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1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that are success-
fully applied in many application domains. They provide the logical foundation for the Direct
Semantics of the standard web ontology language OWL2.1 The light-weight DL EL, underlying
the OWL2EL profile, is of particular interest since all common reasoning problems are polyno-
mial in this logic, and it is used in many prominent biomedical ontologies like SNOMEDCT2

and the Gene Ontology.3 Knowledge is represented by a set of general concept inclusions (GCIs)
like

∃hasDisease.Flu v ∃hasSymptom.Headache u ∃hasSymptom.Fever (1)

which states that every patient with a flu must also show headache and fever as symptoms.
Reasoning in EL is a polynomial problem [2].

An important problem for AI practical applications is to represent and reason with vague or
imprecise knowledge in a formal way. Fuzzy Description Logics (FDLs) [22, 15] were introduced
with this goal in mind. The main premise of fuzzy logics is the use of more than two truth
degrees to allow a more fine-grained analysis of dependencies between concepts. Usually, these
degrees are arranged in a total order, or chain, in the interval [0, 1]. A patient having a body
temperature of 37.5 ◦C can have a degree of fever of 0.5, whereas a temperature of 39.2 ◦C
may be interpreted as a fever with degree of 0.9. Considering the GCI (1), the severity of
the symptoms certainly influences the severity of the disease, and thus truth degrees can be
transferred between concepts. Depending on the granularity one wants to have, one can choose
to allow 10 or 100 truth degrees, or even admit the whole interval [0, 1]. Another degree of
freedom in FDLs comes from the choice of possible semantics for the logical constructors. The
most general semantics are based on triangular norms (t-norms) that are used to interpret
conjunctions. Among these, the most prominent ones are the Gödel, Łukasiewicz, and product
t-norms. All (continuous) t-norms over chains can be expressed as combinations of these three
basic ones.

Unfortunately, reasoning in many infinitely valued FDLs becomes undecidable [3, 12]. For a
systematic study on this topic, see [6]. On the other hand, every finitely valued FDL that has
been recently studied has not only been proved to be decidable, but even to belong to the same
complexity class as the corresponding classical DL [8, 9, 10].

A question that naturally arises is whether the finitely valued fuzzy framework always yields
the same computational complexity as the corresponding classical formalisms. A common
opinion is that everything that can be expressed in finitely valued FDLs can be reduced to the
corresponding classical DLs without any serious loss of efficiency. Indeed, although some known
direct translations of finitely valued FDLs into classical DLs are exponential [4], more efficient
reasoning can be achieved through direct algorithms [8]. The problem of finding a complexity
gap between classical and finitely valued logics has already been considered. In [13], the authors
analyze different constructors that could cause an increase in the complexity, but no specific
answer is found. In [5] it is shown that the Łukasiewicz t-norm is a source of nondeterminism
able to cause a significant increase in expressivity in very simple propositional languages. In
this work, we build on the methods devised in [5] to show even more dramatic increases in
complexity for finitely valued extensions of EL.

The question about the computational complexity of EL under infinitely valued semantics has
been already considered. In [7], reasoning in EL under semantics including the Łukasiewicz
t-norm was proven co-NP-hard, but the proof does not apply to the finitely valued case. In
contrast, infinitely valued Gödel semantics do not increase the complexity of reasoning [18].

1http://www.w3.org/TR/owl2-overview/
2http://www.ihtsdo.org/snomed-ct/
3http://geneontology.org/
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In this work, we prove that EL under finitely valued semantics is ExpTime-complete whenever
the Łukasiewicz t-norm is included in the semantics. This proves a dichotomy similar to one
that exists for infinitely valued FDLs [6] since, for all other finitely valued chains of truth values,
reasoning in fuzzy EL can be shown to be in PTime using the methods from [18]. The relevance
of our result goes beyond the computational aspect. Indeed, this is so far the first instance of a
finitely valued DL that is more complex than the same language under classical semantics. In
this way, we obtain an answer to the open problem whether finitely valued FDLs and classical
DLs are equally powerful, at least from a computational complexity point of view. As a side
benefit, we obtain the same (ExpTime) lower bound for the complexity of infinitely valued
fuzzy extensions of EL that use the Łukasiewicz t-norm, improving the lower bound from [7].

2 Preliminaries

Fuzzy Description Logics extend classical DLs by allowing more than two truth degrees in the
semantics. We first introduce the classes of truth degrees relevant for this paper and then recall
the logics ELU and L-EL.

2.1 Chains of Truth Values

We are working with structures of the form L = (L, ∗L,⇒L), where

• L is subset of [0, 1] that contains the extreme elements 0 and 1.

• The t-norm ∗L is a binary operator on L that is associative, commutative, monotone in
both components, and has 1 as unit element.

• The residuum ⇒L of ∗L is a binary operator on L that satisfies the following condition for
all x, y, z ∈ L: x ∗L y 6 z iff y 6 x⇒L z.

An interval in L is a subset of the form [a, b] := {x ∈ L | a 6 x 6 b} with a, b ∈ L. An
idempotent element in L is an element x such that x ∗L x = x. For ease of presentation, we will
often identify L and (L, ∗L,⇒L) and omit the subscript L if the chain we use is clear from the
context.

We consider in particular the two cases where (i) L is defined over the interval [0, 1] of real
numbers, or (ii) L is a finite chain. In the former case, we always make the assumption that
the operator ∗L is continuous as a function from [0, 1] × [0, 1] to [0, 1]. One reason for this
assumption is that it ensures that the residuum is uniquely determined by the t-norm [17]. In
case (ii), we similarly assume that ∗L is smooth, i.e. for every x, y, z ∈ L, whenever x and y are
direct neighbors in L, with x < y, then there is no w ∈ L such that x ∗L z < w < y ∗L z [19]. If
∗L is continuous (smooth), then we call L continuous (smooth).

By restricting the algebra of truth values to two elements, the classical Boolean algebra of truth
and falsity is obtained: B = ({0, 1}, ∗B,⇒B, 0, 1). Here, ∗B and⇒B are the classical conjunction
and the material implication respectively.

The most interesting kinds of chains with continuous or smooth t-norms are the ones defined
by the Gödel (G), Łukasiewicz (Ł), and product (Π) t-norms. The finitely valued versions of
the former two, denoted by Łn and Gn for n > 2, are defined over the n-element total order
0 < 1

n−1 < · · · <
n−2
n−1 < 1:
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• The (finite) Gödel t-norm (or minimum t-norm)

x ∗Gn
y := x ∗G y := min{x, y}

and its residuum

x⇒Gn
y := x⇒G:=

{
1 if x 6 y,
y otherwise.

• The (finite) Łukasiewicz t-norm x ∗Łn y := x ∗Ł y := max{0, x+ y− 1} and its residuum
x⇒Łn y := x⇒Ł y := min{1, 1− x+ y}.

• The product t-norm x ∗Π y := x · y and its residuum

x⇒Π y :=

{
1 if x 6 y,
y
x otherwise.

A finite-valued version of the product t-norm cannot exist since the chain L needs to be closed
under the t-norm, but for any x ∈ (0, 1), the set {xm | m > 0} is infinite.

The following easy observations about the introduced operators will be useful in the proofs.
For all x, y ∈ L and T ⊆ L, it holds that

• x ∗L y = 1 iff both x = 1 and y = 1;

• supT = 1 iff 1 ∈ T ;

• x⇒L y = 1 iff x 6 y;

• x⇒L y > y;

• x⇒Ł 0 = 1− x;

• if L = Łn, then x ∗Łn y > n−2
n−1 iff either x = 1 or y = 1;

• if L = Łn and x < 1, then x ∗Łn
m. . . ∗Łn

x = 0 for all m > n− 1;

• if L = Gn, then x ∗Gn
m. . . ∗Gn

x = x for all m > 1.

The t-norms defined so far can be used to build all other continuous t-norms over [0, 1], and all
smooth t-norms over finite chains, using the following construction.

Definition 2.1. Let L be a chain, (Li)i∈I be a family of chains, and (λi)i∈I be isomorphisms
between intervals [ai, bi] ⊆ L and Li such that the intersection of any two intervals contains at
most one element. L is the ordinal sum of the family (Li, λi)i∈I if, for all x, y ∈ L,

x ∗L y =

{
λ−1
i

(
λi(x) ∗Li

λi(y)
)

if x, y ∈ (ai, bi),
min{x, y} otherwise.

Every chain over [0, 1] with a continuous t-norm is isomorphic to an ordinal sum of infinite-
valued Łukasiewicz and product chains [14, 21]. Similarly, every finite chain with a smooth
t-norm is an ordinal sum of chains of the form Łn with n > 3 [20]. All elements that are not
contained strictly within one such Łukasiewicz or product component are idempotent and can
be thought of as belonging to a (finite) Gödel chain. We say that a (finite or infinite) chain
contains the Łukasiewicz t-norm if its ordinal sum representation contains at least one Łuka-
siewicz component; similarly, it starts with the Łukasiewicz t-norm if it contains a Łukasiewicz
component in an interval [0, b]. Note that every chain that contains the Łukasiewicz t-norm
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can be represented as the ordinal sum of an arbitrary chain L1 and another chain L2 that starts
with the Łukasiewicz t-norm.

Another way to view these characterizations is to observe that every smooth finite chain is either
a Gödel chain or contains at least one finite Łukasiewicz component, and every continuous chain
over [0, 1] is either a Gödel chain or contains at least one Łukasiewicz or product component.
We will use this insight later in our hardness proofs.

2.2 ELU and L-EL

A description signature is a tuple (NC,NR), where NC = {A,B, . . . } is a countable set of atomic
concepts or concept names, and NR = {r, s, . . . } is a countable set of atomic roles or role names.
Complex concepts in the FDL language L-EL are built inductively from atomic concepts and
roles by means of the following concept constructors:

C,D −→ > top
A atomic concept
C uD conjunction
∃r.C existential restriction

where A ∈ NC and r ∈ NR. ELU concepts are formed by adding the option C t D to the
previous rule. In the rest of the paper we will use the abbreviation Cm, m > 1, for the m-ary
conjunction; i.e. C1 := C and Cm+1 := Cm u C.

There is often no difference between the syntax of classical and fuzzy languages. The differences
between both frameworks begin when the semantics of concepts and roles is introduced.

2.3 Semantics

In this section we introduce the semantics of concepts, which is what differentiates the many-
valued framework from the classical one. Even though, as stressed in Section 2.1, it is enough
to restrict the semantics to the two element chain B to obtain the classical semantics, we prefer
to define both kinds of semantics to aid understanding (and indeed, writing down) the proofs.

2.3.1 Fuzzy Semantics of L-EL.

Given an arbitrary but fixed chain L = (L, ∗,⇒), an L-interpretation is a pair I = (∆I , ·I)
consisting of:

• a nonempty (classical) set ∆I (called domain), and

• a fuzzy interpretation function ·I that assigns

– to each concept name A ∈ NC a fuzzy set AI : ∆I −→ L, and
– to each role name r ∈ NR a fuzzy relation rI : ∆I ×∆I −→ L.

The semantics of complex concepts is a function CI : ∆I −→ L inductively defined as follows:

>I(x) := 1,
(C uD)I(x) := CI(x) ∗ DI(x),

(∃r.C)I(x) := sup
y∈∆I

rI(x, y) ∗ CI(y).
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2.3.2 Classical semantics of ELU .

In the classical framework an interpretation is a pair I = (∆I , ·I) consisting of:

• a nonempty (classical) set ∆I (called domain), and

• an interpretation function ·I that assigns:

– to each concept name A ∈ NC a crisp set AI ⊆ ∆I , and

– to each role name r ∈ NR a crisp relation RI ⊆ ∆I ×∆I ,

This function is extended to ELU concepts by setting

>I := ∆I ,
(C uD)I := CI ∩DI ,
(C tD)I := CI ∪DI ,

(∃r.C)I := {x ∈ ∆I | ∃ y ∈ ∆I : (x, y) ∈ rI and y ∈ CI}.

By replacing the relation ∈ by its characteristic function χ∈ : ∆I → {0, 1}, we obtain a special
case of fuzzy semantics. Whenever L is one of the specific chains introduced in the previous
section, e.g. Łn, then we denote the resulting logic by Łn-EL instead of L-EL.

In infinite chains, it interpretations are often restricted to be witnessed [15], which means that
for every existential restriction ∃r.C and x ∈ ∆I there is an element y ∈ ∆I that realizes the
supremum in the semantics of ∃r.C at x, i.e. we have (∃r.C)I(x) = rI(x, y) ∗ CI(y). Under
finite-valued (and classical) semantics this property is always satisfied, and it corresponds to
the intuition that an existential restriction actually forces the existence of a single individual
that satisfies it, instead of infinitely many that only satisfy the restriction in the limit. We also
adopt this restriction in the following.

2.4 Axioms and Reasoning Tasks

In DLs, the domain knowledge is represented by axioms that restrict the class of interpretations
under consideration. In the fuzzy framework, these axioms are assigned a minimum degree of
truth to which they must be satisfied. Graded general concept inclusions (GCIs) are expres-
sions of the form 〈C v D > `〉, where ` ∈ L. The L-interpretation I satisfies this axiom if
CI(x) ⇒ DI(x) > ` holds for all x ∈ ∆I . As usual, a TBox is a finite set of GCIs, and an
L-interpretation I satisfies a TBox if it satisfies every axiom in it.

We consider the problem of deciding whether a concept C is `-subsumed by another concept D
with respect to a TBox T for a value ` ∈ L \ {0}. That is, whether every L-interpretation I
that satisfies T also satisfies 〈C v D > `〉. In the classical case, we talk simply about sub-
sumption, and for ` = 1 the problem simplifies to the question whether CI ⊆ DI holds in all
interpretations I that satisfy T .

We first show that this problem is ExpTime-hard for all finite Łukasiewicz chains with at least
three elements. We then use this result in Section 4 to show ExpTime-hardness under any
finite chain with only idempotent elements. A matching ExpTime upper bound was shown
in [8]. The subsumption problem for Gn-EL can be shown to be in PTime using the ideas
from [18]. In Section 5, we adapt the reduction to show ExpTime-hardness of Ł-EL, and even
for every continuous chain over [0, 1] containing a Łukasiewicz component (see Definition 2.1).
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0 a b 1

0 0.5 1

false true

L-EL

Ł-Ł3-EL

ELU

Ł or Ł3

Figure 1: Illustration of the reductions

The idea behind the reductions is illustrated in Figure 1 for chains L containing either an Ł3-
component or an infinitely valued Ł-component. To simulate the semantics of ELU , the values
0.5 and 1 in Ł3-EL (or Ł-EL) are used to simulate the truth values false and true, respectively.
The chain Ł3 (Ł) is then embedded into L as depicted.

3 Finite Łukasiewicz Chains

In this section, we reduce the subsumption problem of the classical DL ELU to the subsumption
problem of Łn-EL, where n > 3. Concept subsumption in ELU is an ExpTime-complete
problem [2]. This reduction shows that the subsumption problem is ExpTime-hard already for
Ł3-EL; i.e., for Łukasiewicz chains containing three truth degrees. For ease of presentation, we
omit the subscript Łn from ∗ and ⇒ in this section.

First note that it suffices to consider subsumption problems between two concept names since
an ELU concept C is subsumed by another ELU concept D w.r.t. an ELU TBox T iff the new
concept name A is subsumed by the new concept name B w.r.t. T ∪ {〈A v C〉, 〈D v B〉} [2].

Furthermore, we can restrict our considerations to ELU TBoxes in normal form, which only
contain axioms of the following forms:

A1 uA2 v B
∃r.A v B
A v ∃r.B
A v B1 tB2

where A,A1, A2, B,B1 and B2 are concept names or >. It was shown in [2] that every ELU
TBox can be polynomially reduced to an equivalent one in normal form.

The main idea of our reduction is to simulate a classical concept name in Łn-EL by considering
all values below n−2

n−1 to be equivalent to 0, and thus only the value 1 can be used to express that
a domain element belongs to the concept name. We can then express a classical disjunction
of the form B1 t B2 by restricting the value of the fuzzy conjunction B1 u B2 to be > n−2

n−1
since the latter is equivalent to B1 or B2 having value 1. Furthermore, we reformulate classical
subsumption between C and D as 1-subsumption between Cn−1 and Dn−1 since the latter two
concepts can take only the values 0 or 1.
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More formally, let n > 3, T be an ELU TBox in normal form, and C,D be atomic concepts.
We construct an Łn-EL TBox ρn(T ) such that C is subsumed by D w.r.t. T if and only if Cn−1

is subsumed by Dn−1 w.r.t. ρn(T ). Since T is in normal form, we can define the reduction ρn
for each of the four kinds of axioms listed above:

ρn(A1 uA2 v B) := 〈A1 uA2 v B > 1〉
ρn(∃r.A v B) := 〈∃r.A v B > 1〉
ρn(A v ∃r.B) := 〈A v (∃r.B)n−1 > 1

n−1 〉
ρn(A v B1 tB2) := 〈A v B1 uB2 > n−2

n−1 〉

Finally, ρn(T ) := {ρn(α) | α ∈ T }. Notice that ρn(T ) has as many axioms as T , and the
size of each axiom is increased by a factor of at most n. Hence, the translation ρn(T ) can be
performed in polynomial time. We show that this translation satisfies the properties described
above.

3.1 Soundness

In this subsection we prove that if C is subsumed by D with respect to T , then Cn−1 is 1-
subsumed by Dn−1 with respect to the Łn-EL TBox ρn(T ). In order to achieve this result, for
any Łn-interpretation I = (∆I , ·I) we define the crisp interpretation Icr = (∆Icr , ·Icr ), where:

• ∆Icr := ∆I ,

• x ∈ AIcr iff AI(x) = 1 for A ∈ NC and x ∈ ∆I ,

• (x, y) ∈ rIcr iff rI(x, y) = 1 for every r ∈ NR and x, y ∈ ∆I .

Note that also x ∈ >Icr iff >I(x) = 1 for all x ∈ ∆I . Thus, in the following proofs we can treat
> as a concept name.

Before proving soundness of ρn(·) we need to prove that the translation ·cr preserves satisfaction
of our TBoxes.

Lemma 3.1. Let I be an Łn-interpretation that satisfies ρn(T ). Then Icr satisfies T .

Proof. Let I be an Łn-interpretation that satisfies ρn(T ). We will prove case-by-case that Icr
satisfies T .

• Consider an axiom of the form A1 uA2 v B ∈ T and x ∈ AIcr1 ∩AIcr2 . By the definition
of Icr, we have that AI1 (x) = 1 and AI2 (x) = 1. Hence (A1uA2)I(x) = 1. Since I satisfies
ρn(T ), this implies that BI(x) = 1. Again by the definition of Icr, we get x ∈ BIcr .

• Consider an axiom of the form ∃r.A v B ∈ T and x ∈ (∃r.A)Icr . Hence there exists an
element y ∈ ∆Icr such that (x, y) ∈ rIcr and y ∈ AIcr . By the definition of Icr, we have
that rI(x, y) = 1 and AI(y) = 1. Hence supz∈∆I rI(x, z) ∗ AI(z) = rI(x, y) ∗ AI(y) = 1.
Since I satisfies ρn(T ), we get BI(x) = 1. Again by the definition of Icr, we conclude
that x ∈ BIcr .

• Consider an axiom of the form A v ∃r.B ∈ T and x ∈ AIcr . By the definition of Icr, we
have AI(x) = 1. Since I satisfies ρn(T ), this implies that ((∃r.B)n−1)I(x) > 1

n−1 , and
since ((∃r.B)n−1)I(x) ∈ {0, 1}, we obtain ((∃r.B)n−1)I(x) = 1, that is,

1 = (∃r.B)I(x) = sup
z∈∆I

rI(x, z) ∗ BI(z).
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Therefore there exists y ∈ ∆I such that rI(x, y) = 1 and BI(y) = 1. Again by the
definition of Icr, we have (x, y) ∈ rIcr and y ∈ BIcr , and hence x ∈ (∃r.B)Icr .

• Consider an axiom of the form A v B1 tB2 ∈ T and x ∈ AIcr . By the definition of Icr,
we have that AI(x) = 1. Since I satisfies ρn(T ), this implies that (B1 uB2)I(x) > n−2

n−1 .
Hence either BI1 (x) = 1 or BI2 (x) = 1. Again by the definition of Icr, we have that either
x ∈ BIcr1 or x ∈ BIcr2 .

Now we are ready to prove the following proposition.

Proposition 3.2. If C is subsumed by D w.r.t. T , then Cn−1 is 1-subsumed by Dn−1 w.r.t.
ρn(T ).

Proof. Let I be an Łn-interpretation satisfying ρn(T ) and x ∈ ∆I such that (Cn−1)I(x) > 0.
Hence (Cn−1)I(x) = 1 and thus CI(x) = 1. By the definition of Icr, we have x ∈ CIcr .
By Lemma 3.1 we know that Icr satisfies T , and thus we get x ∈ DIcr by assumption.
Again by the definition of Icr, we obtain DI(x) = 1 and therefore (Dn−1)I(x) = 1. Hence
(Cn−1)I(x) ⇒ (Dn−1)I(x) = 1, that is, Cn−1 is 1-subsumed by Dn−1 with respect to ρn(T ).

3.2 Completeness

In this subsection we prove that if C is not subsumed by D with respect to T , then Cn−1 is not
1-subsumed by Dn−1 with respect to the Łn-EL TBox ρn(T ). In order to achieve this result,
we define for any crisp interpretation I = (∆I , ·I) an Łn-interpretation In = (∆In , ·In), where:

• ∆In := ∆I ,

• AIn(x) := 1 if x ∈ AI and AIn(x) := n−2
n−1 otherwise, for every A ∈ NC and x ∈ ∆I ,

• rIn(x, y) := 1 if (x, y) ∈ rI and rIn(x, y) := n−2
n−1 otherwise, for every r ∈ NR and

x, y ∈ ∆I .

Again, > behaves exactly like the concept names since >In(x) is always 1.

Before proving completeness of ρn(·) we need to prove that the translation ·n preserves satisfi-
ability of TBoxes. This will be proved in the following lemma.

Lemma 3.3. If a classical interpretation I satisfies T , then In satisfies ρn(T ).

Proof. Let I be a crisp interpretation that satisfies T . We will prove case-by-case that In
satisfies ρn(T ).

• Consider an axiom of the form 〈A1 u A2 v B > 1〉 ∈ ρn(T ) and any x ∈ ∆In . If
(A1 u A2)In(x) = 1, then both AIn1 (x) = 1 and AIn2 (x) = 1. By the definition of In, we
have that x ∈ AI1 ∩ AI2 . Since I satisfies T , this yields x ∈ BI . Again by the definition
of In, we get BIn(x) = 1.

In the case that (A1 u A2)In(x) < 1, we have (A1 u A2)In(x) 6 n−2
n−1 6 BIn(x) by the

definition of In, and thus also (A1 uA2)In(x)⇒ BIn(x) = 1.
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• Consider an axiom of the form 〈∃r.A v B > 1〉 ∈ ρn(T ) and any x ∈ ∆In . If
(∃r.A)In(x) = 1, then supz∈∆In r

In(x, z) ∗ AIn(z) = 1. This means that there exists
y ∈ ∆In such that rIn(x, y) = 1 and AIn(y) = 1. By the definition of In, we know that
(x, y) ∈ rI and y ∈ AI . Hence x ∈ (∃r.A)I . Since I satisfies T , we get x ∈ BI . Again
by the definition of In, we have that BIn = 1.

Otherwise, we have (∃r.A)In(x)⇒ BIn(x) = 1 as in the previous case.

• Consider an axiom of the form 〈A v (∃r.B)n−1 > 1
n−1 〉 ∈ ρn(T ) and any x ∈ ∆In . If

((∃r.B)n−1)In(x) = 0, then

1 > (∃r.B)In(x) = sup
z∈∆In

rIn(x, z) ∗ BIn(z).

Therefore every y ∈ ∆In must satisfy either rIn(x, y) < 1 or BIn(y) < 1. By the definition
of In, for all y ∈ ∆I we have either (x, y) /∈ rI or y /∈ BI , and hence x /∈ (∃r.B)I . Since I
satisfies T , we get x /∈ AI . Again by the definition of In, we have AIn(x) = n−2

n−1 . Hence
AIn(x)⇒ ((∃r.B)n−1)In(x) = 1

n−1 .

In the case that ((∃r.B)n−1)In(x) > 0, we also get

AIn(x)⇒ ((∃r.B)n−1)In(x) > ((∃r.B)n−1)In(x) > 1
n−1 .

• Consider an axiom of the form 〈A v B1 u B2 > n−2
n−1 〉 ∈ ρn(T ) and any x ∈ ∆In . If

(B1 u B2)In(x) < n−2
n−1 , then B

In
1 (x) = BIn2 (x) = n−2

n−1 . By the definition of In, we have
that x /∈ BI1 ∪BI2 . Since I satisfies T , this implies that x /∈ AI . Again by the definition
of In, we have that AIn(x) = n−2

n−1 . Since by the definition of In and supposition we have
(B1 uB2)In(x) = n−3

n−1 , we can conclude that AIn(x)⇒ (B1 uB2)In(x) = n−2
n−1 .

In the case that (B1 uB2)In(x) > n−2
n−1 , we also have

AIn(x)⇒ (B1 uB2)In(x) > (B1 uB2)In(x) > n−2
n−1 .

Now we are ready to prove the following proposition.

Proposition 3.4. If C is not subsumed by D w.r.t. T , then Cn−1 is not 1-subsumed by Dn−1

w.r.t. ρn(T ).

Proof. Let I be a crisp interpretation satisfying T and x ∈ ∆I such that x ∈ CI \ DI . By
Lemma 3.3, we know that In satisfies ρn(T ). Moreover, by the definition of In, we have
CIn(x) = 1 and DIn(x) = n−2

n−1 . Hence (Cn−1)In(x) = 1 and (Dn−1)In(x) = 0, and therefore
(Cn−1)In(x)⇒ (Dn−1)In(x) = 0 < 1.

We thus have the following.

Theorem 3.5. For any n > 3, deciding `-subsumption with respect to a TBox in Łn-EL is
ExpTime-complete.

Proof. The result follows from the above reduction and the fact that the subsumption problem
with respect to a TBox for the language ELU is ExpTime-hard [2]. The ExpTime upper bound
was shown in [8] for the more expressive language Łn-ALC.
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4 Arbitrary Finite Chains

We now show that the above hardness result can be transferred to almost all logics of the
form L-EL where L is a finite chain. The exception of course being the finite chains using the
minimum as t-norm—this case can be shown to be tractable as in [18].

As detailed in Section 2, any chain L that is not of this form must contain a finite Łukasiewicz
chain in an interval [a, b] with at least three elements. This is the basis of our reduction to the
result from the previous section. More formally, we reduce the subsumption problem in Łn-EL,
where n is the cardinality of [a, b], to the subsumption problem in L-EL.

In the following, let T be a TBox in Łn-EL, ` ∈ Łn \ {0}, and A,B two concept names for
which we want to check whether A is `-subsumed by B w.r.t. T . We extend the bijection
λ : [a, b]→ Łn as follows to the whole chain L:

• λ(x) := 0 if x < a and

• λ(x) := 1 if x > b.

We also make use of the inverse λ−1 : Łn → 2L of this function, for which we in particular have
λ−1(0) = [0, a] and λ−1(1) = [b, 1]. When we sometimes treat λ−1(x) as a single value, we
implicitly refer to the original bijection λ−1 : Łn → [a, b]. A useful property of λ and λ−1 is
the compatibility with all relevant operations (at least in the interval [a, 1]), as shown in the
following two lemmata.

Lemma 4.1. For all p, q ∈ L, we have

• λ(p ∗L q) = λ(p) ∗Łn
λ(q), and

• if q > a, then λ(p⇒L q) = λ(p)⇒Łn
λ(q).

Proof. If both p > b and q > b, then we have λ(p) = λ(q) = 1 and p ∗L q > b, and thus
λ(p ∗L q) = 1 = 1 ∗Łn

1 = λ(p) ∗Łn
λ(q). If either p < a or q < a, then λ(p) = 0 or λ(q) = 0,

respectively. Since then also p ∗L q < a, we obtain λ(p ∗L q) = 0 = λ(p) ∗Łn
λ(q). If neither

of these two cases applies, then we have p ∗L q ∈ [a, b] and λ(p ∗L q) = λ(p) ∗Łn
λ(q) since L

contains Łn in [a, b].

For the second claim, we consider the following cases.

• If p 6 q, then by the monotonicity of λ we get λ(p) 6 λ(q), and thus

λ(p⇒L q) = λ(1) = 1 = λ(p)⇒Łn
λ(q).

• If b > p > q > a, then the claim follows directly from the fact that L contains Łn in [a, b].

• If p > b > q > a and p > q, then λ(p) = 1 and p ⇒L q = q > a, and thus
λ(p⇒L q) = λ(q) = λ(p)⇒Łn

λ(q).

• Finally, if p > q > b, then p ⇒L q > q > b, and hence λ(p) = λ(q) = 1 and
λ(p⇒L q) = 1 = λ(p)⇒Łn

λ(q).

Lemma 4.2. For all p, q ∈ Łn, p′ ∈ λ−1(p) ∩ [a, 1], and q′ ∈ λ−1(q) ∩ [a, 1], we have

• p′ ∗L q′ ∈ λ−1(p ∗Łn
q) ∩ [a, 1], and

• p′ ⇒L q
′ ∈ λ−1(p⇒Łn q) ∩ [a, 1].
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Proof. If p < 1 or q < 1, then we have p′ = λ−1(p) or q′ = λ−1(q), respectively. Furthermore,
we know that p ∗Łn

q < 1 and λ−1(p ∗Łn
q)∩[a, 1] contains a single element. Since L contains Łn

in [a, b] and all elements above b act as neutral elements for the elements in [a, b] w.r.t. ∗L, we
have p′ ∗L q′ = λ−1(p ∗Łn q) ∩ [a, 1]. In the case that p = q = 1, we have p′ ∈ [b, 1] and
q′ ∈ [b, 1], and therefore also p′ ∗L q′ ∈ [b, 1] = λ−1(1) = λ−1(p ∗Łn q).

For the second claim, we again make a case analysis on p and q.

• If p = q = 1, then both p′ and q′ are contained in [b, 1]. By the properties of ordinal sums,
we also have p′ ⇒L q

′ ∈ [b, 1] = λ−1(1) = λ−1(p⇒Łn q).

• If p 6 q, but not p = q = 1, then we know that p′ 6 q′ by the monotonicity of λ−1 and
the fact that p′ < b. Thus, p′ ⇒L q

′ = 1 ∈ λ−1(1) = λ−1(p⇒Łn
q).

• If 1 = p > q, then p′ ⇒L q
′ = q′ ∈ λ−1(q) ∩ [a, 1] = λ−1(p⇒Łn

q) ∩ [a, 1].

• Finally, if 1 > p > q, then the claim follows directly from the fact that L contains Łn in
[a, b].

We now define the new TBox T ′ in L-EL as follows:

T ′ := {〈C v D > λ−1(p)〉, 〈> v D > a〉 | 〈C v D > p〉 ∈ T } ∪ {〈> v B > a〉}.

Recall that B is one of the concept names for which we want to check subsumption in Łn-EL.

4.1 Soundness

We first prove that if A is λ−1(`)-subsumed by B w.r.t. T ′, then A is also `-subsumed by B
w.r.t. T . For this purpose, we consider an Łn-interpretation I and define an L-interpretation
IL as follows:

• ∆IL := ∆I ,

• AIL(x) := λ−1(AI(x)) for all A ∈ NC and x ∈ ∆I , and

• rIL(x, y) := λ−1(rI(x, y)) for all r ∈ NR and x, y ∈ ∆I .

Lemma 4.3. If I is an Łn-model of T , then IL is an L-model of T ′.

Proof. The axioms of the form 〈> v A > a〉 for A ∈ NC are satisfied by the definition of IL.
For the remaining claim, we show that CIL(x) ∈ λ−1(CI(x)) ∩ [a, 1] holds for all concepts C
and x ∈ ∆I by induction on the structure of C. For all concept names, this holds by the
definition of IL, and for and conjunctions, this is a consequence of Lemma 4.2. We also have
>IL(x) = 1 ∈ λ−1(>I(x)) ∩ [a, 1].

It remains to show the claim for an existential restriction ∃r.C, assuming that it already holds
for C. Again by Lemma 4.2 and the definition of IL, we know that for all y ∈ ∆I we have
rIL(x, y) ∗L CIL(y) ∈ λ−1(rI(x, y) ∗Łn

CI(y)) ∩ [a, 1]. Since L is finite and (∃r.C)IL(x) is the
supremum of all these values, it is an element of [b, 1] iff one of the values rI(x, y) ∗Łn

CI(y)
is 1, and then

(∃r.C)IL(x) ∈ [b, 1] = λ−1(1) = λ−1((∃r.C)I(x)).

Otherwise, none of these values is 1 and we get

(∃r.C)IL(x) = λ−1
(

sup
y∈∆I

rI(x, y) ∗Łn
CI(y)

)
= λ−1((∃r.C)I(x)) ∈ [a, b)
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by the monotonicity of λ−1 when restricted to [a, b]. This concludes the proof of the claim.

The claim immediately shows that the axioms of the form 〈> v D > a〉 in T ′ are satisfied
by IL. Consider now an axiom of the form 〈C v D > λ−1(p)〉 in T ′. Since I satisfies T , we
have CI(x)⇒Łn

DI(x) > p for all x ∈ ∆I , and thus we get

CIL(x)⇒L D
IL(x) ∈ λ−1(CI(x)⇒Łn D

I(x)) ⊆ [λ−1(p), 1]

by the above claim, Lemma 4.2, and monotonicity of λ−1.

Lemma 4.4. If A is λ−1(`)-subsumed by B w.r.t. T ′, then A is `-subsumed by B w.r.t. T .

Proof. Let I be an Łn-model of T and x ∈ ∆I such that AI(x)⇒Łn
BI(x) < `. By Lemma 4.3,

IL is an L-model of T ′. By the definition of IL, we know that both AIL(x) and BIL(x) satisfy
the preconditions of Lemma 4.2. This yields that

AIL(x)⇒L B
IL(x) ∈ λ−1(AI(x)⇒Łn

BI(x)) ∩ [a, 1].

By assumption, we know that the latter set cannot be [b, 1], and thus it must be a singleton.
By the strict monotonicity of λ−1 when restricted to [a, b], we conclude that

AIL(x)⇒L B
IL(x) = λ−1(AI(x)⇒Łn

BI(x)) < λ−1(`).

4.2 Completeness

We now start with an L-interpretation I and construct an Łn-interpretation In as follows:

• ∆In := ∆I ,

• AIn(x) := λ(AI(x)) for all A ∈ NC and x ∈ ∆I , and

• rIn(x, y) := λ(rI(x, y)) for all r ∈ NR and x, y ∈ ∆I .

Lemma 4.5. If I is an L-model of T ′, then In is an Łn-model of T .

Proof. We first show the auxiliary claim that CIn(x) = λ(CI(x)) holds for all concepts C
and x ∈ ∆I by induction on the structure of C. For all concept names, this holds by the
definition of In. For conjunctions, it follows directly from Lemma 4.1. We also know that
>In(x) = 1 = λ(1) = λ(>I(x)).

Consider now an existential restriction ∃r.C and assume that the claim holds for C. By the
definition of In and Lemma 4.1, we know that rIn(x, y) ∗Łn

CIn(y) = λ(rI(x, y) ∗L CI(y))
holds for all y ∈ ∆I . Since (∃r.C)In(x) is the supremum of all these values, L is finite, and λ
is monotone, we have

(∃r.C)In(x) = λ
(

sup
y∈∆I

rI(x, y) ∗L CI(y)
)

= λ((∃r.C)I(x)),

which concludes the proof of the claim.

Consider now an axiom 〈C v D > p〉 in T . Since I is a model of T ′, we have DI(x) > a and
CI(x)⇒L D

I(x) > λ−1(p) for all x ∈ ∆I . We conclude that

CIn(x)⇒Łn D
In(x) = λ(CI(x)⇒L D

I(x)) > λ(λ−1(p))) = p

by Lemma 4.1, the above claim, and monotonicity of λ.
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Lemma 4.6. If A is `-subsumed by B w.r.t. T , then A is λ−1(`)-subsumed by B w.r.t. T ′.

Proof. Consider an L-model I of T ′ with AI(x) ⇒L BI(x) < λ−1(`) for some x ∈ ∆I . By
Lemma 4.5, In is a model of T . By the definition of T ′, we know that BI(x) > a. Thus,
Lemma 4.1 yields AIn(x) ⇒Łn

BIn(x) = λ(AI(x) ⇒L B
I(x)). Since ` > 0 and λ is strictly

monotone in [a, b], this residuum is strictly smaller than λ(λ−1(`)) = `.

The main result of this section now follows from Theorem 3.5 and the fact that subsumption
in L-EL for a finite chain L can be decided in ExpTime using the algorithm from [8].

Theorem 4.7. Let L be a finite chain that is not of the form Gn. Then deciding `-subsumption
with respect to a TBox in L-EL is ExpTime-complete.

In contrast, subsumption in Gn-EL for any n > 2 can be shown to be decidable in PTime using
the approach from [2, 18].

5 The Infinite Łukasiewicz T-norm

Finally, we show ExpTime-hardness for fuzzy EL also under the infinite Łukasiewicz t-norm,
and even all continuous t-norms containing a Łukasiewicz component (see Definition 2.1). By [7,
Theorem 13], it suffices to show this for all t-norms starting with the Łukasiewicz t-norm. We
thus consider an infinite chain L over [0, 1] with a continuous t-norm ∗ that is isomorphic to
the infinite-valued Łukasiewicz t-norm in an interval [0, b] with b ∈ (0, 1]. We denote by ⇒ the
residuum of L.

The reduction is again from the subsumption problem in ELU , and is very similar to the one
in Section 3 for Ł3-EL. However, we additionally have to ensure that all relevant concepts can
only take the values b

2 or > b. Given a concept C, let TC be the L-EL TBox

TC := {〈C2 v C3 > 1〉, 〈> v C > b
2 〉}.

Every model I of this TBox must satisfy CI(x) > b
2 for every x ∈ ∆I due to the second axiom.

The first axiom additionally guarantees that CI(x) /∈ ( b
2 , b) holds: if b

2 < CI(x) < b, then
(C2)I(x) = CI(x) + CI(x)− b > 0, and thus (C3)I(x) < (C2)I(x), violating the axiom.

Similar to the reduction in Section 3, we will use the truth degree b
2 ∈ L to stand for “false” in

ELU and any degree greater or equal to b to represent “true.” Consider now the mapping ρŁ
defined on the axioms of T as follows:

ρŁ(A1 uA2 v B) := 〈A1 uA2 v B > b〉
ρŁ(∃r.A v B) := 〈∃r.A v B > b〉
ρŁ(A v ∃r.B) := 〈A v (∃r.B)2 > b

2 〉
ρŁ(A v B1 tB2) := 〈A v B1 uB2 > b

2 〉

Given an ELU TBox T in normal form, let AC(T ) be the set of all concept names and existential
restrictions appearing in T . We extend the mapping ρŁ to ELU TBoxes as follows:

ρŁ(T ) := {ρŁ(C v D) | C v D ∈ T } ∪
⋃

C∈AC(T )

TC .

The following proofs are very similar to those of Section 3.
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5.1 Soundness

Given an L-interpretation I, we define the crisp interpretation Icr as follows:

• ∆Icr := ∆I ,

• x ∈ AIcr iff AI(x) > b for every concept name A and x ∈ ∆I ,

• (x, y) ∈ rIcr iff rI(x, y) > b for every role name r and x, y ∈ ∆I .

Lemma 5.1. If I satisfies ρŁ(T ), then Icr satisfies T .

Proof. • Consider an axiom of the form A1 u A2 v B ∈ T and x ∈ AIcr1 ∩ AIcr2 . By the
definition of Icr, we have that AI1 (x) > b and AI2 (x) > b. Since b is idempotent w.r.t. ∗,
also (A1 u A2)I(x) > b. Since I satisfies ρŁ(T ), this implies that BI(x) > b, and thus
x ∈ BIcr .

• Consider an axiom of the form ∃r.A v B ∈ T and x ∈ (∃r.A)Icr . There must exist an
element y ∈ ∆Icr such that (x, y) ∈ rIcr and y ∈ AIcr . By the definition of Icr, we have
that rI(x, y) > b and AI(y) > b. Hence supz∈∆I rI(x, z) ∗ AI(z) > rI(x, y) ∗ AI(y) > b.
Since I satisfies ρŁ(T ), we get BI(x) > b, and thus x ∈ BIcr .

• If A v ∃r.B ∈ T and x ∈ AIcr , then by the definition of Icr, we have AI(x) = 1. Since I
satisfies ρn(T ), this implies that ((∃r.B)2)I(x) > b

2 . By the axioms in T∃r.B ⊆ ρŁ(T ), we
know that either (∃r.B)I(x) = b

2 or (∃r.B)I(x) > b, and thus ((∃r.B)2)I(x) > b. Thus,
we must have also (∃r.B)I(x) > b. Since I is witnessed, this means that there exists a
y ∈ ∆I such that rI(x, y) > b and BI(y) > b. Again by the definition of Icr, we have
(x, y) ∈ rIcr and y ∈ BIcr , and hence x ∈ (∃r.B)Icr .

• For A v B1tB2 ∈ T and x ∈ AIcr , we know that AI(x) = 1. Since I satisfies ρn(T ), this
implies that (B1 uB2)I(x) > b

2 . By the axioms in TB , this implies that either BI1 (x) > b
or BI2 (x) > b, and thus x ∈ BIcr1 or x ∈ BIcr2 .

Lemma 5.2. If C is subsumed by D w.r.t. T , then C2 is b-subsumed by D2 w.r.t. ρŁ(T ).

Proof. Let I be an L-interpretation satisfying ρŁ(T ) and x ∈ ∆I such that (C2)I(x) > 0.
Hence (C2)I(x) > b, and thus also CI(x) > b. By the definition of Icr, we have x ∈ CIcr .
By Lemma 5.1 we know that Icr satisfies T , and thus we get x ∈ DIcr by assumption.
Again by the definition of Icr, we obtain DI(x) > b, and therefore (D2)I(x) > b. Hence
(C2)I(x)⇒ (D2)I(x) > b, that is, C2 is b-subsumed by D2 with respect to ρŁ(T ).

5.2 Completeness

Given a crisp interpretation I, we define the L-interpretation IL as follows:

• ∆IL := ∆I ,

• AIL(x) := b if x ∈ AI and AIL := b
2 otherwise, for every concept name A and x ∈ ∆I ,

• rIL(x, y) := b if (x, y) ∈ rI and rIL(x, y) := b
2 otherwise, for every role name r and

x, y ∈ ∆I .

Lemma 5.3. If I satisfies T , then IL satisfies ρŁ(T ).
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Proof. The TBoxes TC for C ∈ AC(T ) are satisfied by the definition of IL. In particular, the
values for existential restrictions (∃r.A)IL(x) are computed as suprema of values of the form
rIL(x, y) ∗ AIL(y), where each of the operands is either b

2 or b.

• Consider an axiom of the form 〈A1 u A2 v B > b〉 ∈ ρŁ(T ) and any x ∈ ∆IL . If
(A1 u A2)IL(x) > b, then both AIL1 (x) = b and AIL2 (x) = b. By the definition of IL, we
have that x ∈ AI1 ∩ AI2 . Since I satisfies T , this yields x ∈ BI . Again by the definition
of IL, we get BIL(x) = b.

In the case that (A1 u A2)IL(x) < b, we have (A1 u A2)IL(x) 6 b
2 6 BIL(x) by the

definition of IL, and thus also (A1 uA2)IL(x)⇒ BIL(x) = 1 > b.

• Consider an axiom of the form 〈∃r.A v B > b〉 ∈ ρŁ(T ) and x ∈ ∆IL . If (∃r.A)IL(x) > b,
then there exists a y ∈ ∆IL such that rIL(x, y) = b and AIL(y) = b. By the definition
of IL, we know that (x, y) ∈ rI and y ∈ AI , and hence x ∈ (∃r.A)I . Since I satisfies T ,
we get x ∈ BI . Again by the definition of IL, we have that BIL = b.

Otherwise, we have (∃r.A)IL(x)⇒ BIL(x) = 1 as in the previous case.

• Consider an axiom of the form 〈A v (∃r.B)2 > b
2 〉 ∈ ρŁ(T ) and any x ∈ ∆IL . If

((∃r.B)2)IL(x) = 0, then

b > (∃r.B)IL(x) = sup
z∈∆IL

rIL(x, z) ∗ BIL(z).

Therefore every y ∈ ∆IL must satisfy either rIL(x, y) < b or BIL(y) < b. By the definition
of IL, for all y ∈ ∆I we have either (x, y) /∈ rI or y /∈ BI , and hence x /∈ (∃r.B)I . Since
I satisfies T , we get x /∈ AI . Again by the definition of IL, we have AIL(x) = b

2 . Hence
AIL(x)⇒ ((∃r.B)2)IL(x) = b

2 .

In the case that ((∃r.B)2)IL(x) > 0, we also get

AIL(x)⇒ ((∃r.B)2)IL(x) > ((∃r.B)2)IL(x) > b
2 .

• Consider an axiom of the form 〈A v B1 u B2 > b
2 〉 ∈ ρŁ(T ) and any x ∈ ∆Icr . If

(B1 u B2)IL(x) < b
2 , then B

IL
1 (x) = BIL2 (x) = b

2 . By the definition of IL, we have that
x /∈ BI1 ∪ BI2 . Since I satisfies T , this implies that x /∈ AI . Again by the definition
of IL, we have that AIL(x) = b

2 . Since by the definition of IL and supposition we have
(B1 uB2)IL(x) = 0, we can conclude that AIL(x)⇒ (B1 uB2)IL(x) = b

2 .

In the case that (B1 uB2)IL(x) > b
2 , we also have

AIL(x)⇒ (B1 uB2)IL(x) > (B1 uB2)IL(x) > b
2 .

Lemma 5.4. If C is not subsumed by D w.r.t. T , then C2 is not b-subsumed by D2 w.r.t.
ρn(T ).

Proof. Let I be a crisp interpretation satisfying T and x ∈ ∆I such that x ∈ CI \ DI .
By Lemma 5.3, we know that IL satisfies ρŁ(T ). Moreover, by the definition of IL, we
have CIL(x) = b and DIL(x) = b

2 . Hence (C2)IL(x) = b and (D2)IL(x) = 0, and therefore
(C2)IL(x)⇒ (D2)IL(x) = 0 < b.

From the previous arguments, we see that for any continuous chain L that starts with Łukasie-
wicz, subsumption in L-EL is ExpTime-hard. As shown in [7, Theorem 13], if L is the ordinal
sum of L1 and L2 over the intervals [0, a] and [a, 1], respectively, for some a ∈ (0, 1), then
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subsumption in L-EL is at least as hard as subsumption in L2-EL. Additionally, every chain
L that contains a Łukasiewicz component can be described as such an ordinal sum, where L2

starts with Łukasiewicz. This means that the ExpTime-hardness holds for all such continuous
chains.

Theorem 5.5. If L is defined using any continuous t-norm over [0, 1] containing a Łukasiewicz
component, then deciding `-subsumption with respect to a TBox in L-EL is ExpTime-hard.

This improves the lower bound of co-NP for this problem from [7]. However, it is unknown
whether a similar lower bound holds for the product t-norm (and continuous t-norms containing
several product components). An upper bound is known only for the case of the infinite Gödel
t-norm, where subsumption is PTime-complete [18].

6 Conclusions

We have shown that reasoning in finitely valued extensions of fuzzy EL becomes exponentially
harder than in classical EL even if only one additional truth value interpreted under Łukasiewicz
semantics is considered. This provides the first example of a finitely valued DL that exhibits
an increased complexity compared to the underlying classical DL. The same complexity lower
bound holds for any infinitely valued t-norm over [0, 1] that contains a Łukasiewicz component.

Although these problems are ExpTime-complete, we believe that subsumption in finitely valued
extensions of EL can be solved more efficiently than by the algorithms developed for expres-
sive finitely valued DLs [8, 9]. We plan to look at suitable adaptations of consequence-based
algorithms for classical DLs [2, 16]. On the theoretical side, we will investigate whether other
inexpressive DLs like FL0 [1] or DL-Lite [11] also exhibit an increase in complexity under Łu-
kasiewicz semantics. We will also study the effect of the product semantics on the complexity
of these logics.
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