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Abstract

In the area of Description Logics the least common subsumer (lcs) and the most specific
concept (msc) are inferences that generalize a set of concepts or an individual, respectively,
into a single concept. If computed w.r.t. a general EL-TBox neither the lcs nor the msc need
to exist. So far in this setting no exact conditions for the existence of lcs- or msc-concepts
are known. This report provides necessary and suffcient conditions for the existence of
these two kinds of concepts. For the lcs of a fixed number of concepts and the msc we
show decidability of the existence in PTime and polynomial bounds on the maximal role-
depth of the lcs- and msc-concepts. The latter allows to compute the lcs and the msc,
respectively.

1 Introduction

Description Logics (DL) allow to model application domains in a structured and well-understood
way. Due to their formal semantics, DLs can offer powerful reasoning services. In recent years
the lightweight DL EL became popular as an ontology language for large-scale ontologies. EL
provides the logical underpinning of the OWL 2 EL profile of the W3C web ontology language
OWL [W3C09], which is used in important life science ontologies, as for instance, SNOMED
CT [Spa00] and the thesaurus of the US national cancer institute (NCI) [SdH+07], which
contain ten thousands of concepts. The reason for the success of EL is that it offers limited,
but sufficient expressive power, while reasoning can still be done in polynomial time [BBL05].

In DLs basic categories from an application domain can be captured by concepts and binary
relations by roles. Implications between concepts can be specified in the so-called TBox. A
general TBox allows complex concepts on both sides of implications. Facts from the application
domain can be captured by individuals and their relations in the ABox.

Classical inferences for DLs are subsumption, which computes the sub- and super-concept re-
lationships of named concepts and instance checking, which determines for a given individual
whether it belongs to a given concept. Reasoning support for the design and maintenance of
large ontologies can be provided by the bottom-up approach, which allows to derive a new con-
cept from a set of example individuals, see [BKM99]. For this kind of task the generalization
inferences least common subsumer (lcs) and most specific concept (msc) are investigated for
lightweight DLs like EL. The lcs of a collection of concepts is a complex concept that captures
∗Partially supported by the German Research Foundation (DFG) in the Collaborative Research

Center 912 [Pleaseinsert\PrerenderUnicode{âĂĲ}intopreamble]Highly Adaptive Energy-Efficient Comput-
ing[Pleaseinsert\PrerenderUnicode{âĂİ}intopreamble].
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all commonalities of these concepts. The msc generalizes an individual into a complex concept,
that is the most specific one of which the individual is an instance of.

Unfortunately, neither the lcs nor the msc need to exist, if computed w.r.t. general EL-TBoxes
[Baa03] or cyclic ABoxes written in EL [KM02]. Let’s consider the TBox statements:

Penicillin v Antibiotic u ∃kills.S-aureus,

Carbapenem v Antibiotic u ∃kills.E-coli,

S-aureus v Bacterium u ∃resistantMutant.Penicillin,

E-coli v Bacterium u ∃resistantMutant.Carbapenem

We want to compute the lcs of Penicillin and Carbapenem. Now, both concepts are defined by
the type of bacterium they kill. These, in turn, are defined by the substance a mutant of theirs
is resistant to. This leads to a cyclic definition and thus the common subsumer cannot be
captured by a finite EL-concept, since this would need to express the cycle. If computed w.r.t.
a TBox that in addition to the above ones also contains the axioms:

Antibiotic v ∃kills.Bacterium,

Bacterium v ∃resistantMutant.Antibiotic,

then the lcs exists. With the additional statements the lcs of Penicillin and Carbapenem is just
Antibiotic. We can observe that the existence of the lcs does not merely depend on whether
the TBox is cyclic. In fact, for cyclic EL-TBoxes exact conditions for the existence of the lcs
have been devised [Baa04]. However, for the case of general EL-TBoxes such conditions are
unknown.

There are several approaches to compute generalizations even in this setting. In [LPW10]
an extension of EL with greatest fixpoints was introduced, where the generalization concepts
always exist. Computation algorithms for approximative solutions for the lcs were devised
in [BST07, PT11a] and for the msc in [KM02]. The last two methods simply compute the
generalization concept up to a given k, a bound on the maximal nestings of quantifiers. If the
lcs or msc exists and a large enough k was given, then these methods yield the exact solutions.
However, to obtain the least common subsumer and the most specific concept by these methods
in practice, a decision procedure for the existence of the lcs or msc, resp., and a method for
computing a sufficiently large k are still needed. This paper provides these methods for the lcs
and the msc.

In this paper we first introduce basic notions for the DL EL and its canonical models, which
serve as a basis for the characterization of the lcs introduced in the subsequent section. There
we show that the characterization can be used to verify whether a given generalization is the
most specific one and that the size of the lcs, if it exists, is polynomially bounded by the size
of the input, which yields a decision procedure for the existence problem. In Section 4 we show
the corresponding results for the msc. We end with some conclusions.

2 Preliminaries

2.1 The Description Logic EL

Let NC , NR and NI be disjoint sets of concept, role and individual names. Let A ∈ NC and
r ∈ NR. EL-concepts are built according to the syntax rule

C ::= > | A | C uD | ∃r.C
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An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and a function ·I that
assigns subsets of ∆I to concept names, binary relations on ∆I to role names and elements of
∆I to individual names. The function is extended to complex concepts in the usual way. For
a detailed description of the semantic of DLs see [BCM+03].

Let C, D denote EL-concepts. A general concept inclusions (GCIs) is an expression of the
form C v D. A (general) TBox T is a finite set of GCIs. A GCI C v D is satisfied in an
interpretation I if CI ⊆ DI . An interpretation I is a model of a TBox T if it satisfies all GCIs
in T .

Let a, b ∈ NI , r ∈ NR and C a concept, then C(a) is a concept assertion and r(a, b) a role
assertion. An interpretation I satisfies an assertion C(a) if aI ∈ CI and r(a, b) if (aI , bI) ∈ rI
holds. An ABox A is a finite set of assertions. An interpretation I is a model of an ABox A
if it satisfies all assertions in A. A knowledge base (KB) K consists of a TBox and an ABox
(K = (T ,A)). An interpretation is a model of K = (T ,A) if it is a model of T and A.1

Important reasoning tasks considered for DLs are subsumption and instance checking. A concept
C is subsumed by a concept D w.r.t. a TBox T (denoted C vT D) if CI ⊆ DI holds in all
models I of T . A concept C is equivalent to a concept D w.r.t. a TBox T (denoted C ≡T D)
if C vT D and D vT C hold. A reasoning service dealing with a KB is instance checking.
An individual a is instance of the concept C w.r.t. K (denoted K |= C(a)) if aI ∈ CI holds
in all models I of K. These two reasoning problems can be decided for EL in polynomial
time [BBL05].

Based on subsumption and instance checking our two inferences of interest least common sub-
sumer (lcs) and most specific concept (msc) are defined.

Definition 1. Let C,D be concepts and T a TBox. The concept E is the lcs of C, D w.r.t.
T (lcsT (C,D)) if the properties

1. C vT E and D vT E, and

2. C vT F and D vT F implies E vT F .

are satisfied. If a concept E satisfies Property 1 it is a common subsumer of C and D w.r.t. T .

Thus the lcs is unique up to equivalence, while common subsumers are not unique, thus we
write F ∈ csT (C,D).

The role depth (rd(C)) of a concept C denotes the maximal nesting depth of ∃ in C. If, in
Definition 1 the concepts E and F are of role-depth up to k, then E is the role-depth bounded
lcs (k-lcsT (C,D)) of C and D w.r.t. T .

NI,A is the set of individual names used in an ABox A.

Definition 2. Let a ∈ NI,A and K = (T ,A) a KB. A concept C is the most specific concept
of a w.r.t. K (mscK(a)) if it satisfies:

1. K |= C(a), and

2. K |= D(a) implies C vT D.

If in the last definition the concepts C and D have a role-depth limited to k, then C is the
role depth bounded msc of a w.r.t. K (k-mscK(a)). The msc and the k-msc are unique up to
equivalence in EL.

1Since we only use the DL EL, we write ‘concept’ instead of ‘EL-concept’ and assume all TBoxes, ABoxes
and KBs to be written in EL in the following.
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2.2 Canonical Models and Simulation Relations

The correctness proof of the computation algorithms for the lcs and msc depends on the char-
acterization of subsumption and instance checking. In case of an empty TBox, homomorphisms
between syntax trees of concepts [BKM99] were used. A characterization w.r.t. general TBoxes
using canonical models and simulations was given in [LW10a], which we want to use in the
following.

Let X be a concept, TBox, ABox or KB, then sub(X) denotes the set of subconcepts occurring
in X.

Definition 3 (canonical model). Let C be a concept and T a TBox. The canonical model
IC,T of C and T is defined as follows:

• ∆IC,T := {dC} ∪ {dC′ | ∃r.C ′ ∈ sub(C) ∪ sub(T )};

• AIC,T := {dD | D vT A}, for all A ∈ NC ;

• rIC,T := {(dD, dD′) |D vT ∃r.D′ for ∃r.D′ ∈ sub(T )

or ∃r.D′ is a conjunct in D} for all r ∈ NR.

The notion of a canonical model can be extended to a KB.

Definition 4 (canonical model of a knowledge base). Let K = (T ,A) be a knowledge base.
The canonical model IK of K is defined as follows:

• ∆IK := {da | a ∈ NI,A} ∪ {dC | ∃r.C ∈ sub(K)};

• AIK := {da | K |= A(a)} ∪ {dC | C vT A}, for all A ∈ NC ;

• rIK := {(dC , dD) | C vT ∃r.D,∃r.D ∈ sub(K)} ∪
{(da, db) | r(a, b) ∈ A} ∪
{(da, dC) | K |= ∃r.C(a),∃r.C ∈ sub(K)} for all r ∈ NR;

• aIK := da, for all a ∈ NI,A.

To identify some properties of canonical models we use simulation relations between interpre-
tations.

Definition 5 (simulation). Let I1 and I2 be interpretations. S ⊆ ∆I1×∆I2 is called simulation
from I1 to I2 if all of the following conditions are satisfied:

(S1) For all concept names A ∈ NC and all (e1, e2) ∈ S it holds: e1 ∈ AI1 implies e2 ∈ AI2 .

(S2) For all role names r ∈ NR and all (e1, e2) ∈ S and all f1 ∈ ∆I1 with (e1, f1) ∈ rI1 there
exists f2 ∈ ∆I2 such that (e2, f2) ∈ rI2 and (f1, f2) ∈ S.

To denote an interpretation I with d ∈ ∆I we write (I, d). It holds that (I, d) is simulated by
(J , e) (written as (I, d) . (J , e)) if there exists a simulation S ⊆ ∆I × ∆J with (d, e) ∈ S.
The relation . is a preorder, i.e. it is reflexive and transitive. (I, d) is simulation-equivalent to
(J , e) (written as (I, d) ' (J , e)) if (I, d) . (J , e) and (J , e) . (I, d) holds.

Now we summarize some important properties of canonical models that were shown in [LW10a].

Lemma 6. Let C be a concept and T a TBox.
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1. dE ∈ EIC,T for all dE ∈ ∆IC,T .

2. IC,T is a model of T .

3. (IC,T , dD) ' (IC′,T , dD), for all concepts C ′ and all dD ∈ ∆IC,T ∩∆IC′,T .

4. For all models I of T and all d ∈ ∆I , the following conditions are equivalent:

(a) d ∈ CI ;
(b) (IC,T , dC) . (I, d).

5. The following conditions are equivalent:

(a) C vT D;
(b) dC ∈ DIC,T ;
(c) (ID,T , dD) . (IC,T , dC).

This lemma gives us a characterization of subsumption. A similar lemma was shown in [LW10b]
for the instance relationship.

Lemma 7. Let K be a knowledge base. IK satisfies the following properties:

1. IK is a model of K.

2. The following conditions are equivalent:

(a) K |= C(a);
(b) da ∈ CIK .

Next we recall some known operations on interpretations.

Taking an element of the domain of an interpretation as the root, the interpretation can be
unraveled into a possibly infinite tree. The nodes of the tree are words that correspond to paths
starting in d. Now, π = dr1d1r2d2r3 · · · is a path in an interpretation I if the domain elements
di and di+1 are connected via rIi+1 for all i.

Definition 8 (tree unraveling of an interpretation). Let I be an interpretation w.r.t. the names
NC and NR with d ∈ ∆I . The tree unraveling Id of I in d is defined as follows:

∆Id := {dr1d1r2 · · · rndn | (di, di+1) ∈ rIi+1 ∧ 0 ≤ i < n ∧ d0 = d};
AId := {σd′ | σd′ ∈ ∆Id ∧ d′ ∈ AI}, for all A ∈ NC ;

rId := {(σ, σrd′) | (σ, σrd′) ∈ ∆Id ×∆Id}, for all r ∈ NR.

The length of an element σ ∈ ∆Id , denoted by |σ|, is the number of role names occurring in
σ. If σ is of the form dr1d1r2 · · · rmdm, then dm is the tail of σ denoted by tail(σ) = dm. The
interpretation I`d denotes the finite subtree rooted in d of the tree unraveling Id containing all
elements up to depth `. Such a finite tree can be translated into a complex concept which is
called characteristic concept.

Definition 9 (characteristic concept). Let (I, d) be an interpretation. The `-characteristic
concept X`(I, d) is defined as follows: 2

X0(I, d) :=
l
{A ∈ NC | d ∈ AI}

X`(I, d) := X0(I, d) u
l

r∈NR

l
{∃r.X`−1(I, d′) | (d, d′) ∈ rI}

2For a set M of concepts we write
d

M as shorthand for
d

F∈M F . If M is empty, then
d

M is equal to >.
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Later we will need the following basic property of characteristic concepts that was shown in
[LPW10].

Lemma 10. Let (I, d) and (J , e) be interpretations. Then e ∈ (X`(I, d))J if and only if
(I`d, d) . (J , e).

Another operation that we will use later is the product of two interpretations that is defined as
follows.

Definition 11 (product interpretation). Let I and J be interpretations. The product inter-
pretation I × J is defined by

∆I×J := ∆I ×∆J ;

AI×J := {(d, e) | (d, e) ∈ ∆I×J ∧ d ∈ AI ∧ e ∈ AJ }, for all A ∈ NC ;

rI×J := {((d, e), (f, g)) | ((d, e), (f, g)) ∈ ∆I×J ×∆I×J

∧ (d, f) ∈ rI ∧ (e, g) ∈ rJ }, for all r ∈ NR.

3 Existence of the Least Common Subsumer

In this section we develop a decision procedure for the problem whether for two given concepts
and a given TBox the least common subsumer of these two concepts exists w.r.t. the given
TBox. If not stated otherwise, the two input concepts are denoted by C and D and the TBox
by T .

Similar to the approach used in [Baa04] we proceed by the following steps:

1. Devise a method to identify lcs-candidates. The set of lcs-candidates is a possibly infinite
set of common subsumers of C and D w.r.t. T , such that if the lcs exists then one of these
lcs-candidates actually is the lcs.

2. Characterize the existence of the lcs. Find a condition such that the problem whether a
given common subsumer of C and D w.r.t. T is least (w.r.t. vT ), can be decided by testing
this condition.

3. Establish an upper bound on the role-depth of the lcs. We give a bound ` such that if the
lcs exists, then it has a role-depth less or equal `. By such an upper bound one needs to check
only for finitely many of the lcs-candidates if they are least (w.r.t. vT ).

The next subsection addresses the first two problems, afterwards we show that such a desired
upper bound exists.

3.1 Characterizing the existence of the lcs

In this section canonical models and simulation relations are used to obtain in a first step a set
of possible candidates for the lcs and then to characterize whether a common subsumer is least
or not.

In [PT11a] so called role-depth bounded least common subsumers were introduced as approxi-
mations of the lcs, denoted by k-lcsT (C,D). For a fixed natural number k the k-lcsT (C,D) is
a common subsumer that is the least one of all common subsumers with a role-depth ≤ k. To
obtain the k-lcsT (C,D) we build the product of the canonical models (IC,T , dC) and (ID,T , dD)
and then take the k-characteristic concept of this product model. This product construction is
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adopted from [Baa03, LPW10], where a similar construction was used to define the lcs in EL
with gfp-semantics and in the DL ELν respectively.

In order to prove that the k-lcs can be computed as described above, we first show some
properties of product models and their characteristic concepts.

Lemma 12. Let IC,T ×ID,T and IE,T ×IF,T be products of canonical models with (dG, dH) ∈
∆IC,T ×ID,T ∩∆IE,T×IF,T .

1. For any k ∈ N it holds that Xk(IC,T × ID,T , (dG, dH)) = Xk(IE,T × IF,T , (dG, dH))

2. Let N be a concept. (dG, dH) ∈ NIC,T ×ID,T iff G vT N and H vT N .

Proof. 1. By Claim 3 of Lemma 6 it is implied that for any k Xk(IC,T , dG) = Xk(IE,T , dG)
and Xk(ID,T , dH) = Xk(IF,T , dH), respectively. Obviously, this implies the claim.

2. This claim follows directly from the definition of products of interpretations and Claim 5
of Lemma 6.

Now we show that the k-characteristic concept of (IC,T ×ID,T , (dC , dD)) yields the k-lcsT (C,D).

Lemma 13. Let k be a natural number.

1. Xk(IC,T × ID,T , (dC , dD)) ∈ csT (C,D).

2. Let E be a concept with rd(E) ≤ k and C vT E and D vT E.
It holds that Xk(IC,T × ID,T , (dC , dD)) vT E.

Proof. 1. We show the claim by induction on k.

k = 0 : By Definition 9 it holds that

X0(IC,T × ID,T , (dC , dD)) =
l
{A ∈ NC | (dC , dD) ∈ AIC,T ×ID,T }. (1)

For any concept name A in this conjunction it holds that (dC , dD) ∈ AIC,T ×ID,T and
therefore dC ∈ AIC,T and dD ∈ AID,T . From point 5 of Lemma 6 it follows that C vT A
and D vT A and therefore C vT X0(IC,T × ID,T , (dC , dD)) and D vT X0(IC,T ×
ID,T , (dC , dD)).

k > 0 : By applying the definition of Xk we get

Xk(IC,T × ID,T , (dC , dD)) =X0(IC,T × ID,T , (dC , dD)) u
l

r∈NR

l
{∃r.Xk−1(IC,T × ID,T , (dE , dF ))

| ((dC , dD), (dE , dF )) ∈ rIC,T ×ID,T }.

(2)

From Lemma 12.1 it follows thatXk−1(IC,T ×ID,T , (dE , dF )) = Xk−1(IE,T ×IF,T , (dE , dF )).
Now the induction hypothesis can be applied as follows:

E vT Xk−1(IE,T × IF,T , (dE , dF ))

F vT Xk−1(IE,T × IF,T , (dE , dF )).
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By Lemma 12.1 it is implied that

E vT Xk−1(IC,T × ID,T , (dE , dF ))

F vT Xk−1(IC,T × ID,T , (dE , dF ))

and by Lemma 6.5

dE ∈ (Xk−1(IC,T × ID,T , (dE , dF )))IE,T

dF ∈ (Xk−1(IC,T × ID,T , (dE , dF )))IF,T .

From Lemma 6.3 it follows (IE,T , dE) ' (IC,T , dE) and (IF,T , dF ) ' (ID,T , dF ) conse-
quently

dE ∈ (Xk−1(IC,T × ID,T , (dE , dF )))IC,T

dF ∈ (Xk−1(IC,T × ID,T , (dE , dF )))ID,T .

and by definition of the product of interpretation it holds that

(dE , dF ) ∈ (Xk−1(IC,T × ID,T , (dE , dF )))IC,T ×ID,T .

Since (dE , dF ) is an r-successor of (dC , dD) in IC,T × ID,T it is implied that

(dC , dD) ∈ (∃r.Xk−1(IC,T × ID,T , (dE , dF )))IC,T ×ID,T

and with Lemma 12.2 we obtain

C vT ∃r.Xk−1(IC,T × ID,T , (dE , dF ))

D vT ∃r.Xk−1(IC,T × ID,T , (dE , dF )).

As shown in the base case X0(IC,T × ID,T , (dC , dD)) is also a common subsumer of C
and D w.r.t. T . It is now implied that Xk(IC,T ×ID,T , (dC , dD)) is a common subsumer
of C and D w.r.t. T .

2. The claim is proven by induction on the role-depth of an arbitrary common subsumer E of
C and D w.r.t. T with rd(E) ≤ k.

rd(E) = 0 : E is a conjunction of concept names of the form
d
iAi. We show that the concept

names Ai occur in the conjunctionX0(IC,T ×ID,T , (dC , dD)). Since C vT E andD vT E
holds, it follows by Lemma 6.5 that dC ∈ EIC,T and dD ∈ EID,T . So we have that
dC ∈ A

IC,T
i and dD ∈ A

ID,T
i for all i and (dC , dD) ∈ AIC,T×ID,T

i for all i. By definition
of Xk(IC,T ×ID,T , (dC , dD)) and (1) it is implied that X0(IC,T ×ID,T , (dC , dD)) vT E.

rd(E) = n > 0 : Let
E = A1 u · · · uA` u ∃r1.E

′
1 u · · · u ∃rm.E′m

It can be shown like in the base case that the conjunction A1u...uA` subsumes Xk(IC,T ×
ID,T , (dC , dD)). Let ∃rj .E′j with 1 ≤ j ≤ m be an existential restriction in E. Since
it holds that C vT ∃rj .E′j and D vT ∃rj .E′j , we get dC ∈ (∃rj .E′j)IC,T and dD ∈
(∃rj .E′j)ID,T by Lemma 6.5. There are rj-successors dG and dH of dC and dD in IC,T
and ID,T , respectively, with dG ∈ (E′j)

IC,T and dH ∈ (E′j)
ID,T . It holds that

dG ∈ (E′j)
IC,T

⇒ (IE′j ,T , dE′j ) . (IC,T , dG) ' (IG,T , dG) (by Lemma 6.4 and 6.3)

⇒ G vT E′j (by Lemma 6.5).
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The same argument holds for dH . By induction hypothesis and rd(E′j) = n − 1 we now
have that Xn−1(IG,T × IH,T , (dG, dH)) vT E′j . From Lemma 12.1 it follows that

Xn−1(IG,T × IH,T , (dG, dH)) = Xn−1(IC,T × ID,T , (dG, dH))

and therefore Xn−1(IC,T × ID,T , (dG, dH)) vT E′j and

∃rj .Xn−1(IC,T × ID,T , (dG, dH)) vT ∃rj .E′j .

Since ∃rj .Xn−1(IC,T × ID,T , (dG, dH)) is a conjunct in Xn(IC,T × ID,T , (dC , dD)), it is
implied that Xn(IC,T × ID,T , (dC , dD)) vT ∃rj .E′j .

In the following we take Xk(IC,T × ID,T , (dC , dD)) as representation of k-lcsT (C,D). It is
implied by Lemma 13 that the set of k-characteristic concepts of the product model (IC,T ×
ID,T , (dC , dD)) for all k is the set of possible candidates for the lcsT (C,D). This can be stated
as follows.

Corollary 14. The lcsT (C,D) exists if and only if there exists a k ∈ N such that for all ` ∈ N:
k-lcsT (C,D) vT `-lcsT (C,D).

Obviously, this doesn’t yield a decision procedure for the problem whether the k-lcsT (C,D) is
the lcs, since subsumption cannot be checked for infinitely many ` in finite time.

Next, we address step 2 and show a condition on the common subsumers that decides whether
a common subsumer is the least one or not. The main idea is that the product model captures
all commonalities of the input concepts by means of canonical models. Thus we compare the
canonical models of the common subsumers and the product model using . and simulation
equivalence '.

First it can be stated that the canonical model of the k-lcs simulates the tree unraveling of the
product model limited to depth k.

Lemma 15. Let J(dC ,dD) be the tree unraveling of (IC,T × ID,T , (dC , dD)) in (dC , dD) and K
the k-lcsT (C,D) w.r.t. T . It holds that J k(dC ,dD) . (IK,T , dK).

Proof. The concept Xk(IC,T × ID,T , (dC , dD)) is by Lemma 13 a common subsumer of C,D
w.r.t. T . Since Xk(IC,T × ID,T , (dC , dD)) has role-depth ≤ k, it is implied that K vT
Xk(IC,T × ID,T , (dC , dD)) and therefore dK ∈ (Xk(IC,T × ID,T , (dC , dD)))IK,T by Lemma
6.5. From Lemma 10 it now follows J k(dC ,dD) . (IK,T , dK).

The following lemma recalls a simple property about products of interpretations.

Lemma 16 ( [LPW10]). Let (J , e), (I1, d1) and (I2, d2) be interpretations. If (J , e) . (I1, d1)
and (J , e) . (I2, d2), then (J , e) . (I1 × I2, (d1, d2)).

Now we show that a common subsumer is the lcs if and only if its canonical model is simulation-
equivalent to the product of the canonical models of the input concepts.

Lemma 17. Let E be a concept.
E is the lcs of C and D w.r.t. T iff (IC,T × ID,T , (dC , dD)) ' (IE,T , dE).

9



P,C

S, E

∈ AI ∈ BI killsI resistantMutantI

P,C

S, E S,B

P,A

B,E

A,C

B,B

A,A

A

B

A u ∃ kills.(B u ∃resistantMutant.A)

B u ∃resistantMutant.A

A

IP,T1 × IC,T1 IP,T2 × IC,T2 IA,T2IAu∃kills.(Bu∃resistantMutant.A),T1

Figure 1: Product of canonical models of T1 and T2

The proof idea of this claim can be outlined as follows:

Assume (IE,T , dE) is simulation-equivalent to the product model. We need to show that E ≡T
lcsT (C,D).

For any F ∈ csT (C,D) it holds by Lemma 6.5 that (IF,T , dF ) is simulated by (IC,T , dC) and
by (ID,T , dD) and therefore also by (IC,T × ID,T , (dC , dD)). By transitivity of . it is implied
that (IF,T , dF ) . (IE,T , dE) and E vT F by Lemma 6. Therefore E ≡T lcsT (C,D).

For the other direction assume E ≡T lcsT (C,D). It has to be shown that (IE,T , dE) simulates
the product model. Let J(dC ,dD) be the tree unraveling of the product model. Since E is more
specific than the k-characteristic concepts of the product model for all k (by Corollary 14),
(IE,T , dE) simulates the subtree J k(dC ,dD) of J(dC ,dD) limited to elements up to depth k, for
all k. For each k we consider the maximal simulation from J k(dC ,dD) to (IE,T , dE). Note that
((dC , dD), dE) is contained in any of these simulations. Let σ be an element of ∆J(dC,dD) at an
arbitrary depth `. We show how to determine the elements of ∆IE,T , that simulate this fixed
element σ. Let Sn(σ) be the maximal set of elements from ∆IE,T that simulate σ in each of
the trees J n(dC ,dD) with n ≥ `. We can observe that the infinite sequence (S`+i(σ))i=0,1,2,... is
decreasing (w.r.t. ⊇). Therefore at a certain depth we reach a fixpoint set. This fixpoint set
exists for any σ. It can be shown that the union of all these fixpoint sets yields a simulation
from the product model to (IE,T , dE).

Proof of Lemma 17. “⇒":
Assume that E is the lcs of C, D w.r.t. T , thus C vT E and D vT E and by Lemma 6.5
(IE,T , dE) . (IC,T , dC) and (IE,T , dE) . (ID,T , dD) holds. It is now implied by Lemma 16
that

(IE,T , dE) . (IC,T × ID,T , (dC , dD)). (3)

We now show (IC,T × ID,T , (dC , dD)) . (IE,T , dE) by constructing a simulation from the tree
unraveling J(dC ,dD) of (IC,T × ID,T , (dC , dD)) to (IE,T , dE). We first write J(dC ,dD) as an
infinite union of the subtrees J k(dC ,dD).

∆J(dC,dD) =
⋃
k=0

∆J
k
(dC,dD) , (4)

AJ(dC,dD) =
⋃
k=0

AJ
k
(dC,dD) , for all A ∈ NC (5)

rJ(dC,dD) =
⋃
k=0

rJ
k
(dC,dD) , for all r ∈ NR (6)

10



Let K be the k-lcsT (C,D) for an arbitrary k. By Lemma 15 we have:

J k(dC ,dD) . (IK,T , dK). (7)

Since E is the lcs, E is subsumed by K w.r.t. T and therefore it holds (by Lemma 6.5) that
(IK,T , dK) . (IE,T , dE). With (7) and transitivity of . we have

J n(dC ,dD) . (IE,T , dE)

for all n ∈ N. If J(dC ,dD) is finite, then there exists an m ∈ N such that Jm(dC ,dD) = J(dC ,dD).
In this case we are done. It remains to be shown that J(dC ,dD) . (IE,T , dE) also holds if
J(dC ,dD) is an infinite tree. Consequently, there exists for each n a maximal simulation Sn ⊆
∆J

n
(dC,dD) ×∆IE,T with ((dC , dD), dE) ∈ Sn. For the infinite sequence of subtrees

J 0
(dC ,dD),J

1
(dC ,dD),J

2
(dC ,dD), ...

of J(dC ,dD) there exists an infinite sequence S0,S1,S2, ... of maximal simulations. Using this
sequence we construct now a simulation that shows J(dC ,dD) . (IE,T , dE). To do this we select
an ` ∈ N and an arbitrary element σ ∈ ∆J(dC,dD) with |σ| = `.

The element σ occurs in all subtrees Jm(dC ,dD) withm ≥ `. So there are pairs in the corresponding
maximal simulations Sm that consist of σ and an element d ∈ ∆IE,T . For this σ and all m ≥ `
we now collect exactly those pairs that occur in the maximal simulation Sm and denote it by:

Sm(σ) := ({σ} ×∆IE,T ) ∩ Sm.

For all m the corresponding sets Sm(σ) ⊆ Sm are non-empty.

We can also observe, that if an element σ is simulated by d in Si+2 (i.e. (σ, d) ∈ Si+2(σ)) it is
also simulated by the same d in Si+1 since these simulations are maximal. Therefore the sets
Sm(σ) don’t increase with increasing m. This is shown in the following claim.

Claim. Let σ ∈ ∆J(dC,dD) with ` = |σ|. It holds that:

S`(σ) ⊇ S`+1(σ) ⊇ S`+2(σ)...

Proof of the claim. We show by induction on n ≥ ` that

Sn(σ) ⊆ Sn−1(σ) ⊆ ... ⊆ S`+1(σ) ⊆ S`(σ).

This obviously holds for the base case n = `.
Let n > ` and (σ, d) ∈ Sn(σ). It has to be shown that (σ, d) ∈ Sn−1(σ) and therefore Sn(σ) ⊆
Sn−1(σ). Let Sn ⊆ ∆J

n
(dC,dD) ×∆IE,T be the maximal simulation from J n(dC ,dD) to (IE,T , dE).

Let Sn�n−1 defined as

Sn�n−1
:= Sn ∩ (∆

Jn−1
(dC,dD) ×∆IE,T )

be the restriction of Sn to pairs, whose first components are elements of the tree unraveling with
depth less or equal n−1. Since Sn�n−1

is a simulation from J n−1
(dC ,dD) to (IE,T , dE), it holds that

Sn�n−1 is contained in the maximal simulation Sn−1. We have now (σ, d) ∈ Sn(σ) ⊆ Sn�n−1 ⊆
Sn−1, because |σ| < n. Then it is implied that (σ, d) ∈ Sn−1(σ) and therefore Sn(σ) ⊆ Sn−1(σ).
By applying the induction hypothesis to Sn−1(σ) we get

Sn(σ) ⊆ Sn−1(σ)
I.H.
⊆ ...

I.H.
⊆ S`+1(σ)

I.H.
⊆ S`(σ)

which finishes the proof of the claim.
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From this claim it follows that there exists an f ∈ N such that

Sf (σ) =

∞⋂
`≥|σ|

S`(σ). (8)

We construct a relation S ⊆ ∆J(dC,dD) ×∆IE,T as follows:

S :=
⋃

σ∈∆
J(dC,dD)

( ∞⋂
`≥|σ|

S`(σ)

)

To show J(dC ,dD) . (IE,T , dE) it has to be shown that S is a simulation with ((dC , dD), dE) ∈ S.

For all n ∈ N we have ((dC , dD), dE) ∈ Sn((dC , dD)) and therefore ((dC , dD), dE) ∈ S. Next we
show that S fulfills the conditions (S1) and (S2) of Definition 5.

(S1) : Let (σ, d) ∈ S with σ ∈ AJ(dC,dD) for a concept name A. It has to be shown that
d ∈ AIE,T .

There exists an x ∈ N with (σ, d) ∈ Sx. From σ ∈ AJ(dC,dD) and (5) it follows that
σ ∈ AJ

x
(dC,dD) . Sx is a simulation from J x(dC ,dD) to (IE,T , dE) and satisfies (S1). It

follows that d ∈ AIE,T .

(S2) : Let (σ, d) ∈ S and (σ, σre) ∈ rJ(dC,dD) . It has to be shown that there is a g with
(d, g) ∈ rIE,T and (σre, g) ∈ S.
By (8) there are numbers n,m with Sn(σ) =

⋂∞
i≥|σ| Si(σ) and Sm(σre) =

⋂∞
j≥|σre| Sj(σre).

Let m > n w.l.o.g. It is implied that Sm(σ) = Sn(σ). Since (σ, d) ∈ Sm and (σ, σre) ∈
rJ

m
(dC,dD) (by (6)), there is a g with (d, g) ∈ rIE,T and (σre, g) ∈ Sm(σre) ⊆ Sm, because

Sm is a simulation and satisfies (S2). The number m was chosen such that Sm(σre) ⊆ S
holds and therefore it is implied that (σre, g) ∈ S.

It is implied that J(dC ,dD) . (IE,T , dE) and therefore also (IC,T ×ID,T , (dC , dD)) . (IE,T , dE).
Together with (3) we have (IC,T × ID,T , (dC , dD)) ' (IE,T , dE).
“⇐":
Assume E is a common subsumer of C and D and (IC,T × ID,T , (dC , dD)) ' (IE,T , dE). It
has to be shown that E is the least common subsumer. Let F be an arbitrary concept with
C vT F and D vT F . From Lemma 6.5 it follows that

(IF,T , dF ) . (IC,T , dC)

(IF,T , dF ) . (ID,T , dD)

From Lemma 16 it follows that

(IF,T , dF ) . (IC,T × ID,T , (dC , dD))

and by assumption

(IF,T , dF ) . (IC,T × ID,T , (dC , dD)) . (IE,T , dE).

We now have (IF,T , dF ) . (IE,T , dE) and E vT F by Lemma 6.5. So E is the least common
subsumer of C and D w.r.t. T .

By the use of this Lemma it can be verified whether a given common subsumer is the least one
or not, which we illustrate by an example.
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Example 18. Consider again the TBox from the introduction (now displayed with abbreviated
concept names)

T1 = {P v A u ∃kills.S, S v B u ∃resistantMutant.P,

C v A u ∃kills.E, E v B u ∃resistantMutant.C}

and the following extended TBox

T2 = T1 ∪ {A v ∃kills.B, B v ∃resistantMutant.A}.

In Figure 1 we can see that

A u ∃kills.(B u ∃resistantMutant.A) ∈ csT1(P,C),

but it is not the lcs, because its canonical model cannot simulate the product model (IP,T1 ×
IC,T1 , (dP, dC)). The concept A, however, is the lcs of P and C w.r.t. T2. We have (IP,T2 ×
IC,T2 , (dP, dC)) . (IA,T2 , dA) since any element from ∆IP,T2×IC,T2 in AIP,T2×IC,T2 or BIP,T2×IC,T2

is simulated by A or B , respectively.

The characterization of the existence of the lcs given in Corollary 14 can be reformulated using
Lemma 17.

Corollary 19. The lcsT (C,D) exists iff there exists a k such that the canonical model of
Xk(IC,T × ID,T , (dC , dD)) w.r.t. T simulates (IC,T × ID,T , (dC , dD)).

This corollary still doesn’t yield a decision procedure for the existence problem of the lcs, since
the depth k is still unrestricted. Such a restriction will be developed in the next section.

3.2 A Polynomial Upper Bound on the Role-depth of the LCS

In this section we show that, if the lcs exists, its role-depth is bounded by the size of the
product model. First, consider again the TBox T2 from Example 18, where A vT2 ∃kills.(B u
∃resistantMutant.A) holds, which results in a loop in the product model through the elements
A,A and B,B . Furthermore, the cycles in the product model involving the roles kills and
resistantMutant are captured by the canonical model IA,T2 . Therefore A ≡T2 lcsT2(P,C). On this
observation we build our general method.

We call elements (dF , dF ′) ∈ ∆IC,T ×ID,T synchronous if F = F ′ and asynchronous otherwise.
The structure of (IC,T ×ID,T , (dC , dD)) can now be simplified by considering only synchronous
successors of synchronous elements.

Lemma 20. Let (dE , dE) ∈ ∆IC,T ×ID,T . (IC,T × ID,T , (dE , dE)) ' (IE,T , dE).

Proof. We define relations S ⊆ ∆IC,T ×ID,T × ∆IE,T and Z ⊆ ∆IE,T × ∆IC,T×ID,T with
((dE , dE), dE) ∈ S and (dE , (dE , dE)) ∈ Z as follows.

S := {((dF , dG), dF ) | (dF , dG) ∈ ∆IC,T ×ID,T , dF ∈ ∆IE,T }
Z := {(dF , (dF , dF )) | dF ∈ ∆IE,T , (dF , dF ) ∈ ∆IC,T ×ID,T }

Obviously S and Z satisfy (S1) and (S2) of Definition 5. Since ((dE , dE), dE) ∈ S and S is a
simulation, (IC,T × ID,T , (dE , dE)) . (IE,T , dE). And analogous we have (dE , (dE , dE)) ∈ Z,
Z is a simulation and therefore (IE,T , dE) . (IC,T ×ID,T , (dE , dE)). The composition S ◦Z ⊆
∆IC,T ×ID,T ×∆IC,T ×ID,T is also a simulation with ((dE , dE), (dE , dE)) ∈ S ◦ Z. The second
component of the pairs in S◦Z are synchronous by definition of Z. Therefore any asynchronous
successor of (dE , dE) is simulated by its synchronous counterparts in S ◦ Z.
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In order to find a number k, such that the product model is simulated by the canonical model of
K = Xk(IC,T ×ID,T , (dC , dD)), we first represent the model (IK,T , dK) as a subtree of the tree
unraveling of the product model J(dC ,dD) with root (dC , dD). We construct this representation
by extending the subtree J k(dC ,dD) by new tree models at depth k. We need to ensure that the
resulting interpretation, denoted by Ĵ k(dC ,dD), is a model of T , that is simulation-equivalent to

(IK,T , dK). The elements σ ∈ ∆J
k
(dC,dD) with |σ| = k we extend and the corresponding trees

we append to them are selected as follows:

First we consider elements that have a tail that is a synchronous element. If tail(σ) = (dF , dF ),
then F is called tail concept of σ. To select the elements with a synchronous tail, that we extend
by the canonical model of their tail concept, we use embeddings of J k(dC ,dD) into (IK,T , dK).
We show that such an embedding exists.

Lemma 21. Let IK,T be the canonical model of Xk(IC,T × ID,T , (dC , dD)) w.r.t. T . For any
k there exists a simulation Z ⊆ ∆J

k
(dC,dD) ×∆IK,T that is functional and Z((dC , dD)) = dK .

Proof. It holds by Definition 9 and by definition of the tree unraveling that:

Xk((IC,T × ID,T , (dC , dD))) = Xk(J(dC ,dD), (dC , dD)) = Xk(J k(dC ,dD), (dC , dD)).

By Definition 3 (IK,∅, dK) is a subinterpretation of (IK,T , dK), which means ∆IK,∅ ⊆ ∆IK,T ,
AIK,∅ ⊆ AIK,T for all concept names A and rIK,∅ ⊆ rIK,T for all role names r. From Definition
3 and 9 it follows that there even exists a bijective total function Z between ∆IK,∅ and ∆J

k
(dC,dD)

such that σ ∈ AJ
k
(dC,dD) iff Z(σ) ∈ AIK,∅ for allA and (σ, σ′) ∈ rJ

k
(dC,dD) iff (Z(σ), Z(σ′)) ∈ rIK,∅

for all r. Z is a functional simulation from (J k(dC ,dD), (dC , dD)) to (IK,T , dK).

Let H = {Z1, ..., Zn} be the set of all functional simulations Zi from J k(dC ,dD) to (IK,T , dK)

with Zi((dC , dD)) = dK . We say that σ with tail concept F is matched by Zi if Zi(σ) ∈ F IK,T .
The set of elements σ ∈ ∆J

k
(dC,dD) with |σ| = k, that are matched by a functional simulation

Zi is called matching set denoted byM(Zi).

The elements from ∆J
k
(dC,dD) , we extend, are called stubs.

Definition 22. Let σ ∈ ∆J
k
(dC,dD) with |σ| = k. σ is contained in the set of stubs of J k(dC ,dD),

denoted by stubs(J k(dC ,dD)), if it satisfies one of the following properties:

1. LetM be a conjunction of concept names and ∃r.F ∈ sub(T ). It holds that σ ∈MJ
k
(dC,dD)

and M vT ∃r.F

2. LetM(H) := {M(Z) | Z ∈ H} be the set of all matching sets. It holds that σ is contained
in all maximal sets inM(H).

Now we define the set of trees Υ(σ) that are appended to a stub σ. Consider σ ∈ stubs(J k(dC ,dD))

that satisfies the first condition for ∃r.F . Let (I∃r.F,T , d∃r.F ) be the canonical model. By
definition of J(dC ,dD) it holds that σr(dF , dF ) ∈ ∆J(dC,dD) and the subtree Jσr(dF ,dF ) of J(dC ,dD)

is simulation-equivalent to (I∃r.F,T , d∃r.F ) (by Lemma 20). Thus Υ(σ) contains Jσr(dF ,dF ).

Assume σ ∈ stubs(J k(dC ,dD)) satisfies the second property for the tail concept F . In this case
the subtree Jσ of J(dC ,dD) is simulation-equivalent to (IF,T , dF ) as shown in Lemma 20. Thus
Υ(σ) contains Jσ.
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We define the extended interpretation Ĵ k(dC ,dD) as follows:

∆Ĵ
k
(dC,dD) := ∆J

k
(dC,dD) ∪

⋃
σ∈stubs(∆

Jk
(dC,dD) )

⋃
J∈Υ(σ)

∆J

AĴ
k
(dC,dD) := AJ

k
(dC,dD) ∪

⋃
σ∈stubs(∆

Jk
(dC,dD) )

⋃
J∈Υ(σ)

AJ , for all A ∈ NC

rĴ
k
(dC,dD) := rJ

k
(dC,dD) ∪

⋃
σ∈stubs(∆

Jk
(dC,dD) )

⋃
J∈Υ(σ)

rJ , for all r ∈ NR

(9)

We show that the resulting interpretation Ĵ k(dC ,dD) has the desired properties.

Lemma 23. Let E be a concept and K = Xk(IC,T × ID,T , (dC , dD)). There is a func-
tional simulation Z from J k(dC ,dD) to (IK,T , dK) with Z((dC , dD)) = dK such that for all

σ ∈ ∆J
k
(dC,dD) ∩∆Ĵ

k
(dC,dD) it holds that σ ∈ EĴ

k
(dC,dD) implies Z(σ) ∈ EIK,T .

Proof. There exists a functional simulation Z satisfying the following properties:

• Z ⊆ ∆J
k
(dC,dD) ×∆IK,T with Z((dC , dD)) = dK .

• Let σ ∈ stubs(J k(dC ,dD)), such that σ satisfies property 1 of Definition 22 w.r.t. ∃r.F . Since
Z(σ) simulates σ it is implied (by (S1) of Definition 5) that Z(σ) ∈ (∃r.F )IK,T . Therefore
Z(σ) simulates the tree Jσr(dF ,dF ) ∈ Υ(σ).

• All stubs in stubs(J k(dC ,dD)) satisfying the second property of Definition 22 are matched
by Z.

Since all tree unravelings appended to a stub σ are simulated by Z(σ), there exists a simulation
S ⊆ ∆Ĵ

k
(dC,dD)×∆IK,T that is an extension of Z such that ((dC , dD), dK) ∈ S and S is functional

on ∆J
k
(dC,dD) ∩∆Ĵ

k
(dC,dD) .

Now we can show the claim as follows:

Let σ ∈ ∆J
k
(dC,dD) ∩∆Ĵ

k
(dC,dD) with σ ∈ EĴ

k
(dC,dD) . From Lemma 6.4 it follows that

(IE,∅, dE) . (Ĵ k(dC ,dD), σ) . (IK,T , Z(σ)).

Again by Lemma 6.4 it holds that Z(σ) ∈ EIK,T .

Lemma 24. Let K = Xk(IC,T ×ID,T , (dC , dD)). The interpretation Ĵ k(dC ,dD) has the following
properties:

1. Ĵ k(dC ,dD) is a model of T ;

2. Ĵ k(dC ,dD) ' (IK,T , dK).

Proof of point 1. Let F v G ∈ T . It has to be shown that F Ĵ
k
(dC,dD) ⊆ GĴ

k
(dC,dD) . Assume that

F v G is of the form

A1 u · · · uAn u ∃r1.E1 u · · · u ∃rm.Em v B1 u · · · uBn′ u ∃s1.H1 u · · · u ∃sm′ .Hm′
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For any σ ∈ ∆Ĵ
k
(dC,dD) ⊆ ∆J(dC,dD) it holds

σ ∈ AĴ
k
(dC,dD) iff σ ∈ AJ(dC,dD) , for all A ∈ NC . (10)

Let σ ∈ F Ĵ
k
(dC,dD) . It has to be shown that σ ∈ GĴ

k
(dC,dD) . To do this we distinguish the

following cases for σ ∈ ∆Ĵ
k
(dC,dD) :

1. |σ| < k;

2. |σ| = k and σ ∈ stubs(J k(dC ,dD));

3. |σ| = k and σ /∈ stubs(J k(dC ,dD));

4. |σ| > k.

1. Case: σ ∈ ∆J
k
(dC,dD) with |σ| < k. From σ ∈ F Ĵ

k
(dC,dD) it follows σ ∈ FJ(dC,dD) . Since

J(dC ,dD) is a model of T , it is implied that σ ∈ GJ(dC,dD) . We want to show that

σ ∈ GĴ
k
(dC,dD) also holds. We first consider the concept names Bi(i = 1, ..., n′) on top-

level of G. Since J(dC ,dD) is a model of T , it holds σ ∈ (
d
i=1,...,n′ Bi)

J(dC,dD) and therefore

σ ∈ (
d
i=1,...,n′ Bi)

Ĵ k
(dC,dD) (by (10)).

Now we consider a top-level conjunct ∃s.H of G. Let tail(σ) = (dL, dL′). Since σ ∈
(∃s.H)J(dC,dD) it is implied that L vT ∃s.H and L′ vT ∃s.H. Therefore the element
σs(dH , dH) ∈ ∆J(dC,dD) and with σ < k, we have also σs(dH , dH) ∈ ∆J

k
(dC,dD) . Next we

show that the elements on level k, that are reachable from σs(dH , dH) in J k(dC ,dD) are
stubs according to the second property in Definition 22. Let F be an arbitrary functional
simulation from J k(dC ,dD) to (IK,T , dK). Assume that there exists at least one element δ
in J k(dC ,dD) at depth k reachable from σs(dH , dH) such that δ is not matched by F , i.e.
δ /∈ M(F). Otherwise, if no such δ and F exist, then it is implied that all successors of
σs(dH , dH) at level k are stubs, and we get σ ∈ (∃s.H)Ĵ

k
(dC,dD) directly.

There exists a functional simulation Z withM(F) ⊆ M(Z) andM(Z) is maximal. By
Definition 22 it is implied that, all stubs satisfying the second property of Definition 22
are matched by Z. Therefore Z satisfies the properties, that are required in Lemma 23.
Assume that δ /∈ M(Z). We show that this assumption leads to a contradiction. Since
σ ∈ F Ĵ

k
(dC,dD) it is implied by Lemma 23 that Z(σ) ∈ F IK,T . Because F v G ∈ T

and ∃s.H is a conjunct in G, we get Z(σ) ∈ (∃s.H)IK,T , i.e. dH is an s-successor of
Z(σ) in IK,T by Definition of the canonical models. There exists a function Ẑ that
maps σs(dH , dH) to dH and all successors of σs(dH , dH) in J k(dC ,dD) to an element dY
such that Y is the tail concept of the successor of σs(dH , dH). For all other elements in
J k(dC ,dD), Ẑ coincides with Z. By construction of Ẑ it is implied that δ ∈ M(Ẑ) and
M(Z) ⊆ M(Ẑ). Since M(Z) is maximal, it is implied that M(Z) = M(Ẑ), which
contradicts the assumption δ /∈M(Z). Therefore σ ∈ (∃s.H)Ĵ

k
(dC,dD) and σ ∈ GĴ

k
(dC,dD) .

2. Case: |σ| = k and σ ∈ stubs(J k(dC ,dD)).

(a) Assume that σ satisfies the first property of Definition 22 but not the second one.
Let M :=

d
σ∈A

Ĵk
(dC,dD)

A. By assumption we have σ ∈ F Ĵ
k
(dC,dD) and since (10)

holds the names A1, ..., An on top-level of F and B1, ..., Bn′ on top-level of G are
contained inM , because J(dC ,dD) is a model of T . From σ ∈ F Ĵ

k
(dC,dD) it follows that

σ ∈ (∃ri.Ei)Ĵ
k
(dC,dD) for all 1 ≤ i ≤ m. By definition of Ĵ k(dC ,dD) there exists for all i
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∃ri.E′i ∈ sub(T ) with M vT ∃ri.E′i and E′i vT Ei. It is implied that M vT ∃ri.Ei
for all i = 1, ...,m and thereforeM vT F . Since F vT G we have alsoM vT ∃sj .Hj

for all j = 1, ...,m′. By construction of Ĵ k(dC ,dD) it holds that the tree model JσsjdHj

was added to J k(dC ,dD) such that σ ∈ (∃sj .Hj)
Ĵ k

(dC,dD) . Finally we get σ ∈ GĴ
k
(dC,dD) .

(b) Assume that σ satisfies the second property of Definition 22. In this case Jσ ∈ Υ(σ)

is a model of T and a subtree of Ĵ k(dC ,dD).

3. Case: |σ| = k and σ /∈ stubs(J k(dC ,dD)). The element σ has no successors in Ĵ k(dC ,dD).
Therefore rd(F ) = 0, i.e. F is a conjunction of concept names. Since σ /∈ stubs(J k(dC ,dD)),
G is also a conjunction of concept names and the claim follows directly from (10).

4. In the remaining case, σ is part of a tree model, that was added to J k(dC ,dD) during the
construction of Ĵ k(dC ,dD). Since these trees are models of T , the GCIs are satisfied in this
tree model.

Proof of point 2. This is a direct consequence of Lemma 23 and point 1.

Having this representation of the canonical model of the k-lcsT (C,D) we first show another
sufficient condition for the existence of the lcs.

Corollary 25. If (IC,T ×ID,T , (dC , dD)) only has cycles reachable from (dC , dD) consisting of
synchronous elements, then the lcsT (C,D) exists.

Proof. Consider the tree unraveling J(dC ,dD). There exists a number n such that all paths
in J(dC ,dD) have maximal a finite prefix of asynchronous elements of length ≤ n − 1 and has
from position n on only synchronous elements. Now consider the interpretation J n(dC ,dD) and an
element σ on level n with tail concept E. Assume E has role-depthm. Now we unravel J n(dC ,dD)

further up to depth m such that we get J n+m
(dC ,dD). It is implied that the corresponding model

Ĵ n+m
(dC ,dD) contains all paths from J(dC ,dD) that have the prefix (dC , dD) · · ·σ. Therefore with

n := |∆IC,T×ID,T | and u := max({rd(F ) | F ∈ sub(T ) ∪ {C,D}}) we get Ĵ n+u
(dC ,dD) = J(dC ,dD).

From Lemma 24 and Corollary 19 it follows that Xn+u(IC,T × ID,T , (dC , dD)) is the lcs.

As seen in Example 18 for T2, this is not a necessary condition for the existence of the lcs.

Another consequence of Lemma 24 is, that if the product model (IC,T × ID,T , (dC , dD)) has
only asynchronous cycles reachable from (dC , dD), then the lcsT (C,D) does not exist. Since
in this case J(dC ,dD) is infinite but Ĵ k(dC ,dD) is finite for all k ∈ N, a simulation from (IC,T ×
ID,T , (dC , dD)) to Ĵ k(dC ,dD) never exists for all k. For instance, this case applies to Example 18
w.r.t. to T1.

The interesting case is where we have both asynchronous and synchronous cycles reachable
from (dC , dD) in the product model. In this case we choose a k that is large enough and then
check whether the canonical model of Xk(IC,T × ID,T , (dC , dD)) w.r.t. T simulates the product
model.

We show in the next Lemma that the role-depth of the lcsT (C,D), if it exists, can be bounded
by a polynomial, that is quadratic in the size of the product model.
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Figure 2: simulation chain of p and p`

Lemma 26. Let
n := |∆IC,T ×ID,T | and
m := max({rd(F ) | F ∈ sub(T ) ∪ {C,D}}) and

k = n2 +m+ 1.

If lcsT (C,D) exists then (IC,T × ID,T , (dC , dD)) . Ĵ k(dC ,dD).

We outline the proof of this claim as follows: Assume lcsT (C,D) exists. From Corollary 19 and
Lemma 24 it follows that there exists a number ` such that

(IC,T × ID,T , (dC , dD)) . Ĵ `(dC ,dD). (11)

Every path in Ĵ `(dC ,dD) has a maximal asynchronous prefix of length ≤ `. From depth ` + 1

on there are only synchronous elements in the tree Ĵ `(dC ,dD). From (11) it follows that every
path p in (IC,T × ID,T , (dC , dD)) starting in (dC , dD), is simulated by a corresponding path
p` in Ĵ `(dC ,dD) starting in (dC , dD). The simulation chain of p and p` is depicted in Figure
2. The idea is to use the simulating path p` to construct a simulating path in Ĵ `(dC ,dD) (also
starting in (dC , dD)) with a maximal asynchronous prefix of length ≤ n2. n2 is the number of
pairs of elements from ∆IC,T ×ID,T . Intuitively, if p` has a maximal asynchronous prefix that is
longer than n2, then there are pairs in the simulation chain that occur more than once. This is
used to construct step wise a simulating path with a shorter maximal asynchronous prefix such
that all pairs consisting of asynchronous elements in the simulation chain are pairwise distinct.
Therefore we need only asynchronous elements from Ĵ `(dC ,dD) up to depth n2 to simulate the

product model. Then m+ 1 was added to n2 to ensure that Ĵ n
2+m+1

(dC ,dD) contains all paths from
J(dC ,dD) starting in (dC , dD), that have a maximal asynchronous prefix of length ≤ n2. As
argued above Ĵ n

2+m+1
(dC ,dD) simulates (IC,T × ID,T , (dC , dD)).

Proof of Lemma 26. Assume the lcs E of C and D w.r.t. T exists with rd(E) = `. It is implied
by Lemma 24 that (IE,T , dE) ' Ĵ `(dC ,dD) and (IK,T , dK) ' Ĵ k(dC ,dD) for K = k-lcsT (C,D). For
` ≤ k the claim follows directly. We consider the case ` > k.

By assumption it holds that (IC,T × ID,T , (dC , dD)) . Ĵ `(dC ,dD). Let S ⊆ ∆IC,T ×ID,T ×

∆Ĵ
`
(dC,dD) be the maximal simulation with ((dC , dD), (dC , dD)) ∈ S.

Consider a path p with elements di, i = 0, 1, 2, ... in (IC,T × ID,T , (dC , dD)) starting in d0 =

(dC , dD) with an asynchronous prefix of length > n2. There exists a path p` in Ĵ `(dC ,dD) with
elements σi, i = 0, 1, 2, ... such that σ0 = (dC , dD) and p is simulated by p` in S, which means

that (di, di+1) ∈ rIC,T ×ID,T
i+1 , (σi, σi+1) ∈ r

Ĵ `
(dC,dD)

i+1 and (di, σi) ∈ S for all i = 0, 1, 2, ... p` has a
maximal asynchronous prefix of length ≤ ` and we assume that this prefix has a length > n2.
p and p` form a simulation chain as depicted in Figure 2.

Now we construct step wise a path in Ĵ `(dC ,dD) that simulates the path p in S and has a maximal
asynchronous prefix of length ≤ n2. Let p0

` = p`.

18



q0
`

q1
`

p

p0
`

di dj

σi

σj

di = dj

tail(σi) = tail(σj)

p

di

σj

σ̂j′

p

p1
`

di′ dj′

σi′

σj′

tail(σ̂j′)

di

σi

tail(σi′) = tail(σj′) = tail(σ̂j′)

di′ = dj′

p

di′

σ̂j′

Figure 3: Visualization of the proof idea of Lemma 26

Since p and p` have a maximal asynchronous prefix that is longer than n2, there are indices
i < j such that (di, tail(σi)) = (dj , tail(σj)) and the asynchronous pairs

(d0, tail(σ0)), (d1, tail(σ1)), · · · , (di, tail(σi)) (12)

are pairwise distinct. This is depicted in the first diagram in Figure 3 where the tails of the
elements of p` have a diamond shape. Since di = dj and dj is simulated by σj in S, the path
fragment p[di · · · ] of p starting in di is also simulated by a path q0

` = σjrj+1σ̂j+1rj+2 · · · in
Ĵ `(dC ,dD) starting in σj . This is depicted in the second diagram in Figure 3. Note that the
successors of σj in q` can have different tails than the successors of σj in p`. This is depicted
by the tails with square shape. Since σi and σj with |σi| < |σj | are copies of the same element
(which means they have the same tail) of the product model, there is also a path in Ĵ `(dC ,dD)

starting in σi such that the tails of the successors of σi in this path are equal to the tails of
the successors of σj in q`. Therefore the simulating path p0

` can be modified to a simulating
path p1

` in Ĵ `(dC ,dD) as sketched in the third diagram of Figure 3. p1
` is the result of the first

construction step. p1
` has the following form

p1
` = σ0r1σ1r2...riσiri+1σ

′
i+1ri+2σ

′
i+2ri+3 · · ·

If the asynchronous part of the corresponding simulation chain p1
` and p consists only of pairwise

distinct pairs (w.r.t. to the tails), then we are finished. Assume that this does not hold for p1
` .

Then as for p` there are indices i′ < j′ with (di′ , tail(σi′)) = (dj′ , tail(σj′)). Because (12) holds
it is implied that j′ > i. This means w.r.t. the sketch in figure 3, that tail(σj′) has a square
shape. It is implied that di′ is also simulated by a successor σ̂j′ of σj in q`. Analogous to the
first step, the path fragment p[di′ · · · ] of p is simulated by a path q1

` in Ĵ `(dC ,dD) starting with
σ̂j′ .

Since it holds that |σj | < |σ̂j′ |, it is implied that only a finite number of this replacement steps
can be executed. By construction as sketched above we finally get a path pfin starting with
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(dC , dD) in Ĵ `(dC ,dD), that has a maximal asynchronous prefix of length at most n2. We show
that pfin is also contained in Ĵ k(dC ,dD). Consider the synchronous element δ at position n2 + 1 of
pfin. Let F be the tail concept of δ. It is then implied by Lemma 20 that the path fragment of
pfin starting at position n2 + 1 belongs to the canonical model of F . It holds that rd(F ) ≤ m.
Since k = n2 +m+ 1, the prefix of length k of pfin is contained in J k(dC ,dD). It is implied that

δ ∈ FJ
k
(dC,dD) and therefore also δ ∈ F Ĵ

k
(dC,dD) . Since Ĵ k(dC ,dD) is a model of T , it follows from

Lemma 6.4 that (IF,T , dF ) . (Ĵ k(dC ,dD), δ). The other direction also holds since we have added
to subtree of J k(dC ,dD) with root δ only synchronous elements that belong to the tree unraveling
of (IF,T , dF ). Therefore pfin is also contained in Ĵ k(dC ,dD). It is implied that there exists a
simulation such that (IC,T × ID,T , (dC , dD)) . Ĵ k(dC ,dD).

Using Lemma 17 and Lemma 26 we can now show the main result of this section.

Theorem 27. Let C,D be concepts and T a general TBox. It is decidable in polynomial time
whether the lcsT (C,D) exists. If the lcsT (C,D) exists it can be computed in polynomial time.

Proof. First we compute the bound k as given in Lemma 26 and then the k-characteristic
concept K of (IC,T ×ID,T , (dC , dD)). The canonical model of K is build according to Definition
3 in polynomial time. Next we check whether (IC,T ×ID,T , (dC , dD)) . (IK,T , dK) holds, which
can be done in polynomial time. If yes K is the lcs by Lemma 17 and if not the lcs doesn’t
exist by Lemma 26.

The results from this section can be easily generalized to the lcs of an arbitrary set of concepts
M = {C1, ..., Cm} w.r.t. a TBox T . But in this case the size of the lcs is already exponential
w.r.t. an empty TBox [BKM99]. In this general case we have to take the product model

(IC1,T × · · · × ICm,T , (dC1 , · · · , dCm)),

which size is exponential in the size of M and T , as input for the methods introduced in this
section. Then the same steps as for the binary version can be applied.

4 Existence of the Most Specific Concept

We show now that the results obtained for the lcs, can be easily applied to the existence problem
of the msc.

Example 28 (From [KM02]). The msc of the individual a w.r.t. the following KB

K1 = (∅,A1), with A1 = {r(a, a)}

doesn’t exist, whereas w.r.t. the modified KB

K2 = ({C v ∃r.C},A2), with A2 = A1 ∪ {C(a)}

C is the msc of a.

To decide existence of the msc of an individual a w.r.t. a KB K = (T ,A), we again start with
defining the set of msc-candidates for the msc by taking the k-characteristic concept of the
canonical model (IK, da).

Lemma 29. Let k be a natural number.
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1. K |= Xk(IK, da)(a).

2. Let E be a concept with rd(E) ≤ k and K |= E(a).
It holds that Xk(IK, da) vT E.

Proof of 1. We show the claim by induction on k.

k = 0 : It holds that
X0(IK, da) =

l
{A ∈ NC | da ∈ AIK}. (13)

For any concept name A in this conjunction it holds that K |= A(a) by definition of IK
and therefore K |= X0(IK, da)(a).

k > 0 : By definition

Xk(IK, da) = X0(IK, da) u
l

r∈NR

l
{∃r.Xk−1(IK, dy) | (da, dy) ∈ rIK}. (14)

By I.H. (and Lemma 13 if y is a concept) it is implied

dy ∈ (Xk−1(IK, dy))IK

and therefore da ∈ (∃r.Xk−1(IK, dy))IK and da ∈ (Xk(IK, da))IK .

Proof of 2. The claim is proven by induction on the role-depth of an arbitrary concept E with
rd(E) ≤ k and K |= E(a).

rd(E) = 0 : E is a conjunction of concept names of the form
d
i=1,...,nAi. We show that

the concept names Ai are contained in the top-level conjunction of Xk(IK, da). Since
K |= E(a) and Lemma 7 holds it is implied that da ∈ EIK . It follows that da ∈ AIKi for
all i. It is implied that X0(IK, da) vT E.

rd(E) = n : E is of the form

A1 u ... uAn u ∃r1.E
′
1 u ... u ∃rm.E′m

It can be shown like in the base case that the conjunction A1u...uAn subsumesXk(IK, da).
Let ∃rj .E′j be a top-level conjunct of E. Since da ∈ (∃rj .E′j)IK there is an rj - successor
dy in IK of da with dy ∈ (E′j)

IK By induction hypothesis and rd(E′j) ≤ k−1 we now have
that Xk−1(IK, dy) vT E′j and therefore also ∃rj .Xk−1(IK, dy) vT ∃rj .E′j . It follows that
Xk(IK, da) vT ∃rj .E′j by (14).

Therefore Xk(IK, da) ≡T k-mscK(a).

Now we use the canonical model of Xk(IK, da) w.r.t. the TBox component T of K and the
model (IK, da) to check whether Xk(IK, da) is the msc.

Lemma 30. Let Jda be the tree unraveling of (IK, da) in da and K the k-mscK(a). It holds
that J kda . (IK,T , dK).
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Proof. a is an instance of the concept Xk(IK, da) w.r.t. K by Lemma 29. Since Xk(IK, da) has
role depth k, we have K vT Xk(IK, da) and therefore dK ∈ (Xk(IK, da))IK,T by point 2 and
5 of Lemma 6. With Lemma 10 we have now J kda . (IK,T , dK).

Lemma 31. The concept C is the most specific concept of a w.r.t. K iff (IK, da) ' (IC,T , dC).

Proof. "⇒":
Assume that C is the most specific concept of a w.r.t. K. By Lemma 7 it is implied that
da ∈ CIK . Since IK is a model of T , it follows (IC,T , dC) . (IK, da) from Lemma 6.4.

We need to show (IK, da) . (IC,T , dC). The proof is analogous to the proof of Lemma 17.

"⇐":
Assume (IK, da) ' (IC,T , dC) for a concept C. Since (IC,T , dC) . (IK, da) and IK is a model
of T , a is an instance of C w.r.t. K by Lemma 6. It has to be shown that C is the most specific
concept. Let C ′ be an arbitrary concept with K |= C ′(a). It is implied that da ∈ C ′IK by
Lemma 7. By Lemma 6.4 it holds that (IC′,T , dC′) . (IK, da). Together with the assumption
(IK, da) . (IC,T , dC) and transitivity of . we get (IC′,T , dC′) . (IC,T , dC). It is implied by
Lemma 6 that C vT C ′. Therefore C is the most specific concept of a.

By this Lemma the existence of the msc can be characterized as follows.

Corollary 32. The mscK(C,D) exists iff there exists a k such that the canonical model of
Xk(IK, da) w.r.t. T simulates (IK, da).

To decide whether an appropriate k exists such that Xk(IK, da) simulates (IK, da) we further
examine the structure of (IK, da). In Example 28 da has a self-loop in the model (IK1 , da),
but the canonical models of Xk(IK1 , da) are finite for all k ∈ N, because the TBox is empty.
Therefore a simulation never exist. In comparison, the model (IK2

, da) has additionally a
self-loop at dC and the canonical models of Xk(IK2

, da) w.r.t. T2 also contain this loop.

The elements in dx ∈ ∆IK with x = b (for b ∈ NI,A) are asynchronous elements and the elements
with x = C for some concept C are synchronous elements. The model (IK, da) has an analogous
structure compared to the product model (IC,T ×ID,T , (dC , dD)) in the sense that synchronous
elements in ∆IK only have synchronous successor elements. Therefore analogous arguments as
presented in Section 3.2 can be used to show, that a representation of the canonical model of
Xk(IK, da) as a subtree of the tree unraveling of (IK, da) can be obtained. This representation
is denoted by Ĵ kda . This model is used to show an upper bound on the role-depth k of the msc.

Lemma 33. Let m := max({rd(F ) | F ∈ sub(K)}) and n := |NI,A|. If the mscK(a) exists, then
(IK, da) . Ĵ n

2+m+1
da

.

Proof. This Lemma can be proven using analogous arguments as in the proof of Lemma 26.

The results of this section can be summarized in the following theorem.

Theorem 34. Let K = (T ,A) be a KB and a ∈ NI,A. It is decidable in polynomial time
whether the mscK(a) exists. If the mscK(a) exists, it can be computed in polynomial time.

Proof sketch. First we compute the bound k as given in Lemma 33 and then the k-characteristic
concept Xk(IK, da). The canonical model of K can be build according to Definition 3 in
polynomial time [BBL05]. Then we check whether (IK, da) . (IK,T , dK) holds, which can be
done in polynomial time. If yes, K is the msc and if no, the msc doesn’t exist by Corollary
32.
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5 Conclusions

In this paper we have studied the conditions for the existence of the lcs and of the msc, if
computed w.r.t. general TBoxes or cyclic ABoxes, respectively, written in the DL EL. In this
setting neither the lcs nor the msc need to exist. It was an open problem to give necessary
and sufficient conditions for their existence. We showed that the existence problem of the msc
and the lcs of two concepts is decidable in polynomial time. Furthermore, we showed that the
role-depth of these most specific generalizations can be bounded by a polynomial. This upper
bound k can be used to compute the msc or lcs, if it exists. Otherwise the computed concept
can still serve as an approximation [PT11b].

Future work on the practical side includes to improve the described procedure in order to obtain
a practical algorithm such that an appropriate implementation can be integrated into existing
tools [ET12] for computing generalizations. On the theoretical side, we would like extend the
results towards knowledge bases formulated in more expressive Horn-DLs than EL.
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