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Description logic knowledge bases can be used to represent knowledge about a particular
domain in a formal and unambiguous manner. Their practical relevance has been shown
in many research areas, especially in biology and the semantic web. However, the tasks of
constructing knowledge bases itself, often performed by human experts, is difficult, time-
consuming and expensive. In particular the synthesis of terminological knowledge is a chal-
lenge every expert has to face. Because human experts cannot be omitted completely from
the construction of knowledge bases, it would therefore be desirable to at least get some
support from machines during this process. To this end, we shall investigate in this work
an approach which shall allow us to extract terminological knowledge in the form of general
concept inclusions from factual data, where the data is given in the form of vertex and edge
labeled graphs. As such graphs appear naturally within the scope of the Semantic Web in
the form of sets of RDF triples, the presented approach opens up the possibility to extract
terminological knowledge from the Linked Open Data Cloud. We shall also present first
experimental results showing that our approach has the potential to be useful for practical
applications.

Keywords: Description Logics, Formal Concept Analysis, Terminological Knowledge,
Ontology Learning

1. Introduction

One of the main applications of logic in computer science today is to represent knowledge
of application domains. Within the scope of this application, description logics [6] play
an important role as a family of decidable fragments of first order logic that allow for
varying expressivity and reasoning complexity. The practical relevance of description
logics as knowledge representation formalisms is reflected by the fact that major bio-
medical knowledge bases are formulated in or can easily be translated to description
logics knowledge bases [35], and by the fact that the languages used within the Web
Ontology Language standard are based of description logics [23, 27].

The core notion of description logics is the one of a knowledge base (or simply ontology).
Typically, such knowledge bases consist of two parts: a set of assertional axioms, called
an ABox , and a set of terminological axioms, called a TBox . An example of an ontology
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is

KMGM = ({Cat(tom),Mouse(jerry) }, {Cat v ∃hunts.Mouse }). (1)

While we provide the formal semantics of a knowledge base later, we can still grasp the
meaning of this example on an informal level. The first part of K denotes the ABox.
Intuitively, it states that an individual called tom is an instance of the concept Cat, and
that jerry is an instance of Mouse. In other words, we could read this ABox as stating
that tom is a cat, and that jerry is a mouse. Thus, the ABox provides factual information
about our domain.

The second part of K denotes the TBox. In contrast to the knowledge represented
in the ABox, the TBox contains terminological information. In this specific example,
the TBox contains the knowledge that every individual which is an instance of Cat is
connected to another individual via a role named hunts, and that the latter individual is
an instance of Mouse. In other words, the TBox states that every cat hunts some mouse.

While this example is not realistic, it still gives a feeling of the expressive power
description logic ontologies can provide. This expressivity can even be increased if the
underlying logic provides additional features not present in the above example. Studying
the interplay between the power of expressiveness of the underlying description logic
and the complexity of reasoning within such ontologies has been one of the main driving
forces behind description logic research for the past 20 years.

However, this interplay is not within the focus of this work. Instead we are interested in
the question of how to obtain such ontologies. This question is of high practical relevance,
as constructing ontologies is a major undertaking normally requiring a lot of human
expertise and time. Providing methods that aid during this process would improve the
practicability and applicability of knowledge bases for real-world use cases.

In this work we want to focus on learning terminological knowledge. More specifically,
we want to extract axioms of the form C v D from description logic interpretations.
Axioms of the form C v D are called general concept inclusions (GCIs), and we have
already seen an example of a GCI in (1). Interpretations are structures that serve to
define semantics of description logics, and they can be best thought of as vertex and
edge-labeled graphs. They are thus not very different from linked data [9], which can also
be considered as such a graph. Therefore, what we want to consider in this work can be
described as developing methods to obtain terminological knowledge from linked data.

To obtain such methods we consider connections between description logics and the
theory of formal concept analysis [19]. Originally, formal concept analysis emerged as
part of mathematical order theory, aiming at understanding ordered structures, and in
particular lattices, as hierarchies of concepts of certain contexts . However, since its early
days, formal concept analysis has developed into a rich theory connecting otherwise
independent areas such as order theory, data mining and logic in a fruitful way.

Two of the most basic notions of formal concept analysis are the one of a formal
context and that of an implication. While formal contexts can be roughly thought of as
data tables, implications can be thought of as dependencies between attributes in those
data tables. Then, formal concept analysis provides effective methods to extract bases of
implications that are valid in a given formal context, optionally also with the constraint
that the base is of minimal cardinality.

The principal approach of our methods to learn GCIs from interpretations is now to
connect description logics and formal concept analysis such that learning GCIs from
interpretations corresponds to extracting implications from formal contexts. Indeed, this
idea is not far-fetched, as there are many similarities between interpretations and formal
contexts, as well as between GCIs and implications. We shall discuss these similarities
as soon as we have introduced all the necessary definitions.
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Exploiting these similarities, we shall discuss methods to obtain terminological knowl-
edge from interpretations. In particular, we shall investigate the idea of extracting bases
of valid GCIs of such interpretations: as interpretations serve to define the semantics of
description logics, we can define the notion of a GCI being valid in such an interpretation.
Then a natural starting point for learning GCIs from finite interpretations would be to
simply consider the set of all valid GCIs of a finite interpretation. Unfortunately, it can
be seen easily that this set is infinite in general, and to make this approach practically
relevant we shall resort to finding a finite base of all valid GCIs, i.e., a finite set of valid
GCIs that already entails every other valid GCI of our given interpretation.

Additionally, we shall restrict our attention to GCIs which obey a certain role-depth
bound , i.e., whose depth of nested quantifiers does not exceed a predefined limit. We do
this for several reasons: firstly, GCIs extracted with our approach need to be validated
by an external source, which is likely to be a human expert. Since human experts, even
if trained in logic, have difficulties in understanding highly nested logical expressions, it
seems wasteful to compute GCIs which a human expert cannot understand. Secondly,
while it is possible to not employ a role-depth limit, it causes severe complications in both
the underlying theory and possible implementations, which render the whole approach
practically useless. We shall sketch those difficulties in a separate section.

We shall see that it is always possible to compute finite bases of GCIs whose quantifiers
do not nest below a predefined limit, provided that the initial interpretation is finite.
But we shall even go further by utilizing an algorithm from formal concept analysis that
allows for the computation of minimal bases of valid implications of formal contexts.
Here, a base is minimal if and only if the number of implications contained in this base is
as small as possible. Using this algorithm we shall show that we can devise an algorithm
that allows to compute a minimal base of all valid GCIs of a finite interpretation whose
quantifiers depth is bounded by a given threshold.

The methods sketched in the previous paragraphs are effective, and we shall discuss
a larger example where these methods are applied to data from the DBpedia project
to obtain terminological knowledge about the child-relation between persons in the
Wikipedia. While the resulting GCIs are quite promising, we can observe that due to
errors in the data some GCIs are not learned although they would be interesting on
their own. Even worse, errors in the data cause the GCIs we have learned to be quite
complicated, simply due to the fact that they need to “circumvent” the errors in the
data. We shall discuss these phenomena in detail when we consider this example.

This paper is structured as follows. At first, we shall review some existing related work
in Section 2. Thereafter we shall introduce the necessary notions from description logics
and formal concept analysis that are essential for our discussion. This will be done in
Section 3. Then we shall introduce in Section 4 our approach of learning finite bases of
GCIs with role-depth bound from finite interpretations. This approach is then applied to
some real-world data-sets in Section 5. We conclude with an outlook on further results
in Section 6.

The results presented here are partly included or are extensions of the work done
in [15].

2. Related Work

The results we present in this article fall within the realm of ontology learning [26]. The
main focus of this research area is to extract formal representations of knowledge from
various forms of data, most notably from text and linked data, using methods and ideas
from a multitude of fields, e.g., machine learning, inductive logical programming, or
statistics. Additionally, the notion of an ontology is not fixed, but ranges from describing
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lightweight collections of facts up to denoting completely formal description logics
knowledge bases. Because of this, ontology learning itself is a diverse field consisting of
many different lines of research.

In particular, there is plenty of prior work aiming at learning parts of description
logic knowledge bases. One step in learning description logics knowledge bases is concept
learning [25]. The problem here is to find a suitable concept description D in a given
knowledge base such that all individuals of a set of positive examples satisfy D, and
all individuals of a set of negative examples do not satisfy D. To find such a concept
description D, methods from machine learning are employed, most notably inductive
logic programming . In this approach, certain refinement operators are considered. Then,
starting with a concept description D′ that is not necessarily satisfied by all positive
examples, or is satisfied by some negative examples, a suitable refinement operator ρ
(depending on the target description logic) is applied to D′ to obtain new candidates
for the concept description D. Provided that the refinement operator ρ satisfies certain
convergence properties, iterating this process and applying certain heuristics to choose
among the candidates returned by ρ finally yields such a desired concept description D,
if it exists.

A related approach is the one of bottom-up construction of description logics knowledge
bases [8]. A natural top-down approach to constructing description logics knowledge
bases is to first specify the ontology completely, and then use it to describe properties of
individuals of the domain of interest. This approach, however, may not always be possible,
as finding appropriate descriptions for all relevant concept descriptions of the application
domain may be infeasible. Instead, in a bottom-up approach, the domain expert first
specifies “typical” examples of a certain concept description to be defined, and from
these examples a first concept description is inferred. This is done by first computing
the most specific concept description of each of the given examples. Thereafter, the least
common subsumer of these most specific concept descriptions is computed. This least
common susumer C is then considered as a first proposal to describe all the examples
given by the expert, and the expert can then refine and adapt C as necessary.

For ontology learning algorithms based on expert interaction, methods based on
formal concept analysis have been particularly popular [31]. Here the main interest lies
in adapting the algorithm of attribute exploration to the setting of description logics.
In formal concept analysis, attribute exploration is a knowledge completion algorithm
that uses expert interaction to decide newly found knowledge whose validity cannot be
decided from the given data alone. A main obstacle in using formal concept analysis
for ontology construction is that a closed world is always assumed, i.e., at any time all
properties of the known individuals are completely available. Furthermore, the knowledge
covered by attribute exploration can be expressed using definite Horn formulas, which
is too inexpressive for description logics. Because of this, various approaches have
been developed to extend the expressivity of attribute exploration. One of them is
relational exploration [30], which provides a method to extract information from finite
data-sets that allows to decide all subsumptions between FLE-concept descriptions.
However, the method itself does not directly yield terminological knowledge required to
construct a knowledge base from the given data-set. The methods from [15] on which
our argumentation is built are similar, but differ in the aspect that they directly yield
terminological knowledge suitable for knowledge base construction. There also exists
an extension of the latter methods to ABox-exploration [14] that allows the expert to
provide counterexamples in an open-world fashion. Finally, attribute exploration has
also been used to devise methods for ontology completion [7], in which expert interaction
is used to ensure that the ontology at hand completely describes the application domain.

Finally, learning ontological knowledge from text or web documents has been one of
the most prominent lines of research in ontology learning [33]. Here the focus is usually
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not to construct fully formalized knowledge bases, but merely extract taxonomies of
concept names or even only facts from textually represented data. However, there have
been some approaches to also learn concept definitions from text [16]. Those concept
definitions can be seen as a special form of terminological knowledge, and can be used in
description logics knowledge bases.

3. Preliminaries

In the introduction we have already encountered some notions which are relevant for the
purpose of this work. Up to now, we have used these notions rather intuitively, without
proper formal foundations. It is the purpose of this section to remedy this deficiency,
and to provide formal definitions as far as they are needed here.

To this end, we shall introduce in Section 3.1 the necessary notions of description
logics [6] crucial for this work. In particular, we shall introduce the description logic
EL⊥, its syntax and semantics, as well as the notion of general concept inclusions.
Moreover, as we shall make use of results from the field of formal concept analysis [19],
we shall introduce in Section 3.2 basic notions from this area, including formal contexts,
implications, and the canonical base.

3.1 The Description Logic EL⊥

The description logic EL⊥ is one of the least expressive description logics considered in
the literature [4, 5], and yet this logic has practical relevance for representing knowledge.
In particular, some large ontologies from the domain of medicine and bio-medicine can
be represented in EL⊥ or slight extensions thereof, examples being SNOMED-CT [28],
GALEN [29] and the Gene Ontology [1].

As a logic, EL⊥ consists of syntax and semantics. To this end, we need to fix a
background vocabulary which consists of two disjoint sets NC and NR of concept names
and role names, respectively. Then an EL-concept description C (over NC and NR) is
defined according to the rule

C ::= A | C u C | ∃r.C | >,

where A ∈ NC is a concept name and r ∈ NR a role name. Sometimes we call C uD
a conjunction, ∃r.C an existential restriction, and > the top concept . An EL⊥-concept
description (over NC and NR) is then either an EL-concept description or the special
constructor ⊥, and we refer to ⊥ as the bottom concept . We shall occasionally denote
the set of all EL⊥-concept descriptions for the signature NC and NR by EL⊥(NC , NR).
The role-depth rd(C) of an EL⊥-concept description C is inductivelly defined as follows:

rd(⊥) := 0,

rd(>) := 0,

rd(A) := 0 (A ∈ NC),

rd(∃r.C) := 1 + rd(C) (r ∈ NR, C ∈ EL⊥(NC , NR)).

The set of all EL⊥-concept descriptions (over NC and NR) with a role-depth at most d
is denoted by EL⊥(NC , NR)d.

As an example we can consider the sets NC := {Cat,Mouse } and NR := { hunts }.
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Examples for EL⊥ descriptions over this vocabulary are then

Cat, ∃hunts.Mouse, Cat uMouse, ⊥.

Note that, by convention, concept names are often denoted with capitalized words, where
role names are denoted by lower-case words.

To give semantics to EL⊥-concept descriptions we shall introduce the notion of an
interpretation I (over the vocabulary NC and NR). Those are structures I = (∆I , ·I)
such that ∆I is a non-empty set, which is called domain and whose elements are called
individuals . Moreover, ·I is a mapping from NC ∪NR to P(∆I)∪P(∆I ×∆I) satisfying

AI ⊆ ∆I and rI ⊆ ∆I ×∆I

for A ∈ NC and r ∈ NR. The mapping ·I can be extended easily to the set EL⊥(NC , NR)
of all EL⊥-concept descriptions over NC and NR:

>I := ∆I

⊥I := ∅

(C uD)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI and y ∈ CI }

where C,D ∈ EL⊥(NC , NR) and r ∈ NR. If C is an EL⊥-concept description, then we
shall call CI its extension in I, and shall say for every individual x ∈ ∆I that it satisfies
C in I if and only if x ∈ CI .

Let us consider an example interpretation for our signature NC = {Cat,Mouse }, NR =
{ hunts }. Define IMGM = ({ tom, jerry }, ·IMGM) by

CatIMGM := { tom },

MouseIMGM := { jerry },

huntsIMGM := { (tom, jerry), (jerry, tom) }.

It is not hard to see that IMGM can also be represented as a graph, which may give more
insight into its structure:

tom

Cat

jerry

Mouse
hunts

hunts

For this interpretation, we can compute extensions of certain concept descriptions:

∃hunts.MouseIMGM = { tom } = CatIMGM ,

Cat uMouseIMGM = ∅ = ⊥IMGM .

As already indicated in the introduction, it is possible for some interpretation I and two
EL⊥-concept descriptions C,D that whenever an individual satisfies C in I then it also
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satisfies D in I, i.e.,

CI ⊆ DI . (2)

This implication-like dependency between concept descriptions can be lifted to the logical
level by considering general concept inclusions (GCIs). These are expressions of the form
C v D, where C and D are EL⊥-concept descriptions over NC and NR. Such a GCI is
then said to hold in I (is valid in I) if and only if (2) holds, i.e., CI ⊆ DI . We write
I |= (C v D) in this case. If C v D is valid in every interpretation, then we say that C
is subsumed by D, and simply write C v D in this case. The set of GCIs valid in I will
be denoted by ThEL⊥(NC ,NR)(I). If the underlying logic and vocabulary are clear from
the context, we shall omit the subscript and write Th(I) instead. Analogously, the set
of all EL⊥-GCIs C v D (over NC and NR) that hold in I and satisfy rd(C), rd(D) ≤ d
is denoted by ThEL⊥(NC ,NR)d(I). We may abbreviate this set by Thd(I).

As an example, let us consider the GCI from (1) again, namely

Cat v ∃hunts.Mouse.

Then since CatIMGM = ∃hunts.MouseIMGM , this GCI is valid in IMGM.
General concept inclusions allow us to express terminological knowledge, i.e., knowledge

about dependencies between concept descriptions. However, as we have already indicated
in the introduction, it is also possible to express assertional knowledge, i.e., facts about
individuals, using concept descriptions. For this we extend the vocabulary by a set
NI of individual names which is disjoint to both NC and NR. Then a complex concept
assertion is of the form C(a), where C is an EL⊥-concept description over NC and NR,
and a ∈ NI is an individual name. A role assertion is of the form r(a, b) for r ∈ NR and
a, b ∈ NI , and a concept assertion is of the form A(a) for A ∈ NC and a ∈ NI .

To give semantics to concept assertions we shall extend the notion of interpretations
I = (∆I , ·I) to include an interpretation for the individual names. To this end, we simply
demand that the mapping ·I injectively assigns to individual names a ∈ NI individuals
in ∆I , i.e., aI ∈ ∆I for each a ∈ NI and aI = bI implies a = b. Using this extension we
can now say that the assertions C(a) and r(a, b) hold in I if and only if aI ∈ CI and
(aI , bI) ∈ rI are true, respectively.

Assertional and terminological knowledge can be combined into a knowledge base.
Formally, this is a pair K = (A, T ) of an ABox A and a TBox T . Here an ABox
(for “assertional box”) is a collection of concept and role assertions, and a TBox (for
“terminological box”) is a collection of GCIs. An interpretation I is then a model for K
if and only if all assertions in A and all GCIs in T are valid in I.

An example of such a knowledge base KMGM has been given in (1), and IMGM is model
of K.

Knowledge bases allow for a variety of reasoning tasks , based on their semantics. These
tasks include consistency , satisfiability , subsumption, equivalence and instance checking :

Consistency Given a knowledge base K, does there exist a model for K? (Is K consis-
tent? )

Satisfiability Given a knowledge base K and a concept description C, does there exist
a model for K such that CI 6= ∅? (Is C satisfiable with respect to K? )

Subsumption Given a knowledge base K and two concept descriptions C,D, is it true
for all models I of K that CI ⊆ DI? (Does K entail C v D? )

Equivalence Given a knowledge base K and two concept descriptions C,D, is it true
for all models I of K that CI = DI? (Does K entail C ≡ D? )

Instance Checking Given a knowledge base K, a concept description C and an indi-
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vidual name a ∈ NI , is it true for all models I of K that aI ∈ CI? (Does K entail
C(a)? )

Since IMGM is model of KMGM, we know that KMGM is consistent. Moreover, as
CatIMGM 6= ∅ 6= MouseIMGM , we know that both Cat and Mouse are satisfiable with respect
to KMGM.

As Cat v ∃hunts.Mouse is explicitly mentioned in KMGM, it is also entailed by it, as is

∃hunts.Cat v ∃hunts.∃hunts.Mouse.

However, ∃hunts.Mouse v Cat is not entailed by KMGM, and therefore KMGM does not
entail

Cat ≡ ∃hunts.Mouse.

Finally, KMGM clearly entails Cat(tom) and ∃hunts.Mouse(tom), but neither Mouse(tom)
nor ∃hunts.Mouse(jerry).

When considering different description logics, one of the first questions is how complex
these reasoning tasks are. One of the many advantages of EL⊥ is that all of these
reasoning tasks can be decided in polynomial time.

3.2 Formal Concept Analysis

Formal concept analysis started in the 1980s as a branch of mathematical order theory,
and has since evolved into a wide theory, with applications in data mining, knowledge
representation, and even psychology. The original concern of formal concept analysis
was to study a mathematical connection between complete lattices, a particular form
of ordered sets, on the one hand, and formal contexts on the other. More precisely,
formal concept analysis allowed to understand arbitrary complete lattices as conceptual
hierarchies, with the notion of a concept defined in a corresponding formal context.

This original line of research is not immediately relevant for our course of argumentation.
Instead, we shall exploit another connection which formal concept analysis makes explicit.
This connection is concerned with closure systems on finite sets, which in turn are always
finite complete lattices. Such closure systems can be described in terms of implications
in a suitable formal context, and formal concept analysis provides well-established means
to study and extract implications from formal contexts. We shall see in the course of this
paper that we can exploit those means to our advantage when learning valid GCIs from
a given data set. It is the purpose of this section to introduce the necessary definitions
to argue how this can be done.

We start with introducing formal contexts. To this end, let G,M be two sets, and let
I ⊆ G×M . Then a formal context K is just a triple K = (G,M, I). When talking about
formal contexts, we shall call the set G the set of objects , the set M the set of attributes ,
and we shall say that an object g ∈ G has an attribute m ∈M if and only if (g,m) ∈ I.
In this case, we shall also write g I m instead of (g,m) ∈ I.

For a set A ⊆ G of objects, we can form the set A′ of all attributes that all objects in
A have in common. More precisely, we shall define the derivation

A′ = {m ∈M | ∀g ∈ A : g I m }.

Likewise, for a set B ⊆M , the set of objects sharing all attributes in B is defined as

B′ = { g ∈ G | ∀m ∈M : g I m }.
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We sometimes also write A′K to emphasize that the derivation is done in K.
Formal contexts can be thought of, among others, as data sets, where we record for

the objects of interest all the attributes they have. It is then quite natural to ask whether
certain combination of attributes imply certain other combinations of attributes. More
precisely, given two sets X,Y ⊆M , is it true that every object that has all attributes
from X also has all attributes from Y , i.e.,

∀g ∈ G : g ∈ X ′ =⇒ g ∈ Y ′ ?

In formal concept analysis this notion is formalized with the notion of an implication.
More precisely, an implication over some set M is an expression A→ B with A,B ⊆M .
We say that an implication A→ B over some set M holds in some formal context with
attribute set M if and only if every object that has all attribute from A also has all
attributes from B, i.e.,

A′ ⊆ B′.

It can be shown that this condition is equivalent to B ⊆ A′′. An implication which holds
in a formal context K is also said to be a valid implication of K. The set of all valid
implications of K is denoted with Th(K). If L is a set of valid implications of K then we
shall also call K a model of L.

For a set X ⊆M of attributes and a set L of implications over M we can ask which
other attributes follow from X and L. We shall denote with L(X) ⊆ M the set of all
attributes that follow from X and L, and define it as follows

• L1(X) = X ∪
⋃
{B | (A→ B) ∈ L, A ⊆ X },

• Li+1(X) = Li(L1(X)),
• L(X) =

⋃
i∈N\{ 0 } Li(X).

We say that X is closed under L if and only if X = L(X).
A formal context K = (G,M, I) can have an exponential number of valid implications,

where the size of K is defined to be |G| · |M |. For practical purposes, it is desirable to
find smaller sets of valid implications which nevertheless contain all information of the
whole set of all implications that hold in K. Such sets are called bases. Formally, a set
B ⊆ Th(K) is called a base of K if for all implications (X → Y ) ∈ Th(K) we have that
B entails X → Y . Here, B entails X → Y if and only if for each formal context L with
attribute set M such that B ⊆ Th(L) it is also true that (X → Y ) ∈ Th(L). We shall
write B |= (X → Y ) in this case. The base B is called non-redundant (or irredundant) if
no proper subset of B is a base of K. B is called minimal , if it has minimal cardinality
among all bases of K, i.e., if there does not exists a base of K with fewer elements than
B.

A base can be considered with respect to some background knowledge S ⊆ Th(K).
More precisely, a base with background knowledge S is a set B ⊆ Th(K) such that B ∪ S
is a base of K. Such a base B is called non-redundant (irredundant) if no proper subset
of B is a base of K with background knowledge S. B is called minimal if the cardinality
of B is minimal among all bases of K with background knowledge S.

A main line of research of formal concept analysis is concerned with developing fast
algorithms for computing bases of given formal contexts, possibly with some back-
ground knowledge. Particular interest has been generated by the so-called canonical base
Can(K,S) of K with background knowledge S [21, 32]. This base is a minimal base with
background knowledge S, and for whose computation practical algorithms are available.
To describe Can(K,S) we need to introduce the notion of S-pseudo-intents of K. These
are sets P ⊆M such that
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• P 6= P ′′,
• P = S(P ), and
• for all S-pseudo-intents Q ( P it is true that Q′′ ⊆ P .

With this we have

Can(K,S) := {P → P ′′ | P an S-pseudo-intent of K }.

4. Exact Mining of General Concept Inclusions

With all necessary definitions at hand we are now ready to discuss our method of learning
terminological knowledge from a finite data set. For this we assume this data set to be
represented as a finite interpretation I, i.e., as an interpretation whose set of elements
is finite. What we then want is to compute a finite base of all EL⊥-GCIs that are valid
in I, and whose quantifiers do not nest deeper than a chosen depth d ∈ N. In other
words, we want to compute a finite set B of valid GCIs of I such that every other valid
EL⊥-GCI of I follows from B, and such that all concept descriptions occurring in B are
EL⊥-concept descriptions with quantifier depth at most d.

The choice of representing data sets as finite interpretations does not impose a severe
restriction on the applicability of our approach. In fact, as we have already sketched in
the introduction, every finite interpretation can be seen as a vertex- and edge-labeled
graph, and data sets representable as graphs can be obtained easily, for example from
RDFS graphs [12]. Thus our approach allows us, at least in principle, to automatically
construct EL⊥-TBoxes from the linked open data cloud.

Our argumentation to obtain bases of valid EL⊥-GCIs of finite interpretations makes
use of ideas from formal concept analysis. More precisely, as we shall see shortly, we can
exploit similarities between formal concept analysis and description logics to reformulate
methods of constructing bases of finite formal contexts as methods to compute finite bases
of valid GCIs. We shall even show that we can associate to every finite interpretation I
a finite formal context KI such that all finite bases of KI can easily be transformed into
finite bases of I. In this way we can, without further modifications, utilize algorithms
from formal concept analysis for computing implicational bases to compute finite bases
of finite interpretations.

A major obstacle in finding a finite base of a finite interpretation I is the fact that
the number of valid EL⊥-GCIs of I is infinite in general. This is because if C v D holds
in I, and if r ∈ NR, then ∃r.C v ∃r.D holds in I as well.

This section is structured as follows. In Section 4.1 we shall introduce model-based
most-specific concept-descriptions, which we shall employ in Section 4.2 to compute
finite bases of valid GCIs of finite interpretations. As model-based most-specific concept
descriptions turn out to be crucial for our purposes, we shall discuss in Section 4.3
efficient ways for their computation. Finally, we shall describe in Section 4.4 a base of
valid GCIs with minimal cardinality.

The argumentation described in this section is an extension of [15], but we shall
restrict our attention to EL⊥-GCIs with bounded quantifier depth. This restriction has
the advantage of being easier to follow, as it requires less theoretical particularities. To
give an impression of the original argumentation we shall give a brief overview of it in
Section 4.5.

4.1 Model-Based Most-Specific Concept Descriptions

There are astonishing similarities between formal concept analysis and description logics.
For example, an interpretation I is “similar” to a formal context K = (G,M, I) in the

10



May 12, 2015 Journal of Applied Non-Classical Logics jancl

sense that elements in I can satisfy certain properties (concept descriptions) in the same
spirit as objects in K satisfy certain properties (attributes). Likewise, the extension
function ·I maps every concept description CI to the elements in I that satisfy C, much
like the derivation operator ·′ in K maps every subset A ⊆M to the set of objects in K
that satisfy all attributes in M .

In description logics there is, however, a missing counterpart to the other derivation
operator from formal concept analysis that maps a set A of objects to the set A′ of all
attributes that all objects in A have. To transfer ideas from formal concept analysis to
descriptions logics an analogue to this mapping is necessary, and such an analogue should
map a set X of elements of I to a concept description that contains all properties shared
by all elements of X. We introduce this kind of concept descriptions as model-based
most-specific concept descriptions.

4.1 Definition (Model-Based Most-Specific Concept Description). Let I = (∆I , ·I) be
a finite interpretation over the signature (NC , NR), and let d ∈ N. Then for X ⊆ ∆I

an EL⊥-concept description C over NC and NR is a (role-depth-bounded) model-based
most-specific concept description of X in I with role-depth at most d if and only if

(i) rd(C) ≤ d,
(ii) X ⊆ CI , and
(iii) for all EL⊥-concept descriptions D over NC and NR with rd(D) ≤ d and X ⊆ DI ,

it is true that C v D.

Note that role-depth-bounded model-based most-specific concept descriptions always
exist. This is because the set EL⊥(NC , NR)d of all EL⊥-concept descriptions over NC and
NR with role-depth at most d is finite up to equivalence, and is closed under u. In other
words, if T is a set of representatives of EL⊥(NC , NR)d with respect to the equivalence
relation ≡, then T is finite, and a model-based most-specific concept description of
X ⊆ ∆I can be obtained as

l
{C ∈ T | X ⊆ CI }.

Of course, this way of computing model-based most-specific concept descriptions is not
efficient. We shall discuss a more practical method in 4.3.

Note that by their very definition, model-based most-specific concept descriptions
are unique up to equivalence among all concept descriptions with role-depth at most d,
and it is therefore save to talk about the model-based most-specific concept description
of X. We shall denote this concept description by XI

d

, to stress the similarity to the
corresponding derivation operator from formal concept analysis.

One of the most important structural properties of the mappings (·)I and (·)Id is that
they satisfy the main property of an isotone Galois connection.

4.2 Lemma. For all EL⊥-concept descriptions D with rd(D) ≤ d, and all X ⊆ ∆I , it
is true that

XI
d v D ⇐⇒ X ⊆ DI . (3)

Proof. Let X ⊆ DI . Then by definition of the model-based most-specific concept
descriptions, XI

d v D, because rd(D) ≤ d.

If XI
d v D, then because of X ⊆ XIdI we obtain X ⊆ DI as required.

With (·)I and (·)Id satisfying (3), we immediately obtain some useful statements about
the interplay of these two mappings, some of which are obvious on their own.

4.3 Lemma. For all EL⊥-concept descriptions C,D with rd(C), rd(D) ≤ d, and all
X,Y ⊆ ∆I it is true that

11
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(i) X ⊆ Y =⇒ XI
d v Y Id

(ii) C v D =⇒ CI ⊆ DI
(iii) X ⊆ XIdI

(iv) CII
d v C

(v) XI
dIId ≡ XId

(vi) CII
dI = CI

Proof. To see (i), we obtain with (3) from Y I
d v Y I

d

that Y ⊆ Y I
dI (which already

shows (iii)). Since X ⊆ Y , X ⊆ Y IdI , and another application of (3) yields XI
d v Y Id ,

as desired.
Statement (ii) is clear from the definition of I. Applying (3) to CI ⊆ CI immediately

yields CII
d v C, which shows (iv).

For (v) we observe that X ⊆ XIdI implies XI
d v XIdIId by (i). On the other hand,

Statement (iv) with C := XI
d

shows XI
dIId v XId .

Finally, Statement (vi) can be shown by first observing that with X := CI , State-

ment (iii) yields CI ⊆ CII
dI . On the other hand, CII

d v C entails CII
dI ⊆ CI

by (ii).

4.4 Proposition. For all EL⊥-concept descriptions C,D over NC and NR and all
r ∈ NR it is true that

(CII
d uD)I = (C uD)I ,

(∃r.CIId)I = (∃r.C)I .

Proof. For the first equation we obtain

(CII
d uD)I = CII

dI ∩DI

= CI ∩DI

= (C uD)I .

For the second equation we can compute

x ∈ (∃r.CIId)I ⇐⇒ ∃y ∈ CIIdI : (x, y) ∈ rI

⇐⇒ ∃y ∈ CI : (x, y) ∈ rI

⇐⇒ x ∈ (∃r.C)I

which shows the claim.

4.2 Bases of GCIs

In this section we shall show how we can use model-based most-specific concept descrip-
tions to adapt the argumentation from formal concept analysis to obtain finite bases of
finite interpretations.

4.5 Definition (Base). Let I = (∆I , ·I) be a finite interpretation over NC and NR,
and let d ∈ N. A base of all GCIs of role-depth at most d is a finite set B of GCIs with
role-depth at most d such that

(i) all (C v D) ∈ B are valid in I, i.e., CI ⊆ DI , and
(ii) for all GCIs E v F that are valid in I and satisfy rd(E), rd(F ) ≤ d it is true that

E v F follows from B, i.e., B |= (E v F ).

Of course, the set

{C v D | C,D ∈ EL⊥(NC , NR)d, C
I ⊆ DI } (4)

12
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is a base of I that is, up to equivalence, even a finite set. Regrettably, this base can
be quite large, as the number of concept descriptions grows non-elementary with the
role-depth d. More precisely, for role-depth 0 there are 2|NC | + 1 different EL⊥-concept
descriptions over the signature (NC , NR), since such a concept description is either
⊥ or may contain at most |NC | concept names as conjuncts. For a role-depth d > 0
every EL⊥-concept description may furthermore contain at most |NR| · |EL⊥(NC , NR)d−1|
existential restrictions as conjuncts, i.e.

|EL⊥(NC , NR)d| =
(
2|NC | + 1

)
· 2|NR|·|EL⊥(NC ,NR)d−1|

holds. It follows that the number of EL⊥-concept descriptions with role-depth ≤ d is
d-exponential in the size of the signature, i.e.,

|EL⊥(NC , NR)d| = O
(
22...|NC |·|NR|)

.

Therefore, for practical purposes, the base (4) is useless, and finding a smaller base is
desirable.

A first idea in this direction is to use the following fact from formal concept analysis
and transfer it into the realm of description logics: if K is a formal context and A→ B
is a valid implication of K, then

{A→ A′′ } |= (A→ B).

An analogous result also holds in the case of GCIs.

4.6 Lemma. If I |= (C v D), rd(C), rd(D) ≤ d, then C v CIId holds in I, and

{C v CIId } |= C v D.

Proof. By Lemma 4.3 we know that CI = CII
dI , and in particular CI ⊆ (CII

d

)I , i.e.,

C v CIId holds in I.
Let J be an interpretation such that J |= (C v CII

d

). Then CJ ⊆ (CII
d

)J , and
by (3)

CJJ
d v CIId . (5)

Since C v D holds in I, we have CI ⊆ DI and, using (3) again, CII
d v D. Together

with (5) we therefore obtain CJJ
d v D, and, using (3) once again,

CJ ⊆ DJ ,

which shows that J |= (C v D). Since J had been chosen arbitrarily, we have shown

(C v CIId) |= (C v D) as desired.

From this lemma we easily obtain our first base.

4.7 Corollary. Let I be a finite interpretation over (NC , NR), and let d ∈ N. Then the
set

B0 := {C v CIId | C ∈ EL⊥(NC , NR), C 6= ⊥, rd(C) ≤ d }

is sound and complete for Thd(I).

13
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Proof. Let (E v F ) ∈ Thd(I). Then rd(E), rd(F ) ≤ d, and therefore

(E v EIId) ∈ B0.

By 4.6 we obtain

(E v EIId) |= (E v F ),

and therefore B0 |= (E v F ) as required.

The base B0 is still too large, as we need to consider all concept descriptions in
EL⊥(NC , NR)d. To further reduce the size of the base we shall make use of a par-
ticular choice of concept description we shall show later to be sufficient for our purposes.
More precisely, we set

MI,d := NC ∪ {⊥} ∪ {∃r.XI
d−1 | X ⊆ ∆I , X 6= ∅ }.

Then the first thing we shall show is that every model-based most-specific concept
description is expressible in terms of MI,d, i.e., for each such concept description C there
exists N ⊆MI,d such that C ≡

d
N , where

l
N :=

{d
D∈N D if N 6= ∅
> otherwise.

For the purpose of showing that all model-based most-specific concept descriptions
are expressible in terms of MI,d, we define for an EL⊥-concept description C 6= ⊥
the lower approximation approxI,d(C) of C in MI,d as follows. Let U ⊆ NC and Π ⊆
NR × EL⊥(NC , NR) such that

C =
l
U u

l

(r,E)∈Π

∃r.E.

Then

approxI,d(C) :=
l
U u

l

(r,E)∈Π

∃r.EIId−1

.

If C = ⊥, then define approxI,d(C) := ⊥.

4.8 Proposition. If rd(C) ≤ d, then it is true that

CII
d v approxI,d(C) v C.

Proof. The claim is clearly true for C = ⊥. Therefore, assume that

C =
l
U u

l

(r,E)∈Π

∃r.E.

14
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We know by Lemma 4.3 that EII
d−1 v E is true for all (r, E) ∈ Π, and thus ∃r.EIId−1 v

∃r.E. Therefore,

approxI,d(C) =
l
U u

l

(r,E)∈Π

∃r.EIId−1

v
l
U u

l

(r,E)∈Π

∃r.E

= C.

Furthermore, it is true that

CI =
(l

U u
l

(r,E)∈Π

∃r.E
)I

=
(l

U u
l

(r,E)∈Π

∃r.EIId−1
)I

=
(
approxI,d(C)

)I
using Proposition 4.4. In particular, we obtain CI ⊆

(
approxI,d(C)

)I
, and by (3)

CII
d v approxI,d(C),

as desired.

4.9 Lemma. For every X ⊆ ∆I the concept description XI
d

is expressible in terms of
MI,d.

Proof. By Proposition 4.8 we have

(XI
d

)II
d v approxI,d(XI

d

) v XId .

By Lemma 4.3, XI
dIId ≡ XId , and therefore the previous statement specializes to

XI
dIId ≡ approxI,d(XI

d

) ≡ XId ,

and since approxI,d(XI
d

) is expressible in terms of MI,d, so is XI
d

.

We are now ready to describe a finite base of I which is “only” exponential in the size
of MI,d, which in turn can be exponential in the size of I. Compared to the base in (4)
this is still a huge improvement. However, we shall see later in Section 4.4 a base of I
that has even minimal cardinality.

4.10 Theorem. Let I be a finite interpretation over the signature (NC , NR), and let
d ∈ N. Then the set

B2 := {
l
U v (

l
U)II

d | U ⊆MI,d }

is a finite base of I w.r.t. role-depth d.

Proof. Since B2 ⊆ B0, and B0 is sound for I, so is B2. Furthermore, B2 is finite because
MI,d is finite.
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By Lemma 4.6, to show that B2 is complete for Thd(I) it is enough to show for all
EL⊥-concept descriptions D over NC and NR with rd(D) ≤ d that

B2 |= (D v DIId).

We shall show this claim by induction over the structure of D.
Base Case: D = ⊥ or D = A ∈ NC . If D = ⊥, then D =

d
∅, and since ∅ ⊆ MI,d,

it is true that (D v DII
d

) ∈ B2. In particular, B2 |= (D v DII
d

). If D = A, then

D =
d
{A }, and since A ∈ MI,d, {A } ⊆ MI,d, and again (D v DII

d

) ∈ B2 and thus

B2 |= (D v DIId).
Step Case D = E u F . Let J be an interpretation such that J |= B2. Then

DJ = (E u F )J = EJ ∩ FJ .

By induction hypothesis, B2 |= (E v EII
d

) and B2 |= (F v F II
d

), and thus EJ ⊆
(EII

d

)J , FJ ⊆ (F II
d

)J . Therefore

DJ = EJ ∩ FJ

⊆ (EII
d

)J ∩ (F II
d

)J

= (EII
d u F IId)J .

By Lemma 4.9, EII
d u F IId is expressible in terms of MI,d. Therefore, B2 contains

(EII
d uF IId) v (EII

d uF IId)II
d

up to equivalence. Since J is a model of B2 it follows

(EII
d u F IId)J ⊆ (EII

d u F IId)II
dJ

= (E u F )II
dJ

= DII
dJ ,

using Proposition 4.4. Therefore, DJ ⊆ DII
dJ , and thus J |= (D v DII

d

). Since J
had been chosen arbitrarily we obtain B2 |= (D v DIId).

Step Case D = ∃r.E. Again, let J be an interpretation such that J |= B2. By the
definition of the semantics of existential restrictions, we have

x ∈ DJ ⇐⇒ x ∈ (∃r.E)J

⇐⇒ ∃y ∈ EJ : (x, y) ∈ rJ .

By induction hypothesis, B2 |= (E v EII
d

) holds. Of course we have EII
d v EII

d−1

,
and thus we furthermore obtain

x ∈ DJ =⇒ ∃y ∈ EIId−1J : (x, y) ∈ rJ

⇐⇒ x ∈ (∃r.EIId−1

)J .

Since (∃r.EIId−1

) ∈MI,d, it is true that (∃r.EIId−1 v (∃r.EIId−1

)II
d−1

) ∈ B2, so

(∃r.EIId−1

)J ⊆ (∃r.EIId−1

)II
d−1J

= (∃r.E)II
d−1J
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= DII
d−1J

using Proposition 4.4. Putting it all together we obtain DJ ⊆ DIIdJ , and since J had
been chosen arbitrarily, we have shown B2 |= (D v DIId). This completes the proof of
the induction step, and thus the proof of this theorem.

For the computation of the set MI,d we in particular need to compute all model-based
most-specific concept descriptions of role-depth d − 1. A naive approach would be to
simply compute those role-depth-bounded model-based most-specific concept descriptions
for all subsets of the interpretation’s domain. A faster solution uses the NextClosure
algorithm [18], which is able to compute closures of a closure operator c on a set M .
This algorithm is applicable in our setting as the mapping

X 7→ XI
dI

is a closure operator by Lemma 4.3. We shall not discuss the details of the NextClosure
algorithm here, and refer the interested reader to the given literature.

4.3 Computation of Model-Based Most-Specific Concept Descriptions

In Section 4.1 we have introduced the notion of model-based most-specific concept
descriptions in an abstract way, and have shown that it can be used to obtain finite
bases of finite interpretations. Back then we have not discussed how to actually compute
model-based most-specific concept descriptions, and hence the results of Section 4.2 were
rather ineffective.

The purpose of this section is to remedy this ineffectiveness by providing methods
to compute model-based most-specific concept descriptions. To this end we shall use
the notions of description graphs and least common subsumers as they have been used
in [2, 3, 8]. We shall see how we can combine these notions to obtain an effective algorithm
to compute model-based most specific concept descriptions. The argumentation of this
section follows the corresponding argumentation in [15].

We start by introducing description graphs. These graphs provide a representation
of both EL-concept descriptions and interpretations by means of directed, edge- and
vertex-labeled graphs. As we shall see later we then can use the structure of these graphs
to decide subsumption of concept descriptions as well as the question whether an element
belongs to the extension of a concept description in a given finite interpretation.

4.11 Definition (Description Graphs). An EL-description graph over NC and NR is
a tuple G = (V,E,L, v) consisting of a set V , a set E ⊆ V × NR × V , a function
L : V → P(NC), and some v ∈ V . V is called the set of vertices of G, E is called the set
of (labeled) edges of G, L is called the labeling function of G, and v is called the root of
G.

Let C be an EL-concept description over NC and NR. Then the description graph
GC = (VC , EC , LC , vC) of C is inductively defined as follows. Let

C = P1 u · · · u Pk u ∃r1.D1 u · · · u ∃r`.D`,

where {P1, . . . , Pk } ⊆ NC , { r1, . . . , r` } ⊆ NR and D1, . . . , D` are EL-concept descrip-
tions over NC and NR. Assume inductively that GDi

= (VDi
, EDi

, LDi
, vDi

) are the
EL-description graphs of Di, where without loss of generality all the VDi

are disjoint. Let
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vC be some element not in any VDi
. Then the description graph of C is defined via

VC := { vC } ∪
⋃̀
i=1

VDi
,

EC :=
{

(vC , ri, vDi
)
∣∣ 1 ≤ i ≤ `

}
∪
⋃̀
i=1

Ei,

LC :=
{

(vC , {P1, . . . , Pk })
}
∪
⋃̀
i=1

LDi
.

Let I be an interpretation over NC and NR, and let x ∈ ∆I . Then the description graph
GxI of I rooted at x is defined as GxI := (VI , EI , LI , x), where

VI := ∆I ,

EI :=
{

(x, r, y)
∣∣ (x, y) ∈ rI , r ∈ NR

}
,

LI(x) := {A ∈ NC | x ∈ AI } (x ∈ ∆I).

If a description graph G is a directed tree with root v, then we say that G is a description
tree.

It is quite easy to see that a description tree G = (V,E, L, v) corresponds canonically to
an EL-concept description. For this denote for w ∈ V with G(w) the directed subtree
of G with root w. In other words, G(w) = (W,F,H,w) contains all vertices W from V
which are reachable in G via a directed path that starts in w, and F and H arise from
the restriction of E and L to W , respectively.

Let (v, r1, w1), . . . , (v, r`, w`) be all edges from E originating at v. Assuming inductively
that the EL-concept descriptions CG(w1), . . . , CG(w`) correspond to the description graphs
G(w1), . . . ,G(w`), we define

CG := P1 u . . . Pk u ∃r1.CG(w1) u . . . ∃r`.CG(w`),

where L(v) = {P1, . . . , Pk }. With this definition we have for all EL-concept descriptions C

C ≡ CGC ,

which is why we can say the description graph G corresponds canonically to the EL-
concept description CG . Note that G = GCG holds for all EL-description graphs G.

Analogously, there is a one-to-one correspondence between interpretations and EL-
description graphs. Assume that G = (V,E, L, v) is an EL-description graph over NC

and NR. Then the interpretation IG (over NC and NR) is defined as follows:

∆IG := V,

AIG := { v ∈ V | A ∈ L(v) } (A ∈ NC),

rIG := { (v, w) ∈ V × V | (v, r, w) ∈ E } (r ∈ NR).

It can be readily verified that I = IGx
I

holds for all interpretations I where x ∈ ∆I is an
arbitrary individual, and G = GvIG holds for all EL-description graphs G = (V,E,L, v).

As already mentioned above, description graphs can be used to decide the reasoning
tasks of subsumption and elementhood. To achieve this we shall introduce the notion of
simulations between description graphs [3, 17]. Later on we shall see that we can replace
the use of simulations by the easier notion of homomorphisms between description trees.

18



May 12, 2015 Journal of Applied Non-Classical Logics jancl

4.12 Definition (Simulation). Let G1 = (V1, E1, L1, v1) and G2 = (V2, E2, L2, v2) be
two EL-description graphs. A binary relation Z ⊆ V1 × V2 is a simulation from G1 to G2,
written Z : G1

⇀∼ G2, if and only if the following conditions are satisfied:

(S1) (v1, v2) ∈ Z,
(S2) (w1, w2) ∈ Z implies L1(w1) ⊆ L2(w2), and
(S3) whenever (w1, w2) ∈ Z and (w1, r, w

′
1) ∈ E1, then there exists w′2 ∈ V2 such that

(w2, r, w
′
2) ∈ E2 and (w′1, w

′
2) ∈ Z.

w1

w2

v1

∃v2

Z Z

r

r

It can be easily verified that the class of simulations is closed under composition, i.e.,
if Z1 : G1

⇀∼ G2 and Z2 : G2
⇀∼ G3 are simulations, then the product

Z1 ◦ Z2 := { (w1, w3) | ∃w2 ∈ V2 : (w1, w2) ∈ Z1, (w2, w3) ∈ Z2 }

is a simulation from G1 to G3.
The statement and the proof of the following proposition are a special case of [17,

Proposition 18], adapted to the needs of this paper.

4.13 Proposition. Let I be an interpretation over NC and NR, let C be an EL-concept
description over NC and NR, and let GC = (VC , EC , LC , vC) be the EL-description graph
of C. Then for every x ∈ ∆I the following statements are equivalent:

(i) x ∈ CI ,
(ii) there exists a simulation Z : GC ⇀∼ GxI .

Proof. (i) =⇒ (ii). Suppose x ∈ CI . Define

Z = { (v, y) ∈ VC ×∆I | y ∈ (CGC(v))
I }.

We show that Z is a simulation. Since x ∈ CI we have (vC , x) ∈ Z. Let (v, y) ∈ Z, and
let

CGC(v) = P1 u · · · u Pk u ∃r1.D1 u · · · u ∃r`.D`.

(S2) It is true that LGC (v) = {P1, . . . , Pk }. Since y ∈ (CGC(v))
I we have y ∈ P Ii for

1 ≤ i ≤ k. Therefore, {P1, . . . , Pk } ⊆ LGI(y).
(S3) Let (v, r, v′) ∈ EGC . Then r = ri for some 1 ≤ i ≤ `, and Di = CGC(v′). Since

y ∈ (CGC(v))
I it is true that y ∈ (∃ri.Di)

I . Therefore, there exists yi ∈ ∆I such

that (y, yi) ∈ rI and yi ∈ DIi . But then (y, ri, yi) ∈ EGI and (v′, yi) ∈ Z, as
required.

(ii) =⇒ (i). Let Z : GC ⇀∼ GxI be a simulation. For v ∈ VC denote with h(v) the maximal
length of a path from v to some leaf in GC . We show by induction over h(v) that

(v, y) ∈ Z =⇒ y ∈ (CGC(v))
I . (6)

Since (vC , x) ∈ Z, we obtain from this that x ∈ (CGC(vC))
I = CI as desired.
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Let (v, y) ∈ Z and assume that (6) holds for each w ∈ VC with h(w) < h(v). Again let

CGC(v) = P1 u · · · u Pk u ∃r1.D1 u · · · u ∃r`.D`.

Since Z is a simulation, we have {P1, . . . , Pk } = LGC (v) ⊆ LGx
I
(y), and therefore

y ∈ (P1 u · · · u Pk)I .

Now let { (v, ri, vi) | 1 ≤ i ≤ ` } ⊆ EC be all outgoing edges of v in GC . Then Di = CGC(vi)

for each i ∈ { 1, . . . , ` }. Since Z is a simulation, for each vi there exists yi such that
(vi, yi) ∈ Z and (y, ri, yi) ∈ EGx

I
. Since h(vi) < h(v), the induction hypothesis yields

yi ∈ (CGC(vi))
I = DIi for each i ∈ { 1, . . . , ` }. Moreover, since (y, ri, yi) ∈ EGx

I
, it is true

that (y, yi) ∈ rIi and thus y ∈ (∃ri.Di)
I for each i ∈ { 1, . . . , ` }. All in all we obtain

y ∈ (∃r1.D1 u · · · u ∃r`.D`)
I

and thus y ∈ (CGC(v))
I as required.

4.14 Definition (Homomorphism). Let G1 = (V1, E1, L1, v1) and G2 = (V2, E2, L2, v2)
be two EL-description graphs. A mapping ϕ : G1 → G2 is called a homomorphism from
G1 to G2 if and only if the following conditions are satisfied:

(i) ϕ(v1) = v2,
(ii) L1(v) ⊆ L2(ϕ(v)) for all v ∈ V1, and
(iii) (ϕ(v), r, ϕ(w)) ∈ E2 for all (v, r, w) ∈ E1.

In analogy to simulations it is true that the class of homomorphisms is closed under
composition, i.e., whenever ϕ is a homomorphism to G and ψ is a homomorphism from
G, then ψ ◦ ϕ is a homomorphism as well.

The following proposition relates the existence of simulations to the existence of
homomorphisms.1

4.15 Proposition. Let G1 = (V1, E1, L1, v1) be a description tree, and let G2 =
(V2, E2, L2, v2) be a description graph. Then there exists a simulation Z : G1

⇀∼ G2 if
and only if there exists a homomorphism ϕ : G1 → G2.

Proof. If there exists a homomorphism ϕ : G1 → G2, then

Z := { (x, ϕ(x)) | x ∈ V1 }

is clearly a simulation Z : G1
⇀∼ G2.

Conversely, if Z : G1
⇀∼ G2 is a simulation, then we can inductively define a homomor-

phism ϕ : G1 → G2 with ϕ ⊆ Z as follows. Set ϕ(v1) := v2, and suppose inductively that
ϕ has already been defined for all nodes with depth in G1 of at most n. Let v′ be a node
of depth n + 1. Then there exists v ∈ V1 and r ∈ NR such that (v, r, v′) ∈ E1. Since
v has depth n, w = ϕ(v) is already defined and (v, w) ∈ Z. Since Z is a simulation,
there exists w′ ∈ V2 such that (v′, w′) ∈ Z and (w, r, w′) ∈ E2. Set ϕ(v′) := w′. Then
ϕ : G1 → G2 is a homomorphism by construction.

Checking for the existence of a simulation between two given finite description graphs
can be done in polynomial time [22], and thus the proposition yields that the existence

1The authors thank Prof. Baader for hinting at this simple yet helpful connection.
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of a homomorphism from a finite description tree to a finite description graph can be
decided in polynomial time as well.

Since EL-description graphs of EL-concept descriptions are always trees we immediately
obtain the following result.

4.16 Corollary. Let I be an interpretation over NC and NR, C be an EL-concept
description over NC and NR, and x ∈ ∆I . Then x ∈ CI if and only if there exists a
homomorphism ϕ : GC → GxI .

The following characterization of subsumption by means of homomorphisms was intro-
duced in [8]. The proof of this statement is an adaption of the proof of [17, Theorem
19].

4.17 Proposition. Let C,D be two EL-concept descriptions. Then C v D if and only
if there exists a homomorphism ϕ : GD → GC .

Proof. First assume that there is a homomorphism ϕ : GD → GC . Let I be an inter-
pretation and let x ∈ CI . We need to show that x ∈ DI . By Corollary 4.16, x ∈ CI
implies that there is an homomorphism ψ : GC → GxI . But then ψ ◦ ϕ : GD → GxI is a
homomorphism, and therefore x ∈ DI , again by Corollary 4.16.

Conversely assume C v D. Consider the description graph GC as an interpretation IGC .
Then since id : GC → GC is a homomorphism, Corollary 4.16 yields vC ∈ CIGC , where vC
is again the root of GC . But then vC ∈ DIGC , and therefore there exists a homomorphism
ϕ : GD → GIGC . Since GIGC is the same as GC , ϕ : GD → GC is a homomorphism as
required.

Model-based most-specific concept descriptions can be obtained from the description
graphs of the underlying finite interpretation by unravelling this interpretation starting
from a certain individual. The following definition makes precise what an unravelling of
a description graph is, and the following theorem then shows how this unravelling can
be used to compute model-based most-specific concept descriptions of singleton sets.

For the definition of unravellings we first introduce the notion of a path w in a
description graph G = (V,E,L, x). This is a sequence w = v0r1v1r2 . . . rnvn, where
v0, . . . , vn ∈ V , r1, . . . , rn ∈ NR and (vi−1, ri, vi) ∈ E for all i ∈ { 1, . . . , n }. We say that
w has length n, that w starts at v0, and denote the last element vn by δ(w).

4.18 Definition (Unravelling). Let G = (V,E,L, x) be a description graph, and let d ∈ N.
Then the unravelling of G up to depth d is the description graph G�d = (Vd, Ed, Ld, x)
defined as follows. The set Vd is the set of all paths in G starting at x having length at
most d. The set Ed is defined as

Ed := { (w, r, wrv) | w ∈ Vd, r ∈ NR, v ∈ V,wrv ∈ Vd },

i.e., two paths are connected in G�d via an r-edge if and only if the second arises from
the first by appending an r-edge from G. Finally, Ld is defined via Ld(w) = L(δ(w)).

4.19 Theorem. Let I be an interpretation, d ∈ N and x ∈ ∆I . Then CGx
I�d is the model-

based most-specific concept description of depth d of {x } in I (up to equivalence).

Proof. Let C := CGx
I�d . Obviously, C has a role-depth of at most d. Furthermore, we

have to show two claims:

(i) x ∈ CI , and
(ii) for each EL-concept description D with rd(D) ≤ d and x ∈ DI , it is true that

C v D.
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For the first claim let GC = (VC , EC , LC , vC) and GxI = (VI , EI , LI , x). Then GC is
canonically isomorphic to GxI�d, thus we assume that they are the same. The function
δ that maps a path to its last vertex is clearly a homomorphism from GC to GxI . By
Proposition 4.13 we obtain x ∈ CI as required.

For the second claim let D be an EL-concept description such that x ∈ DI and
rd(D) ≤ d. By Proposition 4.13, there exists a homomorphism ϕ : GD → GxI . Then we
define the mapping ϕ̂ : GD → GxI�d as follows: let v ∈ VI and let vCr1v1r2 . . . rnv be the
unique path in GD from vD to v. Note that n ≤ d since rd(D) ≤ d. We set

ϕ̂(v) := ϕ(vD)r1ϕ(v1)r2 . . . rnϕ(v).

It is easily seen that ϕ̂ is a homomorphism. Since GxI�d is the description graph of C,
Proposition 4.17 yields C v D.

Computing model-based most-specific concept descriptions for arbitrary, non-empty sets
X ⊆ ∆I of individuals is achieved by computing the least common subsumer of the
model-based most-specific concept descriptions of all {x }, x ∈ X.

4.20 Definition (Least Common Subsumer). Let C1, . . . , Cn be EL-concept descriptions.
Then an EL-concept description C is a least common subsumer of C1, . . . , Cn (in EL) if
the following conditions are satisfied:

(i) Ci v C for all i ∈ { 1, . . . , n }, and
(ii) every EL-concept description D satisfying Ci v D for all i ∈ { 1, . . . , n } also

satisfies C v D.

We write C = lcs{C1, . . . , Cn } if C is the least common subsumer of C1, . . . , Cn.

Note that the least common subsumer is unique up to equivalence, so using the notation
lcs{C1, . . . , Cn } does not cause any problems.

It can be shown that least common subsumers always exist in EL, and that they can
effectively be computed by means of products of description trees. For the following
definition recall for a description tree G = (V,E, L, v) and v′ ∈ V that G(v′) denotes the
subtree of G with root v′.

4.21 Definition (Product of Description Trees). Let G1 = (V1, E1, L1, v1),G2 =
(V2, E2, L2, v2) be two EL-description trees. Then the product G1×G2 = (V,E, L, (v1, v2))
is a description tree which is inductively defined as follows. The root of G1 × G2 is
the pair (v1, v2), which is labeled via L by L1(v1) ∩ L2(v2). Then for each r ∈ NR,
(v1, r, v

′
1) ∈ E1 and (v2, r, v

′
2) ∈ E2, it is true that ((v1, v2), r, (v′1, v

′
2)) ∈ E, and

(G1 × G2)(v′1, v
′
2) = G1(v′1)× G2(v′2).

4.22 Theorem (Theorem 2 of [8]). Let C,D be two EL-concept descriptions, and GC ,GD
their EL-description trees. Then CGC×GD is the least common subsumer of C and D.

The definition of the product of description trees can be extended to an arbitrary number
of description trees in the obvious way. In analogy to Theorem 4.22, it can be proven
that C∏n

i=1 GCi
is the least common subsumer of the EL-concept descriptions C1, . . . , Cn.

4.23 Corollary. Let X ⊆ ∆I , X 6= ∅, and let d ∈ N. Then

XI
d ≡ lcs{ {x }Id | x ∈ X }.

Proof. Let C := lcs
{
{x }Id

∣∣ x ∈ X }. By Theorem 4.22 we know that C exists and that

C ≡ CGX ,
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where GX :=
∏

x∈X G{x }Id is the product of all description graphs of the concept

descriptions {x }Id , x ∈ X. To show that C ≡ XId , we need to show that

(i) X ⊆ CI ,
(ii) rd(C) ≤ d, and
(iii) for all EL-concept descriptions D with rd(D) ≤ d and X ⊆ DI , it is true that

C v D.

By definition, {x }Id v C, and by Lemma 4.2 it is true that x ∈ CI for all x ∈ X.
Therefore, X ⊆ CI , which shows the first claim.

The second claim is also immediately clear: the description graphs of all {x }Id , x ∈ X
have depth at most d, and thus the product GX of these description graphs has also
depth at most d. Thus, rd(C) ≤ d.

For the last claim let D as described. Then since X ⊆ DI , it is true that {x } ⊆ DI
for all x ∈ X. Using Lemma 4.2 again we obtain {x }Id v D. By definition of the least
common subsumer

C = lcs{ {x }Id | x ∈ X } v D,

as required.

4.4 Reducing the Size of the Base

We have seen in Theorem 4.10 how to obtain a finite base of all GCIs with bounded
role-depth. Our motivation for this theorem was to find a smaller base than the set of
all possible GCIs with role-depth not exceeding a given bound. However, this theorem
does not really satisfy this motivation, as it does not tell anything about whether the
size of the base is “small” or not.

We shall remedy this deficit of Section 4.2 by discussing in this section means to reduce
the size of the base. Indeed, we shall even show that it is possible to obtain a base of
minimal cardinality, again using methods from formal concept analysis.

We shall start by introducing induced contexts, which provide a means to associate a
formal context to a given set of concept descriptions and a given interpretation.

4.24 Definition (Induced Context). Let I be an interpretation over the signature
(NC , NR) and let M ⊆ EL⊥(NC , NR). Then the induced context KM,I of M and I is
defined as

KM,I := (∆I ,M,∇),

where (d,C) ∈ ∇ iff d ∈ CI .

Induced contexts allow us to express the similarities between description logics and
formal concept analysis in a clear and formal way. The following two statements are
contained in [15], and are given here without proof.

The first statement relates one of the derivation operators in the induced context to
the extension function in the original interpretation. This statement can be seen as a
formalization of our previous remark about the similarities between interpretations and
formal contexts.

4.25 Proposition (Lemma 4.10 of [15]). Let M be a set of EL⊥-concept descriptions.
Then for each U ⊆M it is true that

U ′KM,I
= (

l
U)I .
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The next statement can be seen as the dual to the previous one, as it relates the
extension function of the given interpretation to the corresponding derivation operator
in the induced context. For this we need to introduce another notion. For M being a set
of EL⊥-concept descriptions and C being another EL⊥-concept description, let us define
the projection prM (C) of C on M as

prM (C) := {D ∈M | C v D }.

Then the following statement holds.

4.26 Proposition (Lemma 4.11 of [15]). Let M be a set of EL⊥-concept descriptions,
and let C be an EL⊥-concept description that is expressible in terms of M . Then

CI = (prM (C))′KM,I
.

So far we have only considered one of the derivation operators in the induced context
KM,I . The following assertion is concerned with the other derivation operator, and it
should come with no surprise that it relates this operator to model-based most-specific
concept descriptions.

4.27 Proposition. Let M be a set of EL⊥-concept descriptions of role-depth at most d.
Then every set O ⊆ ∆I satisfies

prM (OI
d

) = O′KM,I
.

Proof. Let KM,I = (∆I ,M,∇), and consider D ∈M . Then it is true that

D ∈ O′ ⇐⇒ ∀x ∈ O : x ∇ D

⇐⇒ ∀x ∈ O : x ∈ DI

⇐⇒ O ⊆ DI .

By Lemma 4.2 we obtain

O ⊆ DI ⇐⇒ OI
d v D

⇐⇒ D ∈ prM (OId).

Thus O′ = prM (OI
d

) as it has been claimed.

Putting the previous statements together we immediately obtain the following observa-
tion.

4.28 Proposition. Let M be a set of EL⊥-concept descriptions with role-depth at most
d. Then for every set U ⊆M it is true that

prM
(
(
l
U)II

d)
= U ′′KM,I

.

Proof. Proposition 4.25 yields (
d
U)I = U ′, and thus

prM

((
(
l
U)I

)Id)
= prM

(
(U ′)I

d)
.
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Then U ′ ⊆ ∆I , and thus Proposition 4.27 yields

prM
(
(U ′)I

d)
= U ′′,

i.e., prM
(
(
d
U)II

d)
= U ′′ as required.

With the technical apparatus ready we can now come back to our original problem of
reducing the size of the base from Theorem 4.10. The main idea behind our further
considerations is the following. To obtain “small” bases of the finite interpretation I we
first consider the induced context KI,d := KMI,d,I , and from this context its canonical
base Can(KMI,d,I). As this base is of minimal cardinality we can hope that by transferring
it to a base of GCIs that it will at least be a “small” base of I. Indeed, with some further
adaption we shall even be able to show that we can obtain a base of minimal cardinality
of I.

The adaption we have to make is concerned with the following problem. When we
consider the set MI,d of concept descriptions as the set of attributes of KI,d, we lose the
ability to automatically detect subsumption relationships between concept descriptions
in MI,d. More precisely, if C,D ∈ MI,d such that C v D, then the GCI C v D is
trivial, but the implication {C } → {D }, which is valid in KI,d, is not necessarily
trivial. Therefore, if we compute the canonical base of KI,d, we will certainly obtain
some implications in Can(KI,d) that correspond to trivial GCIs. Those trivial GCIs will
increase the size of our desired base unnecessarily.

To remedy this we shall make use of bases of KI,d with background knowledge. More
precisely, let us define

SI,d :=
{
{C } → {D }

∣∣ C,D ∈MI,d, C v D }.
Then SI,d contains all implications which correspond to trivial GCIs as mentioned above.
Using SI,d as background knowledge when computing bases of KI,d will then eliminate
these redundancies. As we shall see shortly, this even allows us to retain the property of
the canonical base of being of minimal cardinality.

The proof of the following theorem is a straight-forward adaption of the proof of [15,
Theorem 5.12].

4.29 Theorem. Let I = (∆I , ·I) be a finite interpretation, and let d ∈ N. Let L be a
base of KI,d with background knowledge SI,d. Then

B3 :=
{l

U v
(l

U
)IId ∣∣∣ (U → V ) ∈ L

}
is a finite base of all valid GCIs of I with role-depth at most d.

Proof. Clearly B3 is a finite set, and all GCIs are valid in I. Thus we only need to show
that B3 is complete for Thd(I). For this, we assume without loss of generality that L
only contains implications of the form U → U ′′ for some U ⊆MI,d.

Let J = (∆J , ·J ) be a model of B3. Recall that KMI,d,J denotes the induced formal
context of MI,d and J . Let us write KJ := KMI,d,J and KI := KI,d. We shall show the
following subclaims:

(i) all implications from L ∪ SI,d are valid in KJ ,
(ii) all implications V → V ′′KI are valid in KJ , for V ⊆MI,d,

(iii) all GCIs
d
V v (

d
V )II

d

are valid in J , for V ⊆MI,d.

The last claim states that B3 entails B2, and thus shows by Theorem 4.10 that B3 is
complete for Thd(I).
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For the first subclaim we first observe that all GCIs C v D with C,D ∈MI,d hold in
every interpretation, and in particular in J . Thus, all implications ({C } → {D }) ∈ SI,d
hold in KJ , since by Proposition 4.25

{C }′KJ = CJ ⊆ DJ = {D }′KJ .

Thus let (U → U ′′KI) ∈ L. We need to show that

U ′KJ ⊆ (U ′′KI)
′
KJ .

For this we first observe that

U ′KJ = (
l
U)J

by Proposition 4.25. Since (
d
U)II

d

is expressible in terms of MI,d, Proposition 4.26
yields

(
(
l
U)II

d)J
=
(

prMI,d
(
(
l
U)II

d))′
KJ
.

Proposition 4.28 yields prMI,d
(
(
d
U)II

d)
= U ′′KI , and thus

(
(
l
U)II

d)J
= (U ′′KI)

′
KJ .

Then

U ′KJ = (
l
U)J ⊆

(
(
l
U)II

d)J
= (U ′′KI)

′
KJ ,

which shows the first subclaim.
For the second subclaim let V ⊆MI,d. Then V → V ′′KI is valid in KI . Since L ∪ SI,d

is a base of KI , it follows that V → V ′′KI is entailed by L ∪ SI,d. Since L ∪ SI,d is sound
for KJ , the implication V → V ′′KI is also valid in KJ . This finishes the second subclaim.

For the final subclaim let again V ⊆ MI,d. Since V → V ′′KJ is valid in KJ by the
second subclaim, it is true that

V ′KJ ⊆ (V ′′KI)
′
KJ ,

and a similar argumentation as above shows that

(
l
V )J ⊆ ((

l
V )II

d

)J ,

i.e.,
d
V v

d
V II

d

holds in J , as it was claimed.

The previous theorem allows us to consider small bases of KI,d and transform them into
bases of I. This is useful on its own, but does not directly help us in finding “small” bases
of I, as it may happen that “small” bases of KI,d do not give rise to “small” bases of I,
for some suitable notion of “small”. We shall remedy this by showing in the remainder
of this section that the canonical base of KI,d with background knowledge SI,d gives
rise to a minimal base of I.
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Figure 1. Left: the description graph GC ; Right: the description graph HC

The main line of argumentation is the same as in [15]. Let

BCan(I, d) :=
{l

U v (
l
U)II

d
∣∣∣ (U → U ′′) ∈ Can(KI,d,SI,d)

}
.

To show that we indeed obtain a base of minimal cardinality this way we consider some
arbitrary base B of I. To this base we then associate a base LB of implications of KMI,d,I
such that |LB| ≤ |B|. Then because Can(KMI,d,I ,SI,d) has minimal cardinality we obtain
|Can(KMI,d,I ,SI,d)| ≤ |LB|, and from this |B| ≤ |BCan| as required.

We start the proof by providing two auxiliary statements that we shall make use of in
the proof of the following theorem. For the first statement we shall in turn make use of
the following fact: for each interpretation I and each n ∈ N \ { 0 } we can consider the
interpretation In that arises from the product of the description graph of I with itself n
times. Then if C v D is a GCI that is valid in I, this GCI is also valid in In. This is
true intuitively, and has been proven formally in [15, Lemma 5.15].

The following lemma is a variation of [15, Lemma 5.16]. Its proof is an extension of
the argumentation given there.

4.30 Lemma. Let I be a finite interpretation, let d ∈ N, and let B be a set of valid
GCIs of I where B only contains concept descriptions from EL⊥(NC , NR)d. Let C be a
concept description such that C ≡

d
U for some U ⊆MI,d. Let D be some EL⊥-concept

description such that C 6v D and rd(D) ≤ d. If C v D follows from B, then there is
some (E v F ) ∈ B such that C v E and C 6v F .

Proof. Clearly C 6= ⊥, as otherwise C v D. Thus there exists S ⊆ NC and Π ⊆
NR ×P(∆I) such that

C ≡
l
S u

l

(r,X)∈Π

∃r.XId−1

.

Let GC = (VC , EC , LC , vC) be the description graph of C, and let GD be the description
graph of D. Denote with IGC the interpretation that corresponds to the description
graph GC . Then vC ∈ CIGC by Corollary 4.16. On the other hand, as C 6v D, Proposi-
tion 4.17 yields that there does not exist a homomorphism from GD to GC , and hence
vC /∈ DIGC by Corollary 4.16. Therefore, IGC 6|= (C v D).

The description graph GC is a tree with root vC . If we denote the children of vC by
v1, . . . , vn, then each such vi is the root of the description tree GXId−1

i
of XI

d−1

i . Let

Xi = {x1
i , . . . , x

k
i }. By Corollary 4.23, the tree GXId−1

i
is a product of trees which arise

from the description graph of I by unravelling at the elements xji up to depth d− 1. A
graphical representation of GC is shown on the left of Figure 1.

Let us now consider the description graph HC that we obtain from GC by replacing all
unravellings of I up to depth d−1 by the full description graph of I. By this each subtree

27



May 12, 2015 Journal of Applied Non-Classical Logics jancl

GXId−1
i

in GC is transformed into a graph isomorphic to I |Xi|. This transformation is

sketched on the right of Figure 1.
We shall now show that in the interpretation IHC

that correspond to HC the GCI
C v D does not hold as well. To this end we observe that there exists a homomorphism
from GC to HC , showing that vC ∈ CIHC . On the other hand, a homomorphism from GD
to HC could easily be transformed into a homomorphism from GD to GC , as rd(D) ≤ d.
As such a homomorphism does not exist we obtain vC /∈ DIHC . Therefore, IHC

is not a
model of C v D.

As B entails C v D there must exist a GCI (E v F ) ∈ B that is not valid in IHC
. As

E v F is valid in I, by the remark immediately preceding this proof it is valid in all
interpretations I |X1|, . . . , I |Xn| as well. But then the only element E v F can fail for in
IHC

is vC , and thus vC ∈ EIHC , vC /∈ F IHC . As rd(E), rd(F ) ≤ d we obtain vC ∈ EIGC ,
vC /∈ F IGC .

Now by Corollary 4.16 there exists a homomorphism from the description graph GE
to GC , and there does not exist a homomorphism from GF to GC . This is because the
description graph of IGC is isomorphic to GC . But then Proposition 4.17 yields C v E
and C 6v F , as required.

The following proposition is a variation of [15, Lemma 5.17].

4.31 Proposition. Let C ∈ EL⊥(NC , NR)d, U ⊆MI,d. Then
d
U v C implies

d
U v

approxI,d(C).

Proof. We can write C as

C =
l
S u

l

(r,D)∈Π

∃r.D

for some S ⊆ NC and some Π ⊆ NR × EL⊥(NC , NR)d−1. Then

approxI,d(C) =
l
S u

l

(r,D)∈Π

∃r.DIId−1

.

Since
d
U v C, for each A ∈ S we also have A ∈ U . Furthermore, for each (r,D) ∈ Π

there must exist some (∃r.XId−1

) ∈ U such that ∃r.XId−1 v ∃r.D. Since XI
d−1 ≡

XI
d−1IId−1 v DIId−1

we obtain ∃r.XId−1 v ∃r.DIId−1

. But then

l
U v

l
S u

l

(r,D)∈Π

∃r.DIId−1 v approxI,d(C)

as required.

4.32 Theorem. Let I be a finite interpretation over NC and NR, and let d ∈ N.
Then BCan(I, d) is a base of all valid GCIs of I with role-depth at most d. Furthermore,
BCan(I, d) has minimal cardinality among all bases of all valid GCIs of I with role-depth
at most d.

Proof. Let B be a base of Thd(I). Without loss of generality we can assume that all GCIs

in B are of the form E v EIId for some EL⊥-concept description E with rd(E) ≤ d.
We know that |BCan(I, d)| ≤ |Can(KI,d,SI,d)|. The idea of this proof is to define a set
LB of implications such that

|Can(KI,d,SI,d)| ≤ |LB| ≤ |B|.
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If we succeed in this, then we clearly have shown the claim of the theorem. Thus let us
define

LB :=
{

prMI,d(approxI,d(E))→ prMI,d(EII
d

)
∣∣ (E v EIId) ∈ B

}
.

Then clearly |LB| ≤ |B|. To show |Can(KI,d,SI,d)| ≤ |LB|, we show that LB ∪ SI,d is a
base of KI,d. Then by the minimality of the canonical base we know that LB has at least
as many elements as Can(KI,d,SI,d).

In the remainder of this proof we shall therefore show that LB ∪ SI,d is a base of KI,d.
For this we shall show that LB ∪ SI,d is sound and complete for KI,d.

Let us first show soundness of LB ∪ SI,d. Clearly, SI,d holds in any induced context
with attribute set MI,d, and thus in particular in KI,d. To see that LB is also sound for
KI,d, consider some implication(

prMI,d(approxI,d(E))→ prMI,d(EII
d

)
)
∈ LB.

Since approxI,d(E) is expressible in terms of MI,d by definition, Proposition 4.26 implies

(
prMI,d(approxI,d(E))

)′
KI,d

= approxI,d(E)I .

Since rd(E) ≤ d, Proposition 4.8 yields

(approxI,d(E))I ⊆ EI ≡ (EII
d

)I

Finally, since EII
d

is expressible in terms of MI,d by Lemma 4.9, Proposition 4.26 applies
again and yields

(EII
d

)I =
(
prMI,d(EII

d

)
)′
KI,d

.

Thus we have shown that the implication(
prMI,d(approxI,d(E))→ prMI,d(EII

d

)
)
∈ LB.

holds in KI,d. Since the choice of this implication was arbitrary, we have shown that LB
is sound for KI,d.

It remains to be shown that LB ∪ SI,d is complete for KI,d. For this we show that no
set U ⊆MI,d with U 6= U ′′KI,d is a model of LB ∪ SI,d.

So let U ⊆MI,d with U 6= U ′′. Assume that U is closed under SI,d. Since U is not an
intent, there exists some D ∈ U ′′ \ U with rd(D) ≤ d. By definition of KI,d, it is true
that DI ⊆ U ′. Lemma 4.25 implies U ′ = (

d
U)I , i.e., DI ⊆ (

d
U)I . By Lemma 4.2 we

obtain

(
l
U)II v D. (7)

Since U is closed under SI,d, and since D /∈ U , we obtain F 6v D for all F ∈ U . This
is because if F v D for some F ∈ U , then since U is closed under SI,d, we would obtain

D ∈ U . Since D is either a concept name or of the form ∃r.XId−1

, we obtain

l
U 6v D. (8)
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Equations (7) and (8) now imply that

l
U 6v (

l
U)II

d

.

By Lemma 4.30 there exists some (E v EIId) ∈ B such that

l
U v E,

l
U 6v EIId .

We now claim that U is not a model of the implication(
prMI,d(approxI,d(E))→ prMI,d(EII

d

)
)
∈ LB. (9)

To see this, we first observe that by Proposition 4.31 and
d
U v E, we see thatd

U v approxI,d(E). This implies that

prMI,d
(
approxI,d(E)

)
⊆ U.

To show that U is not a model of the implication in (9) we thus need to show that

prMI,d(EII
d

) 6⊆ U . Let us assume by contradiction that this is not the case, i.e.,

prMI,d(EII
d

) ⊆ U . Then

l
U v

l
prMI,d(EII

d

) ≡ EIId ,

where the last equivalence is due to the fact that EII
d

is expressible in terms of MI,d.

But this is a contradiction to
d
U 6v EIId . We have thus shown that prMI,d(EII

d

) 6⊆ U ,
and the proof is finished.

4.5 Bases of GCIs with Unlimited Role Depth

In the last sections we have seen how to compute bases of general concept inclusions
with a role-depth bound. But it is also possible to compute bases of GCIs without a
role-depth bound, which then entail all valid GCIs that hold in the input interpretation.
The corresponding theory has been developed in [15], and it is the purpose of this section
to give a brief overview of the main points of this work, and to point out differences to
our argumentation. As this exposition is meant to be just an overview, we shall not give
proofs of the statements of this section, and refer the reader to [15] for the details.

The main obstacle one has to overcome to learn GCIs without a role-depth bound is to
generalize the notion of model-based most-specific concept descriptions to an unbounded
case. The trouble here is caused by interpretations with cycles. To see what we mean
by this let us consider the following example interpretation IBob = ({Bob}, ·I) over the
signature (NC , NR) = (∅, {knows}):

Bob knows (10)

It can be seen easily that there does not exist a most-specific concept description that
has Bob in its extension. For this we note that the only EL⊥-concept description that
can be formed over (NC , NR) are ⊥ and

Cn := ∃knows. . . .∃knows.︸ ︷︷ ︸
n times

> (n ∈ N). (11)
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Then Bob ∈ CIBobn for all n ∈ N, and since Cn1
is more specific than Cn2

for n1 > n2, it
follows that no Cn can be most-specific with containing Bob in its extension. Intuitively,
one would need to use an infinite chain of existential quantifiers to express such a
most-specific concept description.

The resort to this dilemma is to extend the description logic EL⊥ to allow for expressing
such infinite chains of quantifiers. In [15] this has been done using greatest fixpoint
semantics, resulting in a logic called EL⊥gfp.

4.5.1 An Extension of EL⊥ with Greatest Fixpoints

Let us fix a signature (NR, NC). An EL⊥gfp-concept description C over this signature is

a pair C = (AC , TC) consisting of a concept name AC /∈ NC and an EL⊥-TBox TC of
concept definitions. The TBox TC is only allowed to contain primitive concept definitions ,
i.e., expressions of the form A ≡ C, where A is a new concept name taken from a set
ND(TC) of defined concept names of TC that is disjoint with NC , and where C is an
EL⊥-concept description over (NC ∪ND(TC), NR). It is furthermore required that TC
contains a concept definition for AC . An example of a EL⊥gfp-concept description is

(ABob, {ABob ≡ ∃knows.ABob}). (12)

Let us briefly sketch how the semantics of such concept descriptions is defined. To this
end, let C = (AC , TC) be an EL⊥gfp-concept description and let I be an interpretation. To

define CI , we consider extensions of I: an extension J of I is an interpretation whose
interpretation function ·J extends ·I to the set ND(TC) of defined concept names of
TC . It can then be shown that the set of all extensions of I forms a complete lattice,
and that the fixpoints of a suitable monotone function f on this lattice are exactly the
models of TC . Let Igfp be the greatest such fixpoint of f , which exists due to Tarski’s
Fixpoint Theorem [34]. Then CI is defined to be the extension of AC in this greatest
fixpoint Igfp, i.e., CI := (AC)Igfp .

4.5.2 Model-Based Most-Specific Concept Descriptions

In analogy to Definition 4.1 we now define model-based most-specific concept descrip-
tions without role-depth limits. Note that the only difference to Definition 4.1 is that
the modified definition not only considers EL⊥-concept descriptions up to a certain
role-depth, but all EL⊥gfp-concept descriptions.

Let I be an interpretation and let X ⊆ ∆I . Then an EL⊥gfp-concept description C is
called a model-based most-specific concept description (mmsc for short) of X in I, if

(i) X ⊆ CI , and
(ii) C v D for every EL⊥gfp-concept description D over (NC , NR) that satisfies X ⊆ DI .

As in the bounded case, model-based most-specific concept descriptions are unique up
to equivalence. Thus, if one exists, we can speak of the mmsc, and shall denote it by XI .
Of course, the corresponding mapping X 7→ XI is well-defined only up to equivalence,
but this fact does not impose any major problem on our argumentation.

It can be shown that model-based most-specific concept descriptions always exist
in EL⊥gfp, and they can be computed efficiently. Let us briefly sketch how this can be
done. Analogously to Lemma 4.2 and Lemma 4.3, for all interpretations I the mappings
·I : EL⊥gfp(NC , NR)→ P(∆I) and ·I : P(∆I)→ EL⊥gfp(NC , NR) as defined above satisfy
the main condition of an isotone Galois connection. In addition, as shown in Section 4.3
for the case of EL⊥, it can be shown that the semantics of EL⊥gfp can be characterized by
means of description graphs and simulations.

Let C = (AC , TC) be an EL⊥gfp-concept description. Then we say that TC is in normal
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form if all (A ≡ D) ∈ TC are of the form

D = P1 u · · · u Pn u ∃r1.B1 u . . . ∃rk.Bk

for some P1, . . . , Pn ∈ NC and B1, . . . , Bk ∈ ND(TC). It can be shown that every EL⊥gfp-
concept description can be put into normal form efficiently [2]. In the case that TC is in
normal form, the description graph GC := (VC , EC , LC , AC) of C consists of the following
components. The vertex set VC := ND(TC) consists of all defined concept names of the
TC , the edge set EC contains all labeled edges (A, r,B) such that A ≡ D and ∃r.B
appears in D. Finally, LC(A) := {P1, . . . , Pn }.

Conversely, every description graph G = (V,E, L, v0) canonically corresponds to an
EL⊥gfp-concept description CG = (v0, TG), where

TG :=
{
v ≡

l
L(v) u

l

(v,r,w)∈E

∃r.w
∣∣∣ v ∈ V }.

It is readily verified that both constructions are inverse to each other, i.e. C ≡ CGC and
G = GCG .

Now, in analogy to Proposition 4.13, we can decide x ∈ CI by checking the existence
of a simulation from the description graph of C to the description graph of I, i.e.,
x ∈ CI if and only if there is a simulation from GC to GxI . Furthermore, and similar

to Proposition 4.17, C v D for two EL⊥gfp-concept descriptions C and D, if and only
if a simulation from GD to GC exists. Thus we can conclude that the model-based
most-specific concept description of singleton sets {x } always exists and is given by the
EL⊥gfp-concept description CGx

I
; see also Theorem 4.19.

To compute model-based most-specific concept descriptions of arbitrary sets X ⊆ ∆I

we again utilize the notion of least common subsumers: an EL⊥gfp-concept description D

is a least common subsumer of EL⊥gfp-concept descriptions C1, . . . , Cn if and only if D
subsumes C1, . . . , Cn, and D is most specific with this property. As in the role-depth-
bounded case, the least common subsumer can be computed by means of the product
of the description graphs of the concept descriptions C1, . . . , Cn [2]. In particular, the
least common subsumer of two EL⊥gfp-concept descriptions C and D can be found as the
concept description CGC×GD that is induced by the product of their induced description
graphs. Then, as in Corollary 4.23, the model-based most-specific concept description of
X is the least common subsumer of the concept descriptions {x}I . Finally, note that
the mmsc of ∅ is always ⊥.

4.5.3 Bases of GCIs

An expression C v D is called an EL⊥gfp-GCI if C and D are EL⊥gfp-concept descriptions.

Then similarly to Definition 4.5 we define an EL⊥gfp-base of GCIs for an interpretation I
to be a set B of EL⊥gfp-GCIs that is sound and complete, i.e., I is a model of all GCIs in

B, and every EL⊥gfp-GCI valid in I is entailed by B.

If C v D is a valid EL⊥gfp-GCI of I, then it can be shown that also the EL⊥gfp-GCI

C v CII is valid in I, and that C v CII entails C v D (see Lemma 4.6). As an
immediate consequence we infer that the set

B0 :=
{
C v CII

∣∣ C ∈ EL⊥gfp(NC , NR)
}

is a base of I. However, it is obvious that this does not yield a finite base in general, in
contrast to the case of EL⊥ with role-depth bound, as there are infinitely many concept
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descriptions for EL⊥gfp. Hence B0 is not useful for practical purposes.
In case of a finite interpretation I it has been shown [15, Theorem 5.7] that it is

sufficient to consider only acyclic EL⊥gfp-concept descriptions as left-hand-sides in B0 to

obtain a base. Here we call an EL⊥gfp-concept description C acyclic if the description
graph of C is acyclic. As it can be seen easily, such an acyclic concept description is then
equivalent to an EL⊥-concept description. Therefore, the set

B1 :=
{
C v CII

∣∣ C ∈ EL⊥(NC , NR)
}

is also a base of I. But while this base is “smaller” than B0, it is still infinite in general.
It can be shown that one can obtain a finite base from B1 by exploiting the same
connection between formal concept analysis and description logics that we have used in
Section 4.4. However, in contrast to the argumentation there, considering methods from
formal concept analysis is not a mere optimization anymore, but is now crucial step to
obtain a finite base of I.

4.5.4 Induced Formal Contexts

In Definition 4.24 we have introduced induced contexts, and we can apply the very
same construction to a set M ⊆ EL⊥gfp(NC , NR) of EL⊥gfp-concept descriptions. Then all of
the corresponding statements on induced contexts also hold. In analogy to the definition
of the set MI,d it turns out that a suitable set of EL⊥gfp-concept descriptions is

MI := {⊥} ∪NC ∪ {∃r.XI | r ∈ NR, ∅ 6= X ⊆ ∆I }

Then the induced context KI of I is defined to be the induced context of MI and I.
More precisely, KI = (∆I ,MI ,∇), where (x,C) ∈ ∇ iff x ∈ CI .

In analogy to Theorem 4.10, a finite base of EL⊥gfp-GCIs for I can now be obtained as

B2 :=
{l

U v
(l

U
)II ∣∣∣ U ⊆MI }.

This yields first finite base for an interpretation I, which unfortunately can get quite
large. This is because the set B2 can contain up to 2|MI | general concept inclusions, and
the set MI itself might have 1 + |NC | + |NR| · (2|∆

I | − 1) concept descriptions in the

worst case. Thus the set B2 may contain up to O
(
22|∆

I|)
general concept inclusions, and

it is desirable from a practical point of view to reduce the number of GCIs in a finite
base as much as possible. This can be achieved by means of formal concept analysis, in
the same spirit of Theorem 4.32: the set

B3 :=
{l

P v
l
P ′′KI

∣∣ (P → P ′′KI) ∈ Can(KI ,SI)
}

is a minimal base of EL⊥gfp-GCIs for the interpretation I, where the set SI is defined as
similarly to the set SI,d of Theorem 4.29, i.e.,

SI :=
{
{C} → {D}

∣∣ C,D ∈MI , C v D }.
4.5.5 Unravelling EL⊥gfp-bases to EL⊥-bases

A drawback of using EL⊥gfp-concept descriptions instead of EL⊥-concept descriptions is

the fact that EL⊥gfp-concept descriptions are notoriously hard to read because of their
recursive nature. This is particularly true for domain experts that may not be trained

33



May 12, 2015 Journal of Applied Non-Classical Logics jancl

in logics. As a consequence, the use of EL⊥gfp-concept descriptions impairs the practical
usefulness of our results discussed above.

To get around this issue we can make use of unravellings of EL⊥gfp-concept descriptions

into EL⊥-concept descriptions. Put differently, we shall show that each base of EL⊥gfp-GCIs

can be transformed into a base of EL⊥-GCIs by unravelling the corresponding concept
descriptions.

Unravellings have already been considered in Definition 4.18 in order to construct
role-depth-bounded model-based most-specific concept descriptions. We use the same
technique here to transform an EL⊥gfp-base into an EL⊥-base. For this we first note that,
technically, unravellings have only been defined for description graphs in Definition 4.18.
But since there is a one-to-one correspondence between EL⊥gfp-concept descriptions and

description graphs, we can simply define the unravelling of an EL⊥gfp-concept description

up to role-depth d ∈ N as the EL⊥-concept description Cd := CGC�d , where GC denotes
the description graph of C. Note that GC�d is always a description tree, and thus we can
associate with it an EL⊥-concept description as we did in Section 4.3.

We shall furthermore make use of the following fact [15, Lemma 5.5 and Corollary
5.6]: for each EL⊥gfp-concept description C and each finite interpretation I there exists a

number dC,I such that CI = (CdC,I)
I . The idea is then to unravel all GCIs in a base B

up to the maximum of all dC,I for C being a concept description occurring in B. For
this we set

d := max{ dC,I | (C v D) ∈ B }

and

Bd :=
{
Cd v

(
CII

)
d
,
(
CII

)
d
v
(
CII

)
d+1

∣∣ (C v D) ∈ B
}
.

Then the set Bd is indeed a base of all EL⊥gfp-GCIs valid in I [15, Theorem 5.21] consisting

only of EL⊥-concept descriptions.

5. Experimental Evaluation

With our previous argumentation we have obtained a way to extract, in some sense, all
valid GCIs of a given finite interpretation. As the resulting method is an effective one we
can seek to apply it to data-sets from real-world applications to evaluate the usefulness
of our approach. To this end we recall our previous remark about RDF-Triple data-sets.
There we observed that we can consider each such data-set as a finite interpretation,
as both essentially are vertex and edge-labeled graphs. In this way our results allow to
extract terminological knowledge from data-sets of the Semantic Web.

In this section we shall illustrate this method by applying it to a subset of the DBpedia
data-set [10] from the release of 2014. To construct our finite interpretation IDBpedia

we shall proceed as follows. In DBpedia there are, among others, two data-sets named
mapping-based types and mapping-based properties (cleaned). Let us call the former data-
set T , and the latter P .

The data-set T consists of triples of the form

<http://dbpedia.org/resource/Ellson,_Minnesota>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/PopulatedPlace> .
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<http://dbpedia.org/resource/Otis_Taylor_(American_football)>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Athlete> .

<http://dbpedia.org/resource/Eddie_George>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person> .

i.e., it contains information about instances being of certain types. Because the predicate
in all those triples is

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

we can equally consider T as a data-set of pairs instead of triples.
The second data-set P contains triples like

<http://dbpedia.org/resource/Jowkar,_Afghanistan>

<http://www.w3.org/2003/01/geo/wgs84_pos#lat>

"35.521388888888886"^^<http://www.w3.org/2001/XMLSchema#float> .

<http://dbpedia.org/resource/Khenaman_Rural_District>

<http://dbpedia.org/ontology/isPartOf>

<http://dbpedia.org/resource/Kerman_Province> .

<http://dbpedia.org/resource/Robert_Benchley>

<http://dbpedia.org/ontology/influenced>

<http://dbpedia.org/resource/James_Thurber> .

i.e., this data set contains relationships between instances as well as literal information
about instances.

For readability, we shall from now on omit the prefix http://dbpedia.org/ontology.
Where other prefixes have been used we leave them in place to avoid ambiguities.

To get a reasonably sized data-set out of T and P for our experiments we proceed as
follows. First we consider all triples (s, p, o) in the mapping-based properties data-set P
such that p = child. All entities s and o that occur in such a triple are collected into
a set ∆IDBpedia . Then for each element x in ∆IDBpedia we consider all pairs (x, c) in the
mapping-based types data-set T and define the set NC to be the set of all those elements
c, i.e.,

NC := { c | ∃x ∈ ∆IDBpedia : (x, c) ∈ T }.

Then for each A ∈ NC we set

AIDBpedia := {x ∈ ∆IDBpedia | (x,A) ∈ T }.

Then IDBpedia := (∆IDBpedia , ·IDBpedia) is an interpretation over NC and NR := { child }.
We have |∆IDBpedia | = 16891 and |NC | = 183.

By construction one could expect IDBpedia to contain only elements that are instances
of the concept Person as we only consider instances in the DBpedia data-set that either
have or are children. But since DBpedia extracts its data from Wikipedia Infoboxes in
a heuristic way, elements that are not persons are also contained in IDBpedia, example
being organizations, books, and places. This is because in Wikipedia Infoboxes children
are sometimes stored together with the organizations they belong to, or the places they
have lived in. If this extra information points to another Wikipedia page, DBpedia may
mistakenly pick up this page as the child of the current article, instead of the child itself.
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Because of this, individuals that are not persons do appear in IDBpedia. For our purpose
of demonstrating our approach to learn GCIs from finite interpretations, however, this
fact does not play much of a role.

We now apply our approach to IDBpedia and compute a base BIDBpedia
of all EL⊥

GCIs with role-depth at most 2, using an prototypical implementation of the algorithm
described before1. The base BIDBpedia

then consists of 3880 elements. In the following we
shall have a closer look on some typical elements of BIDBpedia

to convey a feeling which
kind of knowledge our algorithm extracts from IDBpedia.

The first GCIs computed by our algorithm only involve concept names, for example

ChemicalSubstance v Mineral,

ChessPlayer v Athlete,

HockeyTeam v SportsTeam,

Saint v Cleric,

Governor v Politician,

IceHockeyPlayer v Athlete.

We note that most of those GCIs are valid in the DBpedia data-set by construction. This
is because Wikipedia Infoboxes, from which DBpedia extracts its knowledge, are not
standardized in any way, and thus some background knowledge is necessary to produce a
consistent data-set. This background knowledge is given by a manually created taxonomy
of 685 classes, and the above given GCIs are all contained therein. But BIDBpedia

also
contains GCIs which are not represented in DBpedia’s ontology, due to the data-set
being too specific. Examples for these GCIs are

Coach v CollegeCoach,

Name v GivenName,

TimePeriod v Year.

Furthermore, BIDBpedia
contains GCIs representing disjointness constraints, as

Agent u ChemicalSubstance v ⊥,

ChemicalSubstance u TimePeriod v ⊥,

Agent u TimePeriod v ⊥,

Judge u Politician v ⊥,

Journalist u Judge v ⊥,

HorseTrainer u Politician v ⊥,

HorseTrainer u Judge v ⊥,

FictionalCharacter u HorseTrainer v ⊥,

Architect u Scientist v ⊥,

Architect u Journalist v ⊥,

Architect u FictionalCharacter v ⊥.

1The source-code for this implementation is available under http://github.com/exot/EL-exploration.
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DBpedia’s ontology implicitly contains those GCIs as well, as the subsumption hierarchy
is a tree. The GCIs in BIDBpedia

make these disjointness relationships explicit, using a
minimal number of GCIs.

So far we have only considered GCIs that involve only concept names, but the main
strength of our algorithm is to learn GCIs that contain roles. The first example of a GCI
containing a role-name is

Pope v ∃child.Person u Cleric.

While it is surprising that IDBpedia contains popes, it is even more surprising that all
popes contained in IDBpedia do have children (and are not contained in IDBpedia because
they are the children of famous persons). The reason for this is that apparently popes
never had famous parents, and thus appear in IDBpedia because they have famous children.
The only such popes where Alexander VI, Paul III, and Julius II, and these are the only
popes contained in IDBpedia. This is why our algorithm extracts the above-mentioned
GCI. Interestingly, BIDBpedia

also contains the GCI

∃child.Person u Pope u Saint v ⊥,

that expresses the fact that so far the Catholic Church has not canonized any popes
having children.

A general pattern of GCIs involving the child role is to exclude that certain professions
have (famous) children, like

∃child.> u Astronaut v ⊥

∃child.> u Medician v ⊥

∃child.> u ChessPlayer v ⊥

∃child.Politician u Engineer v ⊥

∃child.Mayor u Governor v ⊥

∃child.Scientist u Judge v ⊥

∃child.Journalist u Monarch v ⊥

∃child.Journalist u PlayboyPlaymate v ⊥

∃child.> u Economist v ⊥

∃child.> u BritishRoyalty v ⊥

∃child.> u BeautyQueen v ⊥

∃child.> u Philosopher v ⊥

A variation of this pattern is to express the fact that certain professions only have persons
as children:

∃child.> u SoccerManager v ∃child.Person

∃child.> u BaseballPlayer v ∃child.Person

∃child.> u Saint v ∃child.Person

∃child.> u ScreenWriter v ∃child.Person
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Note that these GCIs are indeed interesting GCIs, as IDBpedia contains individuals
that are not persons. The above mentioned GCIs then express the fact that for certain
professions DBpedia has extracted only persons as children. On the other hand, one
could expect that only persons can have children (as only Wikipedia Infoboxes of persons
do have entries for children), and indeed BIDBpedia

contains the GCI

∃child.> v Person.

Interestingly, one can even make use of some GCIs in BIDBpedia
to find places where

DBpedia has extracted children that are not persons. For example, our algorithm extracts
from IDBpedia the GCI

∃child.Place u Engineer v ∃child.Http://schema.org/AdministrativeArea

indicating that in at least one case a child has been extracted that is not a person, but a
place, and that the person having that child is an engineer. In this case, there is only
one such engineer, named Edward Snell, and his infobox lists his children together with
their places of birth (among others).

Finally, the majority of GCIs contained in BIDBpedia
does not follow any obvious pattern,

and we list some here to give an impression how they look like.

∃child.Judge u Judge v ∃child.(Judge u ∃child.OfficeHolder)

∃child.Engineer v Engineer

PlayboyPlaymate v ∃child.Person

∃child.ComicsCreator u Politician v Congressman

∃child.Criminal u Politician v MemberOfParliament

6. Conclusions and Future Work

In this paper we have discussed an approach to learn valid GCIs of finite interpretations
whose quantifier depth does not exceed a given bound. For this we have modified the
original argumentation of [15] to allow for role-depth bounds, and we have shown that
all major results are still valid. Moreover, the introduction of role-depth bounds has also
simplified the logical setup in which we need to argue, as we do not need to consider logics
with cyclic concept descriptions anymore. Considering those logics was necessary in the
original approach of [15]. Finally, we have also demonstrated using a real-world data-set
that our approach is effective, showing that we can automatically learn terminological
knowledge expressible in EL⊥ from larger data-sets.

While the experiments we have conducted in Section 5 show that ontology engineers
can use our approach to extract terminological knowledge from data-sets, they also
illustrate a major disadvantage of our approach when applied to real-world data: when
the data-set contains errors , then the GCIs extracted by our algorithm can be too specific,
because errors can invalidate a more general pattern. This issue has been addressed
in [11], where in addition to extracting valid GCIs from a finite interpretation also
GCIs are considered that are “almost valid” in the given data-set. A GCI is said to be
“almost valid” if it is correct in at least a certain number of cases where it is applicable.
Experiments in [11] indicated that considering almost valid GCIs instead of only valid
GCIs of finite interpretations increases the usefulness of the underlying approach to learn
terminological knowledge from real-world data.
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The work of [11] builds upon the original approach of [15], and hence does not allow
for role-depth bounds. As real-world data can always be assumed to be faulty, and the
approach of [11] promises to perform better on such data-sets, also introducing role-depth
bounds there may increase the practicability of our ideas even more. We believe that
such an extension is not difficult, albeit technical, and we leave it as future work.

The description logic EL⊥ we have used here is an inexpressive logic, and does not
capture important forms of knowledge one may be interested in. For example, we have
seen in our experiments that we extract the GCI

∃child.> u SoccerManager v ∃child.Person

from IDBpedia. This GCI suggests, but does not exactly express, the fact that each soccer

manager who has children only has persons as children. Indeed, EL⊥ cannot express this
fact, as it is not able to talk about all successors of a given individual. However, using a
more expressive logic, i.e., one that allows for the universal quantifier ∀, this fact can
easily expressed as

∃child.> u SoccerManager v ∀child.Person.

There is some work extending the original approach of [15] to more expressive description
logics [13]. Including these extensions in our approach can provide the expressiveness
to learn more interesting knowledge from given data-sets, while allowing to control the
amount of the GCIs to be learned by restricting their maximal quantifier depth.

Finally, a more application-oriented line of research is to conduct a thorough study of
the actual usefulness of our ideas towards learning ontologies from larger data sets. The
experiment we have discussed in Section 5 only gives a first impression how our algorithm
behaves, but does not reveal whether it is really able to extract knowledge suitable for
inclusion in a knowledge base. For this a more sophisticated experimental setup has to be
developed that formulates necessary criteria for evaluating the performance of automatic
knowledge extraction algorithms. In that respect, an investigation of how our approach
works together with existing approaches for learning knowledge from data would be an
interesting first step.
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