w, i)

1: sim(PC) =
∑

(A,B)∈PC

g(A,B)(A ∼prim B)

2: sim(PS) =
∑

((r,f),(s,g))∈PS

g(r, s)(r ∼prim s)
(
(1− w) + w ·maxsimi−1(f, g)

)
3: return

sim(PC) + sim(PS)∑
(A,B)∈PC

g(A,B) +
∑

((r,f),(s,g))∈PS

g(r, s)

Figure 3: Algorithm to compute all relaxed instances of a query concept Q w.r.t. the
knowledge base K, the threshold t and the similarity measure ∼c defined by the primitive
measure ∼prim, the weighting function g and the discounting factor w.

2. Completeness: If a ∈ Relax∼c
t (Q), then there is a number n ∈ N such that

a ∈ relaxed-instances(Q,K, t,∼prim, g, w) for any i ≥ n iterations.

Proof. First, we show that the solution of ∼imax for (IQ,T , dQ) and (IK, da) cor-
responds to the maximal similarity between Q and all concepts D that have a
as an instance. This is due to the fact that all concepts D that have a as an
instance must be equivalent to generalized concepts of the (possibly infinite) fully
expanded mscK(a) (see [5]) and that the tree unraveling of (IK, da) yields exactly
the fully expanded mscK(a) [12, 14]. By choosing the subsets SCN ⊆ CN(q) and
SSC ⊆ SC(q) for each pair of pointed interpretations p = (IQ,T , d) and q = (IK, e),
the algorithm maximizes the similarity over those generalized concepts, and thus,
always computes the maximal similarity between Q and all concepts D that have
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a as an instance.

1. Soundness: relaxed-instances computes the similarities between all d ∈ IQ,T
and e ∈ IK iteratively. Again, this mapping from old to new maxsim val-
ues done in each iteration (line 5–7) is a contraction mapping, and therefore
we can apply the Banach fixed-point theorem. This yields that the similar-
ity values computed by relaxed-instances converge to the solutions of ∼imax

and thus for the pair (dQ, da) to the maximal similarity between Q and all
concepts D that have a as an instance. Furthermore, all factors used in up-
dating the similarity values are positive, thus the mapping is monotone, and
since relaxed-instances starts with similarity value 0 for all pairs of elements,
the values for (dQ, da) converges to the solution from below. This means
that whenever relaxed-instances finds a value (dQ, da) > t, we know that also
(IQ,T , dQ)∼imax(IK, da) > t and thus a ∈ Relax∼c

t (Q). The claim follows.

2. Completeness: Let a be a relaxed instance of Q w.r.t. ∼c, K and t, i.e.
(IQ,T , dQ) ∼i (IK, da) − t = δ > 0. The convergence of the similarities
computed during relaxed-instances by the Banach fixed-point theorem means
that there is an n ∈ N such that the error for all iterations i ≥ n is less than δ;
and thus a ∈ relaxed-instances(Q,K, t,∼prim, g, w) for all i ≥ n iterations.

Furthermore, the algorithm converges quite fast: For any iteration, the difference
between the actual similarity and the computed value reduces by a factor of w.
This is again a direct consequence of the Banach fixed-point theorem. This means
that, to reduce the error tolerance of the solutions by a constant factor, e.g. one
tenth, only a constant number of iterations is needed additionally. However, one
cannot compute how many iterations are needed beforehand and cannot be sure
if, at any given point, the algorithm already found all relaxed instances, or if some
relaxed instances with a maximal similarity very close to the threshold t are still
missing.

If applying the algorithm relaxed-instances w.r.t. unfoldable TBoxes T , then the
similarities computed in relaxed-instances will however be the exact solutions after
exactly k iterations, where k = rd(Q) + 1 is the role-depth of the query concept
Q expanded w.r.t. T . In this case, the algorithm can be made deterministic and,
since each iteration of relaxed-instances only takes polynomial time in the size of
K and Q, runs in Ptime.
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5 Conclusions

We have investigated a new reasoning service that allows relaxed instance query
answering for application-specific notions of similarity by the appropriate choice
of a CSM—as recently proposed in [5]. The inference has two main degrees of
freedom: in the choice of the CSM, and in the degree of relaxation of the concept
by the supplied threshold t. Intuitively, different concept similarity measures yield
different weights on specific criteria. For example, one could require that small
changes inside existential restrictions produce a high level of dissimilarity.

This report extends the inference relaxed instance query answering to the case
of general EL-TBoxes. Furthermore, we identified a parameterizable CSM to be
employed in this setting. This CSM is derived from a similarity measure for finite
(pointed) interpretations, called ∼i. We considered the canonical models of EL-
TBoxes (or KBs), which are finite and can be computed in polynomial time. We
rephrased formal properties for CSMs for ISMs and developed the parameterizable
ISM ∼i that enjoys many of these properties. Essentially, all properties shown for
∼i transfer to ∼c. The ∼c CSMs are, to the best of our knowledge, the first CSMs
that take the whole information from general TBoxes into account. Based on ∼c

we gave an computation algorithm for relaxed instances w.r.t. general EL-TBoxes.

There are many options for future work. On the theoretical side it would be
interesting to explore how this approach can be extended to expressive DLs. We
conjecture that our approach extends to Horn-DLs, since they induce finite canoni-
cal models as well. How to generalize our approach and the computation of relaxed
instances to DLs that offer all Boolean operators is not obvious.

Regarding the relaxed instances a ranking function of the ascertained individuals
would be of interest to return the more interesting relaxed matches first to such
a query. Here, a natural idea is, of course, to rank the individuals (or their msc
resp.) according to the similarity to the query concept.

On the practical side there is plenty of room for optimizations. For instance,
the use of a concept that states necessary conditions in combination with the
query concept can considerably reduce the number of individuals to be checked
in practice. Furthermore, while the complexity of each iteration in the general
case is polynomial, the need to check every subset and every pairing is certainly
inefficient. Methods to reduce the subsets and pairings that need to be considered
are expedient to make this work in practice.
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