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Temporal Conjunctive Queries in Expressive DLs
with Non-simple Roles

Abstract

In Ontology-Based Data Access (OBDA), user queries are evaluated
over a set of facts under the open world assumption, while taking into
account background knowledge given in the form of a Description Logic
(DL) ontology. Motivated by situation awareness applications, temporal
conjunctive queries (TCQs) have recently been proposed as a useful extension
of traditional OBDA to support the processing of temporal information.
This paper extends the existing complexity analysis of TCQ entailment to
very expressive DLs underlying the OWL 2 standard, and in contrast to
previous work also allows for queries containing transitive roles.
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1 Introduction

Given a (man-made or natural) dynamical system that changes its states over time,
it is sometimes useful to monitor the behavior of the system in order to detect and
then react to critical situations [2]. To achieve this, one can monitor the running
system using sensors (e.g., heart rate and blood pressure sensors for a patient) and
store the (possibly aggregated and preprocessed) values in a database. Critical
situations (such as “blood pressure too high”) can then be described by database
queries, and detecting them can be realized through query answering. However,
such a pure database solution is unsatisfactory for several reasons. First, one
cannot assume that the sensors provide a complete description of the current state
of the system, which clashes with the closed world assumption used by database
systems. Second, though one usually does not have a complete specification of
the system’s behavior, one may have some background knowledge restricting the
possible states of the system, which can help to detect more situations.

These problems are addressed by so-called ontology-based data access (OBDA)
[13,27], where (i) the preprocessed and aggregated data are stored in a Descrip-
tion Logic (DL) ABox, which is interpreted with open world assumption, and
(ii) the background knowledge is represented in a TBox (ontology) expressed
in an appropriate DL. DLs [4] can be used to formalize knowledge using con-
cepts, which represent sets of elements of an application domain, and roles, which
describe binary relations between elements. For example, the concept Patient
can be used to model the set of all patients in a hospital, while isTreatedWith
represents a relationship between patients and treatments. Concept constructors
can then be used to build complex concepts out of atomic concepts and roles. For
example, Patient u ∃isTreatedWith.Antibiotics describes patients treated with an-
tibiotics. In the TBox, one can state subconcept-superconcept relationships, such
a ∃isTreatedWith.Antibiotics v ∃finding.BacterialInfection, which says that antibi-
otics treatment is given only if there is a bacterial infection. In the ABox, one can
state specific facts about individuals, such as isTreatedWith(BOB,PENICILLIN).

When monitoring a dynamical system, the situation to be recognized may also
depend on states of the system at different points in time (such as “fluctuating
heart rate”). For this reason, OBDA was extended to the temporal case in [1, 3].
In [3] the complexity of answering temporal conjunctive queries (TCQs) w.r.t.
TBoxes was investigated for TBoxes expressed in DLs between ALC and SHQ.
The results are concerned both with data complexity (which is measured only in
the size of the data) and with combined complexity (which additionally takes the
size of the query and the TBox into account). In addition, the paper considers
rigid concepts and roles, whose interpretations must not change over time.

We extend the results of [3] in two directions. First, while being quite expressive,
SHQ does not contain the constructors nominals and inverse roles, which are
quite useful in many applications. Here, we also consider logics that have these
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two constructors. However, the main difference is that, though SHQ can express
transitivity of roles and sub-role relationships, transitive roles and roles with
transitive subroles must not occur in queries in [3]. In the present paper, we
dispense with this restriction, which unfortunately leads to a dramatic increase in
complexity that reflects the results for standard (atemporal) queries (see [14, 21]
and Table 2.11).

As an example that illustrates the benefit of transitive roles in queries, assume
that we want to recognize patients who have previously had myocarditis, i.e., an
inflammation of the heart muscle. This can be expressed using the TCQ

Patient(x) ∧
#− 3−

(
∃y, z.partOf(y, x) ∧ Heart(y) ∧ partOf(z, y) ∧Muscle(z) ∧ Inflamed(z)

)
This query is looking for a patient that, at some past time point, had (as part)
a heart that itself had as part a muscle that was inflamed. In this example, we
assume that the role partOf is transitive and rigid. Transitivity implies that the
inflamed muscle was also part of the patient and rigidity ensures that the heart is
not part of different patients at different points in time. In addition, we assume
that Heart and Muscle are rigid (hearts and muscles stay hearts and muscles over
time), but Patient and Inflamed are non-rigid (the muscle may, e.g., cease to be
inflamed and the patient may be discharged).

In the next section, we introduce the DLs investigated in this paper, as well as
TCQs and their semantics. We also give an overview over the already known and
the new complexity results (see Table 2.11). Section 3 investigates the complexity
of answering certain atemporal queries in a fine-grained way. The reason is that,
similar to [3], we split the task of answering TCQs into propositional temporal
reasoning on the one hand, and answering atemporal queries on the other hand.
In Section 4, we then determine the combined complexity of answering TCQs
whereas in Section 5 we deal with the data complexity.

2 Preliminaries

In this section, we recall the basic notions of DLs and TCQs. Throughout the
paper, let NC, NR, and NI be non-empty, pairwise disjoint sets of concept names,
role names, and individual names, respectively.

Definition 2.1 (Syntax of DLs). A role r is either a role name, i.e., r ∈ NR, or
an inverse role; see the first part of Table 2.2. The set of concepts is inductively
defined starting from concept names A ∈ NC using the constructors in the second
part of Table 2.2, where r, s are roles, a, b ∈ NI, n ∈ N, and C,D are concepts.
The third part of Table 2.2 shows how axioms are defined.

Moreover, a TBox is a finite set of general concept inclusions (GCIs), an RBox is
a finite set of role inclusions and transitivity axioms, and an ABox is a finite set
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Table 2.2: Syntax and Semantics of DLs
syntax semantics

inverse role r− {(e, d) | (d, e) ∈ rI}

negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
existential restriction ∃r.C {d ∈ ∆I | there is e ∈ CI with (d, e) ∈ rI}
nominal {a} {aI}
at-most restriction 6n r.C {d ∈ ∆I | ]{e ∈ CI | (d, e) ∈ rI} ≤ n}

GCI C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI
role assertion r(a, b) (aI , bI) ∈ rI
role inclusion r v s rI ⊆ sI

transitivity axiom trans(r) rI = (rI)+

of assertions, i.e., concept assertions and role assertions. A knowledge base (KB)
K = (A, T ,R) consists of an ABox A, a TBox T , and an RBox R.

Which constructors and types of axioms are available depends on the specific DL.
In ALC, negation, conjunction, and existential restriction are the only allowed
constructors. Also, no inverse roles, role inclusions and transitivity axioms are
allowed in ALC. If additional concept constructors or types of axioms are allowed,
this is denoted by concatenating a corresponding letter: I means inverse roles,
O means nominals, Q means at-most restrictions, and H means role inclusions.
Thus, the DL ALCHI is the extension of ALC that also allows for nominals and
inverse roles. The extension of ALC with transitivity axioms is denoted by S.
Hence, the DL allowing for all the constructors and types of axioms introduced
here is called SHOIQ. We sometimes write L-concept (L-KB, . . . ) for some
DL L to make clear which DL is used.

The semantics of DLs are defined in a model-theoretic way.

Definition 2.3 (Semantics of DLs). An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty set (called domain), and ·I is a mapping assigning a
set AI ⊆ ∆I to every A ∈ NC, a binary relation rI ⊆ ∆I ×∆I to every r ∈ NR,
and a domain element aI ∈ ∆I to every a ∈ NI, such that aI 6= bI for all a, b ∈ NI

with a 6= b (unique name assumption (UNA)). This function ·I is extended to roles
and concepts inductively as shown in the first two parts of Table 2.2, where ]S
denotes the cardinality of the set S.

Moreover, I is a model of the axiom α (written I |= α) if the condition in the third
part of Table 2.2 is satisfied, where ·+ denotes the transitive closure. Furthermore,
I is a model of a set of axioms X (written I |= X ) if it is a model of all axioms
α ∈ X , and I is a model of a KB K = (A, T ,R) (written I |= K) if is is a model
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of A, T , and R. We call K consistent if it has a model.

For an RBox R, we call a role name r ∈ NR transitive (w.r.t. R) if every model
of R is a model of trans(r). Moreover, r is a subrole of a role name s ∈ NR

(w.r.t. R) if every model of R is a model of r v s. Finally, r is simple w.r.t. R
if it has no transitive subrole. Deciding whether r ∈ NR is simple can be done
in time polynomial in the size of R by a simple reachability test. Unfortunately,
the problem of deciding whether a given SHQ-KB K = (A, T ,R) is consistent is
undecidable in general [19]. To regain decidability, we need to make the following
syntactic restriction: if 6n r.C occurs in K, then r must be simple w.r.t. R.

To enable a better separation of the influence the ABoxes have on the complexity
of reasoning, we assume in the following that concept assertions use only concept
names that also occur in the TBox, and that role assertions use only role names
that occur in the TBox or the RBox. One can still simulate a complex concept
assertion C(a) using A(a) and A ≡ C, where the latter stands for the two GCIs
A v C and C v A.

Before we can define temporal queries, we need to lift the notions of knowledge
bases and interpretations to a temporal setting. For this purpose, we assume that
there are designated sets NRC ⊆ NC of rigid concept names and NRR ⊆ NR of rigid
role names. Intuitively, the interpretation of a rigid name is not allowed to change
over time. All individual names are implicitly assumed to be rigid. A concept or
role name that is not rigid is called flexible.

Definition 2.4 (TKB). A tuple K = ((Ai)0≤i≤n, T ,R), consisting of a finite
sequence of ABoxes Ai, a TBox T , and an RBox R, is called a temporal knowledge
base (TKB). Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (∆, ·Ii)
over a fixed domain ∆. Then I is a model of K (written I |= K) if

• Ii |= Ai for all i, 0 ≤ i ≤ n,

• Ii |= T and Ii |= R for all i ≥ 0, and

• I respects rigid names, i.e., we have xIi = xIj for all x ∈ NI ∪ NRC ∪ NRR

and all time points i, j ≥ 0.

We denote the set of all individual names occurring in a TKB K by Ind(K). The
syntax of TCQs is defined by combining ordinary conjunctive queries via the
operators of LTL [3,26].

Definition 2.5 (Syntax of TCQs). Let NV be a set of variables. A conjunctive
query (CQ) is of the form ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a finite
conjunction of atoms of the form A(z1) ( concept atom), r(z1, z2) ( role atom), or
z1 ≈ z2 ( equality atom), where A ∈ NC, r ∈ NR, and z1, z2 ∈ NV ∪ NI.
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Temporal conjunctive queries (TCQs) are built inductively from CQs, using the
constructors ¬φ1 (negation), φ1 ∧ φ2 (conjunction), #φ1 (next), #−φ1 (previous),
φ1 Uφ2 (until), and φ1 Sφ2 (since), where φ1 and φ2 are TCQs.

Note that in contrast to [3], we allow also non-simple roles to occur in CQs. A
union of conjunctive queries (UCQ) is a disjunction of CQs, which is defined as
φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2). Further, a CQ-literal is either a CQ or a negated CQ.
We denote the set of individual names occurring in a TCQ φ by Ind(φ), the set of
variables occurring in φ by Var(φ), the set of free variables of φ by FVar(φ). A
TCQ φ with FVar(φ) = ∅ is called Boolean. As in [3], we assume without loss of
generality that all CQs are connected, i.e., all variables and individual names are
related (transitively) by roles.

Definition 2.6 (Semantics of TCQs). An interpretation I = (∆, ·I) is a model
of a Boolean CQ φ (written I |= φ) if there is a homomorphism of φ into I, which
is a mapping π : Var(φ) ∪ Ind(φ)→ ∆ with

• π(a) = aI for all a ∈ Ind(φ);

• π(z) ∈ AI for all concept atoms A(z) in φ;

• (π(z1), π(z2)) ∈ rI for all role atoms r(z1, z2) in φ; and

• π(z1) = π(z2) for all equality atoms z1 ≈ z2 in φ.

An infinite sequence of interpretations I = (Ii)i≥0 over a common domain ∆ is a
model of a Boolean TCQ φ at time point i ≥ 0 iff I, i |= φ holds, which is defined
as follows:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= ¬φ1 iff I, i 6|= φ1

I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2

I, i |= #φ1 iff I, i+ 1 |= φ1

I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1

I, i |= φ1 Uφ2 iff there is k ≥ i with I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is k, 0 ≤ k ≤ i with I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i

Given a TKB K = ((Ai)0≤i≤n, T ,R), we say that I is a model of φ w.r.t. K if
I |= K and I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K, and
it is entailed by K (written K |= φ) if every model I of K satisfies I, n |= φ.

Given a TCQ φ, a mapping a : FVar(φ)→ Ind(K) is a certain answer to φ w.r.t. K
if K |= a(φ), where a(φ) is the Boolean TCQ obtained from φ by replacing the free
variables according to a.
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As usual [3], in the following we consider only the TCQ entailment problem, which
can be used to compute all certain answers. For this purpose, we analyze the
satisfiability problem, which has the same complexity as non-entailment. We
examine both the combined complexity where the whole TKB and the TCQ are
considered as the input, and the data complexity, where TBox, RBox, and TCQ
are fixed, i.e., the complexity is measured only w.r.t. the sequence of ABoxes.

In the remainder of this section, we recall the basic approach from [3] to decide
satisfiability by splitting it into two separate satisfiability problems, one for
the temporal component and one for the DL component. In the following, let
K = ((Ai)0≤i≤n, T ,R) be a TKB and φ be a TCQ to be checked for satisfiability.
The propositional abstraction φp of φ is the propositional LTL-formula obtained
from φ by replacing all CQs by propositional variables. We assume that α1, . . . , αm
are the CQs occurring in φ, and that each αi is replaced by the propositional
variable pi, 1 ≤ i ≤ m. We now consider a set S ⊆ 2{p1,...,pm}, which intuitively
specifies the worlds that are allowed to occur in an LTL-structure satisfying φp.
However, guessing such an S and then testing whether φp has a model at time
point n that uses only the worlds from S is not sufficient for checking whether
φ has a model w.r.t. K. We must also check whether S can indeed be induced
by some sequence of interpretations that is a model of K. In the following, let
S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, and ι : {0, . . . , n} → {1, . . . , k} be a mapping that
specifies a set Xι(i) for each of the ABoxes Ai, 0 ≤ i ≤ n.

Definition 2.7 (r-satisfiability). The set S is r-satisfiable w.r.t. ι and K if there
exist interpretations J1, . . . ,Jk and I0, . . . , In that share the same domain, respect
rigid names,1 are models of T and R, and additionally each Ji, 1 ≤ i ≤ k, is a
model of χi :=

∧
pj∈Xi αj ∧

∧
pj /∈Xi ¬αj, and each Ii, 0 ≤ i ≤ n, is a model of Ai

and χι(i).

This notion formalizes the rigidity constraints that have to be satisfied by S. The
temporal part of the satisfiability problem is described next.

Definition 2.8 (t-satisfiability). The LTL-formula φp is t-satisfiable w.r.t. S
and ι if there exists an LTL-structure J = (wi)i≥0 such that J, n |= φ̂, wi ∈ S for
all i ≥ 0, and wi = Xι(i) for all i, 0 ≤ i ≤ n.

These two checks together suffice to determine the satisfiability of φ w.r.t. K.

Proposition 2.9. The TCQ φ is satisfiable w.r.t. the TKB K iff there are a set
S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} → {1, . . . , k} such
that S is r-satisfiable w.r.t. ι and K, and φp is t-satisfiable w.r.t. S and ι.

The original proof of this result in [3] considers only SHQ, but is actually
independent of any specific DL. The complexity of the t-satisfiability problem is
obviously also DL-agnostic, and hence we can reuse another result from [3].

1This is defined as for infinite sequences of interpretations (see Definition 2.4).
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Table 2.11: Summary of known and new complexity results for TCQ entailment,
where contributions of this paper are highlighted in boldface. Settings: (i) no rigid
names are allowed, (ii) only rigid concept names are allowed, and (iii) arbitrary
rigid names are allowed.

data complexity combined complexity
(i) (ii) (iii) (i) (ii) (iii)

ALC – ALCHQ co-NP co-NP ≤Exp Exp co-NExp 2-Exp

ALCO – ALCHOQ/ALCHOI co-NP co-NP ≤Exp ≥co-NExp ? 2-Exp
S – SQ co-NP co-NP ≤Exp ≥co-NExp ? 2-Exp
SO – SOQ ≥co-NP ? ≤Exp ≥co-NExp ? 2-Exp

SH/ALCI – SHIQ co-NP co-NP ≤Exp 2-Exp 2-Exp 2-Exp
SHO – SHOQ/SHOI ≥co-NP ? ≤Exp 2-Exp 2-Exp 2-Exp
ALCOIQ – ALCHOIQ ≥co-NP ? decidable ≥co-2-NExp ? decidable
SOIQ – SHOIQ ≥co-NP ? ? ≥co-2-NExp ? ?

Proposition 2.10. Deciding t-satisfiability of φp w.r.t. S and ι can be done in
Exp w.r.t. combined complexity, and in P w.r.t. data complexity.

Table 2.11 gives an overview over all known complexity results for TCQ entailment.
We distinguish the three cases that (i) no rigid names are allowed (NRC = NRR = ∅);
(ii) only rigid concept names are allowed, but no rigid role names (NRR = ∅);
and (iii) arbitrary rigid names are allowed. The first row of the table contains
the known results for ALC/ALCHQ [3]2, and in this paper we derive the upper
bounds for cases (ii) and (iii) marked in bold font. Unfortunately, we leave open
the precise data complexity for case (iii), as was the case in [3]; we are only able
to show an Exp upper bound in most logics, as opposed to the complexity of
co-NP in the atemporal setting.

A question mark indicates that the precise complexity is unknown even for the
atemporal CQ entailment problem. For SHOIQ, it is not even known whether
this problem is decidable, while for ALCHOIQ it is only known to be decidable,
but no better upper bound has been found so far [25,28]. The shown lower bounds
follow from the complexity of satisfiability of ALC-LTL formulae [5] and the
complexity of atemporal CQ entailment. More precisely, the latter problem is co-
NP-hard in data complexity already for ALE [29]. Under combined complexity,
it is co-NExp-hard for ALCO [23] and S [14], 2-Exp-hard for SH [14] and
ALCI [21], and co-2-NExp-hard for ALCOIQ [18].

3 Atemporal Queries in SHIQ, SHOQ, SHOI

Before we can present our complexity results about TCQ entailment, we analyze in
more detail the case of a simple conjunction of CQ literals, which is an atemporal

2Actually, that paper considers SHQ, but restricts the roles in CQs to be simple.
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query. In a nutshell, we reduce the satisfiability of such a conjunction to UCQ
non-entailment and exploit existing algorithms for this atemporal problem. We
consider here only the sublogics SHIQ, SHOQ, and SHOI, which enjoy (a
variant of) the so-called forest model property [11], which means that every
consistent KB formulated in one of these logics has a model that basically consists
of several tree-shaped structures whose roots are arbitrarily interconnected by
roles (disregarding role connections due to nominals or transitive roles).

To show the results in the following sections, however, we need to conduct a
more fine-grained analysis of the complexity of the atemporal query entailment
algorithms. The main insight is that, while UCQ entailment in SHIQ, SHOQ,
and SHOI is in 2-Exp w.r.t. combined complexity, the number of CQs in the
UCQ only has an exponential influence on the complexity of this decision problem.
Likewise, for data complexity, assuming that the number of CQs in the UCQ is
linear instead of constant usually has no influence on the complexity. Unfortunately,
to the best of our knowledge, the precise data complexity of UCQ entailment is
known only for SHIQ, ALCHOQ, and ALCHOI, while for SHOQ and SHOI
it is still open [25].

In the following, we consider the size of a CQ ψ (written |ψ|) to be the number
of symbols in ψ, ignoring constant expressions like ‘(’ and ‘∧’, considering each
name and variable to be of size 1, and further ignoring the prefix ∃y1, . . . , ym since
these variables also occur in the atoms of ψ. For example, ∃x, y.r(x, y) ∧ A(x)
has size 5. We could also assume that each name or variable is represented by a
binary string denoting its name, and hence of size logarithmic in the size of ψ, but
this would not affect our complexity results. Similarly, the size of a knowledge
base is computed by ignoring the concept constructors, and hence considers only
the number of occurrences of names in the axioms.

Lemma 3.1. Let ψ = ρ1 ∧ · · · ∧ ρ` ∧ ¬σ1 · · · ∧ ¬σo be a Boolean conjunction of
CQ-literals, K = (A, T ,R) be a KB formulated in SHIQ, SHOQ, or SHOI,
and ‖ψ‖ := max{|ρ1|, . . . , |ρ`|, |σ1|, . . . , |σo|}. Then the satisfiability of ψ w.r.t. K
can be decided by a deterministic algorithm in time bounded by 2p(`,o,|K|)

p′(‖ψ‖), for
two polynomials p and p′.

In the case of SHIQ, ALCHOQ, or ALCHOI, if T , R, and ‖ψ‖ are fixed, then
satisfiability of ψ w.r.t. K can be decided by a nondeterministic algorithm in time
bounded by p(`, o, |A|) for some polynomial p.

Proof. We start as in [3] by reducing the decision whether ψ has a model w.r.t. K
to a UCQ non-entailment problem. We instantiate the positive CQs ρ1, . . . , ρ` by
omitting the existential quantifiers and replacing all variables by fresh individual
names. The set Aρ of all resulting assertions can be viewed as an additional
ABox. To ensure that the UNA is satisfied, we additionally consider equivalence
relations ≈ on Ind(A ∪ Aρ) with the additional restriction that no two names
from Ind(A) may be equivalent. We denote by A≈ the ABox resulting from Aρ
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by replacing each new individual name by a fixed representative of its equivalence
class, where this representative is an element of Ind(A) whenever possible. It can
be shown as in [3] that ψ is satisfiable w.r.t. K iff there is such an equivalence
relation ≈ for which

(A ∪A≈, T ,R) 6|= σ1 ∨ · · · ∨ σo. (1)

Note that the number of equivalence relations ≈ is exponential in the total
number of variables in ρ1, . . . , ρ`, which is bounded by ` · ‖ψ‖, but each is of size
polynomial in ` · ‖ψ‖. Hence, one can either enumerate all such equivalences in
time exponential in ` · ‖ψ‖, or guess one of them in time polynomial in ` · ‖ψ‖.

We now consider the case that K is formulated in SHIQ. By [16, Lemma 23], for
the non-entailment test (1), it suffices to find a so-called extended knowledge base
K′ = (A ∪A≈ ∪ A′, T ∪ T ′,R), where A′ and T ′ are formulated in SHIQu, i.e.,
SHIQ extended by role conjunctions, such that K′ is consistent. By [16, Lemma 20
and Definition 21], the size of each (A′, T ′) is bounded by p(o · (|K|+ ` · ‖ψ‖))p(‖ψ‖)
for some polynomial p, where the term ` · ‖ψ‖ represents the size of the additional
ABox A≈. The bound given in [16] is exponential in the total size of the UCQ,
i.e., o · ‖ψ‖, but the exponential blowup comes only from the rewriting of each
individual CQ σi. Moreover, all pairs (A′, T ′) can be enumerated in time bounded
by 2p(o·(|K|+`·‖ψ‖))

p(‖ψ‖) . It is important to note that the size of the longest role
conjunction occurring in (A′, T ′) is bounded by a polynomial in ‖ψ‖. Hence,
by [16, Lemma 28], one can check the consistency of K′ in time bounded by
2p

′(o·(|K|+`·‖ψ‖))p′(‖ψ‖) for some polynomial p′. This means that we can decide
satisfiability of ψ w.r.t. K by enumerating all equivalence relations and extended
KBs as above and testing each of them for consistency within the claimed time
bound.

If T , R, and ‖ψ‖ are fixed, then one can guess ≈ in time polynomial in `. Following
the proof of [16, Theorem 35], one can also guess K′ in time p(o · (|A|+ `)), and
the following consistency test can be done in (deterministic) polynomial time in
the size of the ABox A ∪ A≈ ∪ A′, which is polynomial in o · (|A| + `). This
establishes the second bound for the case of SHIQ.

In the case that K is formulated in SHOQ, it again suffices to find a certain
extended knowledge base K′ = (A ∪A≈, T ∪ T ′,R) that is consistent in order to
decide (1) [17]. The additional TBox T ′ is formulated in SHOQu, and the length of
the longest role conjunction in T ′ is bounded polynomially in ‖ψ‖. Actually, in [17]
the ABox is assumed to be internalized into the TBox, but we keep it separate here
to keep track of the size ofA≈, which is `·‖ψ‖. The size of each extended knowledge
base is again bounded by p(o · (|K|+ ` · ‖ψ‖))p(‖ψ‖), while their number is at most
2p(o·(|K|+`·‖ψ‖))

p(‖ψ‖) . The bounds implied by [17, Lemma 7] are actually exponential
(resp. double-exponential) in o · ‖ψ‖, but again the construction only involves a
simple union of sets of queries, which are constructed for each CQ σi individually.
By [17, Lemma 12], the consistency of K′ can be reduced to the consistency of a
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knowledge base K′′ formulated in ALCHOQu, the size of which is still bounded
by p′(o · (|K| + ` · ‖ψ‖))p′(‖ψ‖) for a polynomial p′. By [20, Theorem 3.33],3 the
latter test can be done in time bounded by 2p

′′(o·(|K|+`·‖ψ‖))p′′(‖ψ‖) , and hence we
obtain the claimed result.4

For SHOI, we analyze the automata-based construction from [11, 12]. There,
the KB (A ∪A≈, T ,R) is first reduced to a polynomial-size ALCOIbreg KB K′
by replacing all roles by regular role expressions simulating all (transitive) sub-
roles. Then, a polynomial-sized fully enriched automaton (an extended two-way
alternating tree automaton with parity acceptance condition (2ATA) [8]) AK′

is constructed that accepts all so-called interpretation trees that correspond to
models of K′. This can be transformed into an equivalent (one-way) nondeter-
ministic parity tree automaton (1NTA) A′K′ with a number of states bounded
by 2p(|K|+`·‖ψ‖) and constant index (size of the parity condition) [11, 30]. Note
that the size of the input alphabet of all these automata is also exponential in
|K|+ ` · ‖ψ‖. In the next step, a 1NTA A¬σi is constructed that accepts an inter-
pretation tree iff it does not contain a match for σi. The construction in [11,12]
can be adapted such that the number of states of A¬σi is double exponential
in the size of σi, i.e., ‖ψ‖, but does not depend on |K| or `, while its index is
exponential in ‖ψ‖.5 Finally, an automaton AK′ 6|=σ1∨···∨σo can be constructed that
recognizes the intersection of the languages accepted by A′K′ , A¬σ1 , . . . , A¬σo , and
hence accepts all interpretation trees that witness the non-entailment (1). This
automaton has at most 2p

′(|K|+`·‖ψ‖)p′(‖ψ‖) states and its index is bounded by 2p
′(‖ψ‖)

for some polynomial p′. The claim now follows from the fact that (non)emptiness
of 1NTAs can be decided in time polynomial in the number of states and input
symbols and exponential in the index [15].

Finally, we consider the logics ALCHOQ and ALCHOI and assume that T , R,
and ‖ψ‖ are fixed. The paper [24] describes a nondeterministic tableaux algorithm
for SHIQ, SHOQ, and SHOI, where queries are restricted to simple roles.
The main approach to decide non-entailment is to nondeterministically build a
so-called completion graph, and then check whether it is not possible to map the
variables of the input query to the nodes of this graph in order to satisfy the
query. By [24, Lemma 4.2, Proposition 4.4, and Footnote 12], the size of such a
completion graph is polynomial in (i) the number of individual names occurring
in the input KB and triple exponential in (ii) the number of role atoms in the

3Note that this Theorem applies to SHOQu, but only if all roles in role conjunctions are
simple.

4We cannot directly use [17, Theorem 20] here since that only applies for unary encoding of
the numbers in number restrictions.

5This construction depends on K and ` only because (i) the language of A¬σi
explicitly

distinguishes interpretation trees, and (ii) valid match positions are required by A¬σi to be
reachable from the root. But (i) is unnecessary due to the intersection with A′

K′ , and (ii) is
subsumed by the actual condition on matches for all role atoms of σi, which requires them to be
connected to the root by the universal role.

12



largest disjunct of the input query. Under our complexity assumptions, (i) is
linear in |A| and ` and (ii) is constant. Since we can assume that the Boolean
CQs σ1, . . . , σo do not share variables, it then suffices to check for each CQ σi
individually whether it is not possible to map its variables into the completion
graph to satisfy its atoms. This can be checked by a deterministic algorithm in
time polynomial in the number o of CQs and the size of the completion graph [24].
Hence, we obtain the claimed results.

4 Combined Complexity of TCQ Entailment

Let K = ((Ai)0≤i≤n, T ,R) be a TKB, φ be a TCQ, and assume for now that a
set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} → {1, . . . , k} are
given. For our complexity results, we employ the copying technique from [3, 5] for
deciding whether S is r-satisfiable w.r.t. ι and K. The idea is to introduce enough
copies of all flexible names in order to combine the separate satisfiability tests of
Def. 2.7 into one big atemporal satisfiability test.

Formally, for all i, 1 ≤ i ≤ k + n+ 1, and every flexible concept name A (every
flexible role name r) occurring in T or R, we introduce a copy A(i) (r(i)). We
call A(i) (r(i)) the i-th copy of A (r). The conjunctive query α(i) (the axiom β(i))
is obtained from a CQ α (an axiom β) by replacing every flexible name by its
i-th copy. Similarly, for 1 ≤ ` ≤ k, the conjunction of CQ-literals χ(i)

` is obtained
from χ` (see Definition 2.7) by replacing each CQ αj by α

(i)
j . Finally, we define

χS,ι :=
∧

1≤i≤k

χ
(i)
i ∧

∧
0≤i≤n

(
χ
(k+i+1)
ι(i) ∧

∧
α∈Ai

α(k+i+1)

)
,

TS,ι := {β(i) | β ∈ T and 1 ≤ i ≤ k + n+ 1},
RS,ι := {γ(i) | γ ∈ R and 1 ≤ i ≤ k + n+ 1}.

The following result, which reduces r-satisfiability to an atemporal satisfiability
problem, was shown in [3] for SHQ with simple roles in queries, but it remains
valid in our setting since it does not depend on the DL under consideration.

Proposition 4.1. The set S is r-satisfiable w.r.t. ι and K iff χS,ι is satisfiable
w.r.t. (TS,ι,RS,ι).

Together with Lemma 3.1, this allows us to show our first complexity results.

Theorem 4.2. Let L be a DL that contains ALCI or SH and is contained in
SHIQ, SHOQ, or SHOI. Then TCQ entailment in L is 2-Exp-complete w.r.t.
combined complexity, and in Exp w.r.t. data complexity.
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Proof. The lower bound directly follows from 2-Exp-hardness of CQ entailment
in SH [14] and ALCI [21]. To check a TCQ φ for satisfiability w.r.t. a TKB K,
we first enumerate all possible sets S and mappings ι, which can be done in
2-Exp. For each of these double exponentially many pairs (S, ι), we then check
t-satisfiability of φp w.r.t. S and ι in exponential time (see Proposition 2.10) and
test S for r-satisfiability w.r.t. ι and K (using Proposition 4.1). By Proposition 2.9,
φ has a model w.r.t. K iff at least one pair passes both tests.

For the r-satisfiability test, observe that the conjunction of CQ-literals χS,ι contains
exponentially many (negated) CQs, each of size polynomial in the size of φ, and
that TS,ι and RS,ι are of exponential size in the size of K. By Lemma 3.1, the
satisfiability of χS,ι w.r.t. (TS,ι,RS,ι) can thus be checked in double exponential
time in the size of φ and K. For the data complexity, observe that the number of
CQs in χS,ι is linear in the size of the input ABoxes, and their size only depends
on φ (the size of a single assertion is constant). Moreover, TS,ι and RS,ι are of
size linear in n. Lemma 3.1 thus yields the claimed upper bound.

By the same arguments, it is easy to see that TCQ entailment in ALCHOIQ is
decidable since this is the case for UCQ (non-)entailment [28].

5 Data Complexity without Rigid Roles

To obtain a tight bound on the data complexity if we disallow rigid role names, we
follow a different approach from [3]. Similarly to the previous section, we decide
r-satisfiability of S w.r.t. ι and K by constructing conjunctions of CQ-literals
of which we want to check satisfiability. However, we do not compile the whole
r-satisfiability check into just one conjunction. More precisely, we define the
conjunctions of CQ-literals γi ∧ χS , 0 ≤ i ≤ n, w.r.t. (TS ,RS), where

γi :=
∧
α∈Ai

α(ι(i)), χS :=
∧

1≤i≤k

χ
(i)
i ,

TS := {β(i) | β ∈ T and 1 ≤ i ≤ k},
RS := {γ(i) | γ ∈ R and 1 ≤ i ≤ k}.

This separates the consistency checks for the individual ABoxes Ai, 1 ≤ i ≤ n,
from each other. For r-satisfiability, we additionally have to make sure that rigid
consequences of the form A(a) for a rigid concept name A ∈ NRC and an individual
name a ∈ NI are shared between all the conjunctions γi ∧ χS . It suffices to do this
for the set RCon(T ) of rigid concept names occurring in T since those that occur
only in ABox assertions cannot affect the entailment of the TCQ φ.

For this purpose, we guess a set D ⊆ 2RCon(T ) that fixes the combinations of
rigid concept names that are allowed to occur in the models of γi ∧ χS , and a
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function τ : Ind(φ) ∪ Ind(K)→ D that assigns to each individual name one such
combination. To express this formally, we extend the TBox by the axioms in

TD := {AY ≡ CY | Y ∈ D},

where AY are fresh rigid concept names and, for every Y ⊆ RCon(T ),

CY :=
l

A∈Y

A u
l

A∈RCon(T )\Y

¬A.

The size of Tτ is bounded polynomially in the sizes of D and RCon(T ), which are
constant w.r.t. data complexity. We now extend the conjunctions γi ∧ χS by

ρτ :=
∧

a∈Ind(φ)∪Ind(K)

Aτ(a)(a)

in order to fix the behavior of the rigid concept names on the named individuals.

We need one more definition to formulate the main lemma of this section. We say
that an interpretation I respects D if

D = {Y ⊆ RCon(T ) | there is a d ∈ ∆I with d ∈ (CY )I},

which means that every combination of rigid concept names in D is realized by a
domain element of I, and conversely, the domain elements of I may only realize
those combinations that occur in D.

Lemma 5.1. Let the DL L be contained in SHIQ, ALCHOQ, or ALCHOI. If
NRR = ∅, then S is r-satisfiable w.r.t. ι and K iff there exist D ⊆ 2RCon(T ) and
τ : Ind(φ)∪ Ind(K)→ D such that each γi ∧ χS ∧ ρτ , 0 ≤ i ≤ n, has a model w.r.t.
(TS ∪ TD,RS) that respects D.

Proof. For the “if” direction, assume that Ii, 0 ≤ i ≤ n, are the required models for
γi∧χS ∧ρτ w.r.t. (TS ∪TD,RS). We can assume w.l.o.g. that their domains ∆i are
countably infinite and for each Y ∈ D there are countably infinitely many elements
d ∈ (CY )Ii . For SHIQ, this is a consequence of the Löwenheim-Skolem theorem
and the fact that the countably infinite disjoint union of Ii with itself is again a
model of γi ∧ χS ∧ ρτ and (TS ∪ TD,RS). The latter follows from the observation
that for any CQ there is a homomorphism into Ii iff there is a homomorphism into
the disjoint union of Ii with itself. One direction is trivial, while whenever there
is a homomorphism into the disjoint union, we can construct a homomorphism
into Ii by replacing the elements in the image of this homomorphism by the
corresponding elements of ∆i. It is easy to see that the resulting homomorphism
still satisfies all atoms of the CQ.

Due to the presence of nominals, this construction does not work in the sublogics
ALCHOQ and ALCHOI since domain elements may need to be connected to
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specific named domain elements, of which there cannot be infinitely many copies,
but only one. We adapt the construction by requiring that the countably many
copies of Ii overlap on the set {aIi | a ∈ NI}. Hence, there may be infinitely
many copies of domain elements connected to each named domain element. In
ALCHOI, this already suffices since the behavior of the infinitely many unnamed
copies is the same, which does not affect the satisfaction of any concepts or query
atoms on the named elements.

However, in ALCHOQ this may cause number restrictions to be violated. For
example, a could be required to have at most 10 r-successors, whereas after our
construction it may have infinitely many. In this case, we can without loss of
generality make the further assumption that Ii is a quasi-forest model of γi∧χS∧ρτ
and (TS ∪ TD,RS) [11,20].6 This means that each named individual acts as the
root for a tree of domain elements, and there can only be role connections between
elements x and y if either y is a child node of x in such a tree or y is a named
individual, i.e., y = aIi for some a ∈ NI. Since ALCHOQ does not contain inverse
roles, it is not possible for a concept to refer upwards in a tree, but only directly
back to a root. We can thus adapt the construction by copying the unnamed part
of Ii countably often, and removing all role connections of the form (aIi , x), where
x is an unnamed domain element, except for the connections in the original Ii.
Note that we still copy the role connections back to the named elements, as these
are necessary to satisfy nominal concepts. This construction ensures that all
number restrictions remain satisfied. Due to the absence of inverse roles, the KB
(TS ∪ TD,RS) is still satisfied. The conjunction γi ∧ χS ∧ ρτ also remains satisfied
by the same arguments as for SHIQ and the fact that all CQs are connected.

Having ensured that the domain of Ii is countably infinite and for each Y ∈ D
there are countably infinitely many elements d ∈ (CY )Ii , we can partition the
domains ∆i into the countably infinite sets ∆i(Y ) := {d ∈ ∆i | d ∈ (CY )Ii} for
each Y ∈ D. By the assumptions above and the fact that all Ii satisfy ρτ and TD,
there are bijections πi : ∆0 → ∆i, 1 ≤ i ≤ n, such that

• πi(∆0(Y )) = ∆i(Y ) for all Y ∈ D and

• πi(aI0) = aIi for all a ∈ Ind(φ) ∪ Ind(K).

Thus, we can assume that the models Ii actually share the same domain and
interpret the rigid names in RCon(T ) and Ind(φ) ∪ Ind(K) in the same way.

The remainder of the proof can proceed exactly as in [3].
6To apply the result from [11], we can instantiate the positive CQs in γi ∧ χS ∧ ρτ and treat

the remaining conjunction of negative CQs as a UCQ for which we want to prove non-entailment,
as in the proof of Lemma 3.1.
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The restriction imposed by D can be expressed as the conjunction of CQ-literals

σD := (¬∃x.AD(x)) ∧
∧
Y ∈D

∃x.AY (x),

where AD is a fresh concept name that is defined by the axiom AD ≡
d
Y ∈D ¬AY

in the TBox. We denote by T ′S the resulting extension of TS ∪ TD, and have now
reduced the r-satisfiability of S w.r.t. ι and K to the consistency of γi∧χS∧ρτ ∧σD
w.r.t. (T ′S ,RS).

Theorem 5.2. Let L be a DL that contains ALE and is contained in SHIQ,
ALCHOQ, or ALCHOI. Then TCQ entailment in L is co-NP-complete w.r.t.
data complexity.

Proof. The lower bound follows from co-NP-hardness of instance checking in
ALE [29]. To test satisfiability of a TCQ φ w.r.t. a TKB K, we employ the same
approach as before, but instead guess S and ι. Note that S is of constant size
in the size of the ABoxes and ι is of linear size. Hence, this first step can be
done in nondeterministic polynomial time. The t-satisfiability test required for
Proposition 2.9 can be done in polynomial time by Proposition 2.10, and for the
r-satisfiability test, we use Lemma 5.1.

Following the reduction described above, we guess a setD ⊆ 2RCon(T ) and a function
τ : Ind(φ) ∪ Ind(K) → D, which can be done in nondeterministic polynomial
time since D only depends on T and τ is of size linear in the size of the input
ABoxes. Next, we check the satisfiability of the polynomially many conjunctions
γi ∧ χS ∧ ρτ ∧ σD w.r.t. (T ′S ,RS). Note that χS , σD, T ′S , and RS do not depend
on the input ABoxes, while γi and ρτ are of polynomial size. Furthermore, the
size of the CQs in γi and ρτ is constant. Hence, Lemma 3.1 yields the desired NP
upper bound for these satisfiability tests.

6 Conclusions

Query answering w.r.t. DL ontologies is currently a very active research area. We
have extended complexity results for very expressive DLs underlying the web
ontology language OWL2 to the case of temporal queries. Our results show that,
w.r.t. worst-case complexity, adding a temporal dimension often comes for free. In
fact, in all sublogics of SHOIQ, the upper bounds for the combined complexity
of TCQ entailment obtained in this paper for the temporal case coincide with the
best known upper bounds for atemporal query entailment (even in the presence of
rigid roles). From the application point of view, data complexity is more important
since the amount of data is often very large, and in comparison the size of the
background knowledge and the user query is small. We have shown that, in many
cases, the atemporal data complexity of co-NP does not increase if we consider
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TCQs with rigid concepts (specifically, in ALCHOQ, ALCHOI, SHIQ, and
sublogics). For the remaining logics of Table 2.11, it is an open problem to find a
co-NP algorithm even in the atemporal case.

As part of future work, we will try to obtain co-NP upper bounds even in the
presence of rigid roles, and study extensions of TCQs with concrete domains
and inconsistency-tolerant semantics. Since co-NP is already a rather negative
result for data complexity, we could also try to find restricted formalisms with
lower data complexity. On the one hand, one could take a less expressive DL
to formulate the background ontology, which has already been investigated for
EL [10] and DL-LiteHhorn [9], but only the latter choice reduces the data complexity
(to ALogTime). On the other hand, one could investigate whether the data
complexity can be reduced by imposing additional restrictions on the TBox or
CQs, as has been done in the atemporal case [6, 7, 22].
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