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To represent and reason about contextualized knowledge often two-dimensional De-
scription Logics (DLs) are employed, where one DL is used to describe contexts (or
possible worlds) and the other DL is used to describe the objects, i.e. the relational
structure of the specific contexts. Previous approaches for DLs of context that com-
bined pairs of DLs resulted in undecidability in those cases where so-called rigid roles
are admitted, i.e. if parts of the relational structure are the same in all contexts. In this
paper, we present a novel combination of pairs of DLs and show that reasoning stays
decidable even in the presence of rigid roles. We give complexity results for various
combinations of DLs involving ALC, SHOQ, and EL.

1 Introduction

Description logics (DLs) of context can be employed to represent and reason about contextualized
knowledge [BS03; BVS+09; KG10; KG11b; KG11a]. Such contextualized knowledge naturally occurs
in practice. Consider, for instance, the rôles played by a person in different contexts. The person
Bob, who works for the company Siemens, plays the rôle of an employee of Siemens while at work,
i.e. in the work context, whereas he might play the rôle of a customer of Siemens in the context
of private life. In this example, access restrictions to the data of Siemens might critically depend
on the rôle played by Bob. Moreover, DLs capable of representing contexts are vital to integrate
distributed knowledge as argued in [BS03; BVS+09].

In DLs, we use concept names (unary predicates) and complex concepts (using certain constructors)
to describe subsets of an interpretation domain and roles (binary predicates) that are interpreted as
binary relations over the interpretation domain. Thus, DLs are well-suited to describe contexts as
formal objects with formal properties that are organized in relational structures, which are funda-
mental requirements for modeling contexts [McC87; McC93].

However, classical DLs lack expressive power to formalize furthermore that some individuals satisfy
certain concepts and relate to other individuals depending on a specific context. Therefore, often
two-dimensional DLs are employed [KG10; KG11b; KG11a]. The approach is to have one DL LM
as the meta or outer logic to represent the contexts and their relationships to each other. This logic
is combined with the object or inner logic LO that captures the relational structure within each of
the contexts. Moreover, while some pieces of information depend on the context, other pieces of
information are shared throughout all contexts. For instance, the name of a person typically stays
the same independent of the actual context. To be able to express that, some concepts and roles a
designated to be rigid, i.e. they are required to be interpreted the same in all contexts. Unfortunately,
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if rigid roles are admitted, reasoning in the above mentioned two-dimensional DLs of context turns
out to be undecidable; see [KG10].

We propose and investigate a family of two-dimensional context DLs LM JLOK that meet the above
requirements, but are a restricted form of the ones defined in [KG10] in the sense that we limit the
interaction of LM and LO. More precisely, in our family of context DLs the outer logic can refer to
the internal structure of each context, but not vice versa. That means that information is viewed
in a top-down manner, i.e. information of different contexts is strictly capsuled and can only be
accessed from the meta level. This means that we cannot express, for instance, that everybody who
is employed by Siemens has a certain property in the context of private life. Interestingly, reasoning
in LM JLOK stays decidable with such a restriction, even in the presence of rigid roles. In some
sense this restriction is similar to what was done in [BGL08; BGL12; Lip14] to obtain a decidable
temporalized DL with rigid roles. Even though, our techniques to show complexity results are very
similar to the ones employed for those temporalized DLs, we cannot simply reuse these results to
reason in our context DLs, and more effort is needed to obtain tight complexity bounds.

For providing better intuition on how our formalism works, we examine the above mentioned example
a bit further. Consider the following axioms:

> v J∃worksFor .{Siemens} v ∃ hasAccessRights.{Siemens}K (1)
Work v JworksFor(Bob,Siemens)K (2)

J(∃worksFor .>)(Bob)K v ∃ related.(Private u JHasMoney(Bob)K) (3)
> v J∃ isCustomerOf .> v HasMoneyK (4)

Private v JisCustomerOf (Bob,Siemens)K (5)
Private uWork v ⊥ (6)

¬Work v J∃worksFor .> v ⊥K (7)

The first axiom states that it holds true in all contexts that somebody who works for Siemens also
has access rights to certain data. The second axiom states that Bob is an employee of Siemens in
any work context. Furthermore, Axioms 3 and 4 say intuitively that if Bob has a job, he will earn
money, which he can spend as a customer. Axiom 5 formalises that Bob is a customer of Siemens
in any private context. Moreover, Axiom 6 ensures that the private contexts are disjoint from the
work contexts. Finally, Axiom 7 states that the worksFor relation only exists in work contexts.

A fundamental reasoning task is to decide whether the above mentioned axioms are consistent
altogether, i.e. whether there is a common model. In our example, this is the case; Figure 1 depicts
a model. In this model, we also have Bob’s social security number linked to him using a rigid role
hasSSN . We require this role to be rigid since Bob’s social security number does not change over the
contexts. Furthermore the axioms entail more knowledge such as for example that in any private
context nobody will have access rights to work data of Siemens, i.e.

Private v J∃ hasAccessRights.{Siemens} v ⊥K

The remainder of the technical report is structured as follows. In the next section, we introduce
the syntax and semantics of our family of context DLs LM JLOK. For this, we repeat some basic
notions of DLs. In Section 3, we show decidability of the consistency problem in LM JLOK for LM
and LO being DLs between ALC and SHOQ. There we consider the cases without rigid names, with
rigid concepts and roles, and with rigid concepts only, and analyze the computational complexity
of the consistency problem in these cases. Thereafter, in Section 4 we investigate the complexity of
deciding consistency in DLs of context LM JLOK where LM or LO is the sub-Boolean DL EL. Again
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Figure 1: Model of Axioms 1–7

we consider the cases with rigid names, with rigid concepts and roles, and with rigid concepts only.
Section 5 concludes the report and lists some possible future work.

2 Basic Notions

As argued in the introduction, our family of two-dimensional context DLs LM JLOK consists of
combinations of two DLs: LM and LO. We focus on the case where LM and LO are the lightweight
DL EL or DLs between ALC and SHOQ. First, we recall the basic definitions of those DLs; for a
thorough introduction to DLs, we refer the reader to [BCM+07].

Definition 1 [Syntax of DLs]
Let NC, NR, and NI be non-empty, pairwise disjoint sets of concept names, role names, and individual
names, respectively. Furthermore, let N := (NC,NR,NI). The set of concepts over N is inductively
defined starting from concept names A ∈ NC using the constructors in the upper part of Table 1,
where r, s ∈ NR, a, b ∈ NI, n ∈ �, and C,D are concepts over N. The lower part of Table 1 shows
how axioms over N are defined.

Moreover, an RBox R over N is a finite set of role inclusions over N and transitivity axioms over N.
A Boolean axiom formula over N is defined inductively as follows:

• every GCI over N is a Boolean axiom formula over N,
• every concept and role assertion over N is a Boolean axiom formula over N,
• if B1,B2 are Boolean axiom formulas over N, then so are ¬B1 and B1 ∧ B2, and
• nothing else is a Boolean axiom formula over N.

Finally, a Boolean knowledge base (BKB) over N is a pair B = (B,R), where B is a Boolean axiom
formula over N and R is an RBox over N. �

Note that in this definition we refer to the triple N explicitly although it is usually left implicit in
standard definitions. This turns out to be useful as we need to distinguish between the symbols used
in LM and LO. Sometimes we omit N, however, if it is clear from the context. As usual, we use the
following abbreviations:

• C tD (disjunction) for ¬(¬C u ¬D),
• > (top concept) for A t ¬A, where A ∈ NC is arbitrary but fixed,
• ⊥ (bottom concept) for ¬>,
• ∀r.C (value restriction) for ¬∃ r.¬C,
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Table 1: Syntax and Semantics of DLs

syntax semantics
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

existential restriction ∃ r.C {d ∈ ∆I | there is an e ∈ CI with (d, e) ∈ rI}
nominal {a} {aI}
at-most restriction 6n r.C {d ∈ ∆I | ]{e ∈ CI | (d, e) ∈ rI} ≤ n}
general concept inclusion (GCI) C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

role inclusion r v s rI ⊆ sI

transitivity axiom trans(r) rI = (rI)+

• >n s.C (at-least restriction) for ¬(6n−1 s.C), and
• B1 ∨ B2 (disjunction) for ¬(¬B1 ∧ ¬B2).

Which concept constructors and types of axioms are available depends on the specific DL used. In
the smallest propositionally closed DL ALC, the only allowed concept constructors are negation,
conjunction, and existential restriction. Thus disjunction, top and bottom concept, and value re-
striction can be used as abbreviations. Moreover, no role inclusions and transitivity axioms are
allowed in ALC. If additional concept constructors or types of axioms are allowed, this is denoted
by concatenating a corresponding letter: O means nominals, Q means at-most restrictions (qualified
number restrictions), and H means role inclusions (role hierarchies). For instance, the DL ALCHO
is the extension of ALC that also allows for nominals and role inclusions. The extension of ALC
with transitivity axioms is denoted by S. Hence, the DL allowing for all the concept constructors
and types of axioms introduced here is called SHOQ. The sub-Boolean DL EL is the fragment of
ALC where only conjunction, existential restriction, and the top concept (which cannot be expressed
as an abbreviation anymore due to the lack of negation) are admitted as concept constructors. We
sometimes write L-concept over N (L-BKB over N, . . . ) for some DL L to make clear which DL is
used.

The semantics of DLs are defined in a model-theoretic way through the notion of interpretations.

Definition 2 [Semantics of DLs]
Let N = (NC,NR,NI). An N-interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set
(called domain), and ·I is a mapping assigning a set AI ⊆ ∆I to every A ∈ NC, a binary relation
rI ⊆ ∆I ×∆I to every r ∈ NR, and a domain element aI ∈ ∆I to every a ∈ NI. The function ·I
is extended to concepts over N inductively as shown in the upper part of Table 1, where ]S denotes
the cardinality of the set S.

Moreover, I is a model of the axiom α over N if the condition in the lower part of Table 1 is satisfied,
where ·+ denotes the transitive closure of a binary relation. This is extended to Boolean axiom
formulas over N inductively as follows:

• I is a model of ¬B1 if it is not a model of B1, and
• I is a model of B1 ∧ B2 if it is a model of both B1 and B2.

We write I |= B if I is a model of the Boolean axiom formula B over N. Futhermore, I is a model
of an RBox R over N (written I |= R) if it is a model of each axiom in R.
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Finally, I is a model of the BKB B = (B,R) over N (written I |= B) if it is a model of both B
and R. We call B consistent if it has a model. �

We call a role name r ∈ NR transitive (w.r.t. R) if every model of R is a model of trans(r).
Moreover, r is a subrole of a role name s ∈ NR (w.r.t. R) if every model of R is a model of
r v s. Finally, r is simple w.r.t. R if it has no transitive subrole. It is not hard to see that
r ∈ NR is simple w.r.t. R iff trans(r) /∈ R and there do not exist roles s1, . . . , sk ∈ NR such that
{trans(s1), s1 v s2, . . . , sk−1 v sk, sk v r} ⊆ R. Thus deciding whether r ∈ NR is simple can be
decided in time polynomial in the size of R by simple syntactic checks.

It follows from a result in [HST00] that the problem of checking whether a given SHQ-BKB
B = (B,R) over N is consistent is undecidable in general. One regains decidability with a syn-
tactic restriction as follows: if 6n r.C occurs in B, r must be simple w.r.t. R. In the following, we
make this restriction to the syntax of SHQ and all its extensions.

This restriction is also the reason why there are no Boolean combinations of role inclusions and
transitivity axioms allowed in the RBox R over N in the above definition. Otherwise the notion of a
simple role w.r.t. R involves reasoning. Consider, for instance, the Boolean combination of axioms
(trans(r) ∨ trans(s)) ∧ r v s. It should be clear that s is not simple, but this is no longer a pure
syntactic check.

We are now ready to define the syntax of LM JLOK. Throughout the paper, let OC, OR, and OI
be respectively sets of concept names, role names, and individual names for the object logic LO.
Analogously, we define the sets MC, MR, and MI for the meta logic LM . Without loss of gen-
erality, we assume that all those sets are pairwise disjoint. Moreover, let O := (OC,OR,OI) and
M := (MC,MR,MI).

Definition 3 [Syntax of LM JLOK ]
A concept of the object logic LO (o-concepts) is an LO-concept over O. An o-axiom is an LO-GCI
over O, an LO-concept assertion over O, or an LO-role assertion over O.

The set of concepts of the meta logic LM (m-concepts) is the smallest set such that

• every LM -concept over M is an m-concept and
• JαK is an m-concept if α is an o-axiom.

The notion of an m-axiom is defined analogously.

A Boolean m-axiom formula is defined inductively as follows:

• every m-axiom is a Boolean m-axiom formula,
• if B1,B2 are Boolean m-axiom formulas, then so are ¬B1 and B1 ∧ B2, and
• nothing else is a Boolean m-axiom formula.

Finally, a Boolean LM JLOK-knowledge base (LM JLOK-BKB) is a triple B = (B,RO,RM) where RO
is an RBox over O, RM an RBox over M, and B is a Boolean m-axiom formula. �

For the reasons above, role inclusions over O and transitivity axioms over O are not allowed to
constitute m-concepts. However, we fix an RBox RO over O that contains such o-axioms and holds
in all contexts. The same applies to role inclusions over M and transitivity axioms over M, which
are only allowed to occur in a RBox RM over M.

Again, we use the usual abbreviations (for disjunctions etc.) for m-concepts and Boolean m-axiom
formulas.

The semantics of LM JLOK is defined by the notion of nested interpretations. These consist of O-
interpretations for the specific contexts and an M-interpretation for the relational structure between
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them. We assume that all contexts speak about the same non-empty domain (constant domain
assumption).

As argued in the introduction, sometimes it is desired that concepts or roles in the object logic
are interpreted the same in all contexts. Let OCrig ⊆ OC denote the set of rigid concepts, and let
ORrig ⊆ OR denote the set of rigid roles. We call concept names and role names in OC \ OCrig and
OR \ ORrig flexible. Moreover, we assume that individuals of the object logic are always interpreted
the same in all contexts (rigid individual assumption).

Definition 4 [Nested interpretation]
A nested interpretation is a tuple J = (C, ·J ,∆, (·Ic)c∈C), where C is a non-empty set (called
contexts) and (C, ·J ) is an M-interpretation.

Moreover, for every c ∈ C, Ic := (∆, ·Ic) is an O-interpretation such that we have for all c, c′ ∈ C
that xIc = xIc′ for every x ∈ OI ∪ OCrig ∪ ORrig. �

We are now ready to define the semantics of LM JLOK.

Definition 5 [Semantics of LM JLOK ]
Let J = (C, ·J ,∆, (·Ic)c∈C) be a nested interpretation. The mapping ·J is extended to o-axioms as
follows: JαKJ := {c ∈ C | Ic |= α}.

Moreover, J is a model of the m-axiom β if (C, ·J ) is a model of β. This is extended to Boolean
m-axiom formulas inductively as follows:

• J is a model of ¬B1 if it is not a model of B1, and
• J is a model of B1 ∧ B2 if it is a model of both B1 and B2.

We write J |= B if J is a model of the Boolean m-axiom formula B. Furthermore, J is a model
of RM (written J |= RM) if (C, ·J ) is a model of RM, and J is a model of RO (written J |= RO) if
Ic is a model of RO for all c ∈ C.

Finally, J is a model of the LM JLOK-BKB B = (B,RO,RM) (written J |= B) if J is a model of B,
RO, and RM. We call B consistent if it has a model.

The consistency problem in LM JLOK is the problem of deciding whether a given LM JLOK-BKB is
consistent. �

Note that besides the consistency problem there are several other reasoning tasks for LM JLOK. The
entailment problem, for instance, is the problem of deciding, given a BKB B and an m-axiom β,
whether B entails β, i.e. whether all models of B are also models of β. The consistency problem,
however, is fundamental in the sense that most other standard decision problems (reasoning tasks)
can be polynomially reduced to it (in the presence of negation). For the entailment problem, note
that it can be reduced to the inconsistency problem: B = (B,RO,RM) entails β iff (B∧¬β,RO,RM)
is inconsistent. Hence, we focus in the present paper only on the consistency problem.

3 Complexity of the Consistency Problem

Our results for the computational complexity of the consistency problem in LM JLOK are listed in
Table 2. In this section, we focus on the cases where LM and LO are DLs between ALC and SHOQ.
In Section 4, we treat the cases where LM or LO are EL.

Since the lower bounds of context DLs treated in this section already hold for the fragment ELJALCK,
they are shown in Section 4.
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Table 2: Complexity results for consistency in LM JLOK (where “c.” is short for “complete”)

LM
LO no rigid names only rigid concepts rigid roles

EL ALC SHOQ EL ALC SHOQ EL ALC SHOQ
EL const. Exp-c. Exp-c. const. NExp-c. NExp-c. const. 2Exp-c. 2Exp-c.
ALC Exp-c. Exp-c. Exp-c. NExp-c. NExp-c. NExp-c. NExp-c. 2Exp-c. 2Exp-c.
SHOQ Exp-c. Exp-c. Exp-c. NExp-c. NExp-c. NExp-c. NExp-c. 2Exp-c. 2Exp-c.

For the upper bounds, let in the following B = (B,RO,RM) be a SHOQJSHOQK-BKB. We proceed
similar to what was done for ALC-LTL in [BGL08; BGL12] (and SHOQ-LTL in [Lip14]) and reduce
the consistency problem to two separate decision problems.

For the first problem, we consider the so-called outer abstraction, which is the SHOQ-BKB over M
obtained by replacing each m-concept of the form JαK occurring in B by a fresh concept name such
that there is a 1–1 relationship between them.

Definition 6 [Outer abstraction]
Let B = (B,RO,RM) be a LM JLOK-BKB. Let b be the bijection mapping every m-concept of the
form JαK occurring in B to the concept name AJαK ∈ MC, where we assume w.l.o.g. that AJαK does
not occur in B.

1. The Boolean LM -axiom formula Bb over M is obtained from B by replacing every occurrence
of an m-concept of the form JαK by b(JαK). We call the LM -BKB Bb = (Bb,RM) the outer
abstraction of B.

2. Given J = (C, ·J ,∆, (·Ic)c∈C), its outer abstraction is the M-interpretation J b = (C, ·J b)
where

• for every x ∈ MR ∪MI ∪ (MC \ Im(b)), we have xJ b = xJ , and
• for every A ∈ Im(b), we have AJ b = (b−1(A))J ,

where Im(b) denotes the image of b. �

For simplicity, for B′ = (B′,RO,RM) where B′ is a subformula of B, we denote by (B′)b the outer
abstraction of B′ that is obtained by restricting b to the m-concepts occurring in B′.

Example 7. Let Bex = (Bex,∅,∅) with Bex := C v (JA v ⊥K) ∧ (C u JA(a)K)(c) be a
SHOQJSHOQK-BKB. Then, b maps JA v ⊥K to AJAv⊥K and JA(a)K to AJA(a)K. Thus, we have that

Bb
ex :=

(
C v (AJAv⊥K) ∧ (C uAJA(a)K)(c), ∅

)
is the outer abstraction of Bex. M

The following lemma makes the relationship between B and its outer abstraction Bb explicit. It is
proved by induction on the structure of B.

Lemma 8. Let J be a nested interpretation such that J is a model of RO. Then, J is a model of
B iff J b is a model of Bb.

Proof. Since rJ = rJ
b for all r ∈ MR, we have that J is a model of RM iff J b is a model of RM.

Thus, it is only left to show that for any m-axiom γ occurring in B, it holds that J |= γ iff J b |= γb.

Claim: Let Cb be the m-concept obtained from the m-concept C by replacing every occurrence of
JαK by b(JαK). Then, for any x ∈ C it holds that x ∈ CJ iff x ∈ (Cb)J b .
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Proof : We prove the claim by induction on the structure of C:

C = A ∈ MC\Im(b): x ∈ AJ iff x ∈ (Ab)J b by definition of J b and since A = Ab

C = JαK: x ∈ JαKJ iff x ∈ AJ
b

JαK iff x ∈ (JαKb)J b

C = ¬D: x ∈ (¬D)J iff x /∈ DJ iff, by induction hypothesis, x /∈ (Db)J b iff x ∈ (¬Db)J b

iff x ∈ ((¬D)b)J b

C = D u E: x ∈ (D uE)J iff x ∈ DJ and x ∈ EJ iff, by induction hypothesis, x ∈ (Db)J b

and x ∈ (Eb)J b iff x ∈ (Db u Eb)J b iff x ∈ ((D u E)b)J b

C = ∃ r.D: x ∈ (∃ r.D)J iff there exists y ∈ C s. t. (x, y) ∈ rJ and y ∈ DJ iff there exists
y ∈ C s. t. (x, y) ∈ rJ b and y ∈ (Db)J b iff x ∈ (∃ r.Db)J b iff x ∈ ((∃ r.D)b)J b

C = {a}: x ∈ {a}J iff x ∈ ({a}b)J b by definition of J b and since {a} = {a}b

C = 6n r.D: x ∈ (6n r.D)J iff there are at most n elements y ∈ C s.t. (x, y) ∈ rJ and
y ∈ DJ iff there are at most n elements y ∈ C s.t. (x, y) ∈ rJ b and y ∈ (Db)J b

iff x ∈ (6n r.Db)J b iff x ∈ ((6n r.D)b)J b �

If γ of the form C v D, we have that J |= C v D iff x ∈ CJ implies x ∈ DJ iff (by claim)
x ∈ (Cb)J b implies x ∈ (Db)J b iff J b |= Cb v Db.

If γ is of the form C(a), we have that J |= C(a) iff aJ ∈ CJ iff (by claim) aJ b ∈ (Cb)J b iff
J b |= Cb(a).

If γ is of the form r(a, b), we have that J |= r(a, b) iff (aJ , bJ ) ∈ rJ iff (aJ b
, bJ

b) ∈ rJ
b iff

J b |= r(a, b).

If B is of the form ¬B1, we have that J |= B iff not J |= B1 iff not J b |= Bb
1 iff J b |= Bb.

If B is of the form B1 ∧ B2, we have that J |= B iff J |= B1 and B2 iff J b |= Bb
1 and J b |= Bb

2 iff
J b |= Bb.

Since J |= RO, J |= RM iff J b |= RM and J |= B iff J b |= Bb, we have J |= B iff J b |= Bb.

Note that this lemma yields that consistency of B implies consistency of Bb. However, the converse
does not hold as the following example shows.

Example 9. Consider againBex of Example 7. Take any M-interpretationH = (Γ, ·H) with Γ = {e},
dH = e, and CH = AHJAv⊥K = AHJA(a)K = {e}.

Clearly, H is a model of Bb
ex. But there is no nested interpretation J = (C, ·J ,∆, (·Ic)c∈C) with

J |= Bex since this would imply C = Γ, and that Ie is a model of both A v ⊥ and A(a), which is
not possible. M

Therefore, we need to ensure that the concept names in Im(b) are not treated independently. For
expressing such a restriction on the model I of Bb, we adapt a notion of [BGL08; BGL12]. Here it
is worth noting that this problem occurs also in much less expressive DLs as ALC or EL⊥ (i.e. EL
extended with the bottom concept).

Definition 10 [N-interpretation (weakly) respects (U ,Y)]
Let U ⊆ NC and let Y ⊆ P(U). The N-interpretation I = (∆I , ·I) respects (U ,Y) if Z = Y where

Z := {Y ⊆ U | there is some d ∈ ∆I with d ∈ (CU,Y )I}
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and

CU,Y := u
A∈Y

A u u
A∈U\Y

¬A.

It weakly respects (U ,Y) if Z ⊆ Y. �

The second decision problem that we use for deciding consistency is needed to make sure that such
a set of concept names is admissible in the following sense.

Definition 11 [Admissibility]
Let X = {X1, . . . , Xk} ⊆ P(Im(b)). We call X admissible if there exist O-interpretations
I1 = (∆, ·I1), . . . , Ik = (∆, ·Ik) such that

• xIi = xIj for all x ∈ OI ∪ OCrig ∪ ORrig and all i, j ∈ {1, . . . , k}, and
• every Ii, 1 ≤ i ≤ k, is a model of the LO-BKB BXi = (BXi ,RO) over O where

BXi :=
∧

b(JαK)∈Xi

α ∧
∧

b(JαK)∈Im(b)\Xi

¬α.

�

Note that any subset X ′ ⊆ X is admissible if X is admissible.

Intuitively, the sets Xi in an admissible set X consist of concept names such that the corresponding
o-axioms “fit together”. Consider again Example 9. Clearly, the set {AJAv⊥K, AJA(a)K} ∈ P(Im(b))
cannot be contained in any admissible set X .

The next definition captures the above mentioned restriction on the model I of Bb.

Definition 12 [Outer consistency]
Let X ⊆ P(Im(b)). We call the LM -BKB Bb over M outer consistent w.r.t. X if there exists a model
of Bb that weakly respects (Im(b),X ). �

The next two lemmas show that the consistency problem in LM JLOK can be decided by checking
whether there is an admissible set X and the outer abstraction of the given LM JLOK-BKB is outer
consistent w.r.t. X .

Lemma 13. For every M-interpretation H = (Γ, ·H), the following two statements are equivalent:

1. There exists a model J of B with J b = H.

2. H is a model of Bb and the set {Xd | d ∈ Γ} is admissible, where Xd := {A ∈ Im(b) | d ∈ AH}.

Proof. (1 ⇒ 2): Let J = (C, ·J ,∆, (·Ic)c∈C) be a model of B with J b = H. Since J b = H, we
have that C = Γ. By Lemma 8, we have that H is a model of Bb. Moreover, since b is a bijection
between m-concepts of the form JαK occurring in B and concept names of MC, we have that Im(b)
is finite, and thus also the set X := {Xd | d ∈ Γ} ⊆ P(Im(b)) is finite. Let X = {Y1, . . . , Yk}. Since
C = Γ, there exists an index function ν : C→ {1, . . . , k} such that Xc = Yν(c) for every c ∈ C, i.e.

Yν(c) =
{

b(JαK) | JαK occurs in B and c ∈ JαKH
}

=
{

b(JαK) | JαK occurs in B and Ic |= α
}
.

Conversely, for every µ ∈ {1, . . . , k}, there is an element c ∈ C such that ν(c) = µ. The O-
interpretations for showing admissibility of X are obtained as follows. Take c1, . . . , ck ∈ C such that
ν(c1) = 1, . . . , ν(ck) = k. Now, for every i, 1 ≤ i ≤ k, we define the O-interpretation Gi := (∆, ·Ici ).
Clearly, we have that Gi |= BYi and since J |= RO, we have that Gi |= BYi . Moreover, the definition
of a nested interpretation yields that xGi = xGj for all x ∈ OI ∪OCrig ∪ORrig and all i, j ∈ {1, . . . , k}.
Hence, the O-interpretations G1, . . . ,Gk attest admissibility of X .
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(2⇒ 1): Assume that H = (Γ, ·H) is a model of Bb and that the set X := {Xd | d ∈ Γ} is admissible.
Again, since Im(b) is finite, we have that X ⊆ P(Im(b)) is finite. Let X = {Y1, . . . , Yk}. Since X
is admissible, there are O-interpretations G1 = (∆, ·G1), . . . , Gk = (∆, ·Gk) such that Gi |= BYi and
xGi = xGj for all x ∈ OI ∪ OCrig ∪ ORrig and all i, j ∈ {1, . . . , k}. Furthermore, there exists an index
function ν : Γ→ {1, . . . , k} such that Yν(d) = Xd for every d ∈ Γ. We define a nested interpretation
J = (C, ·J ,∆, (·Ic)c∈C) as follows:

• C := Γ;
• xJ := xH for every x ∈ MC ∪MR ∪MI; and
• xIc := xGν(c) for every x ∈ OC ∪ OR ∪ OI and every c ∈ C.

By construction of J , we have that xJ b = xH for every x ∈ MR ∪MI ∪ (MC \ Im(b)). Let A ∈ Im(b),
and let b−1(A) = JαK. We have for every d ∈ Γ = C that d ∈ AJ b iff d ∈ (b−1(A))J iff d ∈ JαKJ iff
Id |= α iff Gν(d) |= α iff b(JαK) = A ∈ Yν(d) (since Gν(d) |= BYν(d)) iff A ∈ Xd iff d ∈ AH. Hence, we
have J b = H. Since H is a model of Bb and, by construction of J , J is a model of RO, we have by
Lemma 8 that J is a model of B.

The following lemma is a consequence of the previous one.

Lemma 14. The LM JLOK-BKB B is consistent iff there is a set X = {X1, . . . , Xk} ⊆ P(Im(b))
such that

1. X is admissible, and

2. Bb is outer consistent w.r.t. X .

Proof. (=⇒): Let J be a model of B, and let J b = (C, ·J b). By Lemma 13, we have that J b is
a model of Bb, and the set X := {Xc | c ∈ C} is admissible. By construction, J b weakly respects
(Im(b),X ), and hence Bb is outer consistent w.r.t. X .

(⇐=): Let X = {X1, . . . , Xk} ⊆ P(Im(b)) such that X is admissible and Bb is outer consistent
w.r.t. X . Hence there is a model G = (C, ·G) of Bb that weakly respects (Im(b),X ). We define
X ′ := {Yc | c ∈ C}, where Yc := {A ∈ Im(b) | c ∈ AG}. Since G weakly respects (Im(b),X ) and
c ∈ (CIm(b),Yc)G for every c ∈ C, we have that X ′ ⊆ X . Since X is admissible, this yields admissibility
of X ′. Lemma 13 yields now consistency of B.

To obtain a decision procedure for SHOQJSHOQK consistency, we have to non-deterministically
guess or construct the set X , and then check the two conditions of Lemma 14. Beforehand, we focus
on how to decide the second condition. For that, assume that a set X ⊆ P(Im(b)) is given.

Lemma 15. Deciding whether Bb is outer consistent w.r.t. X can be done in time exponential in
the size of Bb and linear in size of X .

Proof. It is enough to show that deciding whether Bb has a model that weakly respects (Im(b),X )
can be done in time exponential in the size of Bb and linear in the size of X . It is not hard to see
that we can adapt the notion of a quasimodel respecting a pair (U ,Y) of [Lip14] to a quasimodel
weakly respecting (U ,Y). Indeed, one just has to drop Condition (i) in Definition 3.25 of [Lip14].
Then, the proof of Lemma 3.26 there can be adapted such that our claim follows. This is done by
dropping one check in Step 4 of the algorithm of [Lip14].

Using this lemma, we provide decision procedures for SHOQJSHOQK consistency. However, these
depend also on the first condition of Lemma 14. We take care of this differently depending on which
names are allowed to be rigid.
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3.1 Consistency in SHOQJSHOQK without rigid names

In this section, we consider the case where no rigid concept names or role names are allowed. So we
fix OCrig = ORrig = ∅.

Theorem 16. The consistency problem in SHOQJSHOQK is in Exp if OCrig = ORrig = ∅.

Proof. Let B be a SHOQJSHOQK-BKB and Bb its outer abstraction. We can decide consistency
of B using Lemma 14. We define X := {X ⊆ Im(b) | BX is consistent} where BX is defined as
in Definition 11. We first show that X = {X1, . . . , Xk} is admissible. Let Ii be a model of BXi ,
which exists since BXi is consistent. Due to the Löwenheim-Skolem theorem, we can assume that
all models Ii, 1 ≤ i ≤ k, have a countably infinite domain. Thus, w.l.o.g. we can assume that all
models have the same domain ∆. Furthermore, we can assume that individual names are interpreted
the same. Since OCrig = ORrig = ∅, the set X fulfills all conditions of Definition 11 for admissibility.

Thus, if Bb is outer consistent w.r.t. X , then we have by Lemma 14 that B is consistent. Conversely,
assume that B is consistent. Then, by Lemma 14, there is an admissible set X ′ ⊆ P(Im(b)) and Bb

is outer consistent w.r.t. X ′. Since X is the maximal admissible subset of P(Im(b)), we have X ′ ⊆ X .
If Bb is outer consistent w.r.t. X ′, it is also outer consistent w.r.t. X . Hence, B is consistent iff
Bb is outer consistent w.r.t. X , which yields a decision procedure for the consistency problem in
SHOQJSHOQK.

It remains to analyze the complexity. There are exponentially many X ∈ P(Im(b)), but each SHOQ-
BKB BX can be constructed in time polynomial in the size of B. We can decide consistency of BX

in time exponential [Lip14]. Thus, the set X can be constructed in time exponential in the size of B
and it is of exponential size. Due to Lemma 15, deciding whether Bb is outer consistent w.r.t. X
can be done in time exponential in the size of Bb and linear in the size of X . Thus, overall we can
decide the consistency problem in exponential time.

Together with the lower bounds shown in Section 4, we obtain Exp-completeness for the consistency
problem in LM JLOK for LM and LO being DLs between ALC and SHOQ if OCrig = ORrig = ∅.

3.2 Consistency in SHOQJSHOQK with rigid concept and role names

In this section, we consider the case where rigid concept and role names are present. So we fix
OCrig 6= ∅ and ORrig 6= ∅.

Theorem 17. The consistency problem in SHOQJSHOQK is in 2Exp if OCrig 6= ∅ and ORrig 6= ∅.

Proof. Let B = (B,RO,RM) be a SHOQJSHOQK-BKB and Bb = (Bb,RM) its outer abstraction.
We can decide consistency of B using Lemma 14. For that, we enumerate all sets X ⊆ P(Im(b)),
which can be done in time doubly exponential in B. For each of these sets X = {X1, . . . , Xk},
we check whether Bb is outer consistent w.r.t. X , which can be done in time exponential in the
size of Bb and linear in the size of X . Then, we check X for admissibility using the renaming
technique of [BGL08; BGL12]. For every i, 1 ≤ i ≤ k, every flexible concept name A occurring
in Bb, and every flexible role name r occurring in Bb or RO, we introduce copies A(i) and r(i). The
SHOQ-BKB B

(i)
Xi

= (B(i)
Xi
,RO

(i)) over O is obtained from BXi (see Definition 11) by replacing every
occurrence of a flexible name x by x(i). We define

BX :=
(∧

1≤i≤k
B(i)
Xi
,
⋃

1≤i≤k
RO

(i)
)
.
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It is not hard to verify (using arguments of [Lip14]) that X is admissible iff BX is consistent. Note
that BX is of size at most exponential in B and can be constructed in exponential time. Moreover,
consistency of BX can be decided in time exponential in the size of BX [Lip14], and thus in time
doubly exponential in the size of B.

Together with the lower bounds shown in Section 4, we obtain 2Exp-completeness for the consistency
problem in LM JLOK for LM and LO being DLs between ALC and SHOQ if OCrig 6= ∅ and ORrig 6= ∅.

3.3 Consistency in SHOQJSHOQK with only rigid concept names

In this section, we consider the case where rigid concept are present, but rigid role names are not
allowed. So we fix OCrig 6= ∅ but ORrig = ∅.

Theorem 18. The consistency problem in SHOQJSHOQK is in NExp if OCrig 6= ∅ and ORrig = ∅.

Proof. Let B = (B,RO,RM) be a SHOQJSHOQK-BKB and Bb = (Bb,RM) its outer abstraction.
We can decide consistency of B using Lemma 14. We first non-deterministically guess the set
X = {X1, . . . , Xk} ⊆ P(Im(b)), which is of size at most exponential in B. Due to Lemma 15 we can
check whether Bb is outer consistent w.r.t. X in time exponential in the size of Bb and linear in the
size of X . It remains to check X for admissibility. For that let OCrig(B) ⊆ OCrig and OI(B) ⊆ OI be the
sets of all rigid concept names and individual names occurring in B, respectively. As done in [BGL08;
BGL12] we non-deterministically guess a set Y ⊆ P(OCrig(B)) and a mapping κ : OI(B) → Y which
also can be done in time exponential in the size of B. Using the same arguments as in [BGL08;
BGL12] we can show that X is admissible iff

B̂Xi :=

BXi ∧ ∧
a∈OI(B)

( u
A∈κ(a)

A u u
A∈OCrig(B)\κ(a)

¬A
)

(a), RO


has a model that respects (OCrig(B),Y), for all 1 ≤ i ≤ k. The SHOQ-BKB B̂Xi is of size polynomial
in the size of B and can be constructed in time exponential in the size of B. We can check if B̂Xi

has a model that respects (OCrig(B),Y) in time exponential in the size of B̂Xi [BGL08; BGL12], and
thus exponential in the size of B.

Together with the lower bounds shown in Section 4, we obtain NExp-completeness for the consistency
problem in LM JLOK for LM and LO being DLs between ALC and SHOQ if OCrig 6= ∅ and ORrig = ∅.

Summing up the results, we obtain the following corollary.

Corollary 19. For all LM , LO between ALC and SHOQ, the consistency problem in LM JLOK is

• Exp-complete if OCrig = ∅ and ORrig = ∅,
• NExp-complete if OCrig 6= ∅ and ORrig = ∅, and
• 2Exp-complete if OCrig 6= ∅ and ORrig 6= ∅.

4 The Case of EL: LMJELK and ELJLOK

In this section, we give some complexity results for context DLs LM JLOK where LM or LO are EL.
In Section 4.1, we consider LM JELK where LM is between ALC and SHOQ. Then, in Section 4.2,
we consider the remaining context DLs ELJLOK where LO is either EL or between ALC and SHOQ.
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4.1 The Context DLs LM JELK

In this section, we consider LM JELK where LM is between ALC and SHOQ. The lower bounds
already hold for ALCJELK.

Theorem 20. The consistency problem in ALCJELK is Exp-hard if OCrig = ORrig = ∅.

Proof. Deciding whether a given conjunction of ALC-axioms B is consistent is Exp-hard [Sch91].
Obviously, B is also an ALCJELK-BKB.

For the cases of rigid names, the lower bounds of NExp are obtained by a careful reduction of the
satisfiability problem in the temporalized DL EL-LTL [BT15b; BT15a], which is a fragment of ALC-
LTL introduced in [BGL08; BGL12]. For the sake of completeness, we recall the basic definitions of
L-LTL here, where L is a DL.

Definition 21 [Syntax of L-LTL]
L-LTL-formulas over O are defined by induction:

• if α is an L-axiom over O, then α is an L-LTL-formula, and
• if φ, ψ are L-LTL-formulas over O, then so are φ ∧ ψ, ¬φ, φUψ, Xφ, and
• nothing else is an L-LTL-formula. �

The usual abbreviations are used:

• φ ∨ ψ for ¬(¬φ ∧ ¬ψ),
• true for A(a) ∨ ¬A(a),
• 3φ for true Uφ, and
• 2φ for ¬3¬φ.

The semantics of L-LTL is based on DL-LTL-structures. These are sequences of O-interpretations
over the same non-empty domain that additionally respect rigid names and the rigid individual
assumption.

Definition 22 [DL-LTL-structure]
ADL-LTL-structure over O is a sequence I = (Ii)i≥0 of O-interpretations (∆, ·Ii) such that xIi = xIj

holds for all x ∈ OCrig ∪ ORrig ∪ OI, i, j > 0. �

We are now ready to define the semantics of L-LTL.

Definition 23 [Semantics of L-LTL]
The validity of an L-LTL-formula φ in a DL-LTL-structure I = (Ii)i≥0 at time i ≥ 0, denoted by
I, i |= ϕ, is defined inductively:

I, i |= α iff Ii |= α where α is an ALC-axiom over O,
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ,
I, i |= ¬φ iff not I, i |= φ,
I, i |= Xφ iff I, i+ 1 |= φ,
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ and I, j |= φ for all j with i ≤ j < k.

We call an L-LTL-structure I a model of φ if I, 0 |= φ. The satisfiability problem in L-LTL is the
question whether a given L-LTL-formula φ has a model. �

In [BT15b; BT15a], it is shown that the satisfiability problem in EL-LTL is NExp-hard as soon as
rigid concept names are available. We reduce the satisfiability problem in EL-LTL to the consistency
problem in ALCJELK to obtain the lower bounds of NExp, where we use the fact that the lower
bounds of [BT15b; BT15a] hold already for a syntactically restricted fragment of EL-LTL.
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Theorem 24. The consistency problem in ALCJELK is NExp-hard if OCrig 6= ∅ and ORrig = ∅.

Proof. In fact, the lower bounds hold for EL-LTL-formulas of the form 2φ where φ is an EL-LTL-
formula that contains only X as temporal operator [BT15a].

Let 2φ be such an EL-LTL-formula over O. We obtain now an m-concept Cφ from φ by replacing
EL-axioms α by JαK, ∧ by u, and subformulas of the form Xψ by ∀t.ψ u ∃ t.ψ, where t ∈ MR is
arbitrary but fixed.

Claim: 2φ is satisfiable iff B = > v Cφ u ∃ t.> is consistent.

Proof : (=⇒): Take any DL-LTL-structure I = (∆, ·Ii)i≥0 with I, 0 |= 2φ. We define the nested
interpretation J = (C, ·J ,∆, (·Ic)c∈C) as follows:

C := {ci | i ≥ 0},
·Ici := ·Ii ,
tJ := {(ci, ci+1)}.

We show now that for every i ≥ 0, we have I, i |= φ iff ci ∈ CJφ by induction on the structure of φ.

If φ is an EL-axiom over O, then we have I, i |= φ iff Ii |= φ iff Ici |= φ iff ci ∈ JφKJ .

If φ is of the form ¬ψ, then we have I, i |= φ iff I, i 6|= ψ iff ci /∈ CJψ iff ci ∈ (¬Cψ)J = CJφ .

If φ is of the form ψ1 ∧ ψ2, the claim follows by similar arguments.

If φ is of the form Xψ, we have that I, i |= φ iff I, i+ 1 |= ψ iff ci+1 ∈ CJψ iff ci ∈ (∀t.Cψ u ∃ t.Cψ)J

iff ci ∈ CJφ .

It follows that I, 0 |= 2φ iff J |= > v Cφ.

Furthermore, since (ci, ci+1) ∈ tJ , we have ci ∈ (∃ t.>)J . Thus, J |= > v ∃ t.>.

(⇐=): Take any nested interpretation J = (C, ·J ,∆, (·Ic)c∈C) that is a model of > v Cφu∃ t.>. Let
P be an infinite path P = c0c1 . . . with ci ∈ C and (ci, ci+1) ∈ tJ for every i ≥ 0. Such a path exists,
because J |= > v ∃ t.>. We define the nested interpretation JP := ({ci | i ≥ 0}, ·JP ,∆, (·Ici )i≥0)
where ·JP is the restriction of ·J to the domain {ci | i ≥ 0}.

By construction we have that JP |= > v ∃ t.>. We show by a simple case distinction that
JP |= > v Cφ.

If Cφ does not contain any role name r ∈ MR, the restriction on the set of worlds preserves the entail-
ment relation. Otherwise, Cφ is of the form ∀t.Cψ u ∃ t.Cψ. Since JP |= > v ∃ r.>, JP |= > v Cψ,
and there is only one t-successor, we have JP |= > v Cφ.

Hence, JP |= > v Cφ u ∃ t.>.

We define the DL-LTL-structure I over O as I := (∆, ·Ii)i≥0 where ·Ii := ·Ici .

Again we show that for every i ≥ 0, that we have ci ∈ CJPφ iff I, i |= φ by induction on the structure
of φ.

If φ is an EL-axiom over O, we have ci ∈ JφKJP iff Ici |= φ iff Ii |= φ iff I, i |= φ.

If φ is of the form ¬ψ, then we have ci ∈ CJPφ iff ci /∈ CJPψ iff I, i 6|= ψ iff I, i |= φ.

If φ is of the form ψ1 ∧ ψ2, the claim follows by similar arguments.

If φ is of the form Xψ, we have that ci ∈ CJPφ iff ci ∈ (∀t.Cψu∃ t.Cψ)JP iff ci+1 ∈ CJPψ iff I, i+1 |= ψ
iff I, i |= φ.
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It follows that JP |= > v Cφ iff I, 0 |= 2φ. �

This claim yields the lower bound of NExp for the consistency problem in ALCJELK if OCrig 6= ∅.

Next, we prove the upper bound of NExp for the consistency problem in the case of rigid names.

Theorem 25. The consistency problem in SHOQJELK is in NExp if OCrig 6= ∅ and ORrig 6= ∅.

Proof. We again use Lemma 14. First, we non-deterministically guess a set X ⊆ P(Im(b)) and
construct the EL-BKB BX over O as in the proof of Theorem 17, which is actually a conjunction of
EL-literals over O, i.e. of (negated) EL-axioms over O. The following claim shows that consistency
ofBX can be reduced to consistency of a conjunction of ELO⊥-axioms over O, where ELO⊥ is the
extension of EL with nominals and the bottom concept.

Claim: For every conjunction of EL-literals B over O, there exists an equisatisfiable conjunction B′
of ELO⊥-axioms over O.

Proof : Let B be a conjunction of EL-literals over O, i.e.

B = α1 ∧ · · · ∧ αn ∧ ¬β1 ∧ · · · ∧ ¬βm

where αi, 1 ≤ i ≤ n, βj , 1 ≤ j ≤ m are EL-axioms over O. We define B′ as follows:

B′ = α1 ∧ · · · ∧ αn ∧ γ1 ∧ · · · ∧ γm,

where

γi :=


C(ai) ∧D′(ai) ∧D uD′ v ⊥ if βi = C v D,
A′(a) ∧A uA′ v ⊥ if βi = A(a), and
{a} u ∃ r.{b} v ⊥ if βi = r(a, b)

with A′, D′ being fresh concept names and ai being fresh individual names. It is easy to see that if
an O-interpretation I is a model of ¬β1 ∧ · · · ∧ ¬βm, there exists an extension of I that is a model
of γ1 ∧ · · · ∧ γm. Conversely, if an O-interpretation I ′ is a model of γ1 ∧ · · · ∧ γm, it is also a model
of ¬β1 ∧ · · · ∧ ¬βm. Hence B and B′ are equisatisfiable. �

By this claim and the fact that consistency of conjunctions of ELO⊥-axioms can be decided in
polynomial time [BBL05], we obtain our claimed upper bound.

Summming up the results of this section, we obtain the following corollary.

Corollary 26. For all LM between ALC and SHOQ, the consistency problem in LM JELK is

• Exp-complete if OCrig = ∅ and ORrig = ∅, and
• NExp-complete otherwise.

Proof. The lower bounds follow from Theorems 20 and 24. The upper bound of Exp in the case
OCrig = ORrig = ∅ follows immediately from Theorem 16, whereas the upper bound of NExp follows
from Theorem 25.
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4.2 The Context DLs ELJLOK

In this section, we consider ELJLOK where LM is either EL or between ALC and SHOQ. Instead of
considering ELJLOK-BKBs, we allow only conjunctions of m-axioms. Then the consistency problem
becomes trivial in the case of ELJELK since all ELJELK-BKBs are consistent, as EL lacks to express
contradictions. This restriction, however, does not yield a better complexity in the cases of ELJLOK,
where LO is between ALC and SHOQ.

Next, we show the lower bounds for the consistency problem in ELJALCK. We again distinguish the
three cases of which names are allowed to be rigid.

Theorem 27. The consistency problem in ELJALCK is Exp-hard if OCrig = ORrig = ∅.

Proof. Deciding whether a given conjunction B = α1 ∧ · · · ∧αn of ALC-axioms is consistent is Exp-
hard [Sch91]. Obviously, B is consistent iff the ELJALCK-BKB (Jα1K u · · · u JαnK)(a) is consistent,
where a ∈ MI.

For the case of rigid role names, we have lower bounds of 2Exp.

Theorem 28. The consistency problem in ELJALCK is 2Exp-hard if OCrig 6= ∅ and ORrig 6= ∅.

Proof. To show the lower bound, we adapt the proof ideas of [BGL08; BGL12], and reduce the
word problem for exponentially space-bounded alternating Turing machines (i.e. is a given word w
accepted by the machine M) to the consistency problem in ELJALCK with rigid roles, i.e. ORrig 6= ∅.
In [BGL08; BGL12], a reduction was provided to show 2Exp-hardness for the temporalized DL
ALC-LTL in the presence of rigid roles. Here, we mimic the properties of the time dimension that
are important for the reduction using a role name t ∈ MR.

Our ELJALCK-BKB is the conjunction of the ELJALCK-BKBs introduced below. First, we ensure
that we never have a “last” time point:

> v ∃ t.>

Note that in the corresponding model, we do not enforce a t-chain since cycles are not prohibited.
This, however, is not important in the reduction.

The ALC-LTL-formula obtained in the reduction of [BGL08; BGL12] is a conjunction of ALC-LTL-
formulas of the form 2φ, where φ is an ALC-LTL-formula. This makes sure that φ holds in all
(temporal) worlds. For the cases where φ is an ALC-axiom, we can simply express this by:

> v JφK

This captures all except for two conjuncts of the ALC-LTL-formula of the reduction of [BGL08;
BGL12]. There, a k-bit binary counter using concept names A′0, . . . , A′k−1 was attached to the
individual name a, which is incremented along the temporal dimension. We can express something
similar in ELJALCK, but instead of incrementing the counter values along a sequence of t-successors,
we have to go backwards since EL does allow for branching but does not allow for values restrictions,
i.e. we cannot make sure that all t-successors behave the same. More precisely, if the counter value n
is attached to a in context c, the value n + 1 (modulo 2k − 1) must be attached to a in all of c’s
t-predecessors.
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First, we ensure which bits must be flipped:∧
i<k

(
∃ t.
(
JA′0(a)K u . . . u JA′i−1(a)K u JA′i(a)K

)
v J(¬A′i)(a)K

)
∧
i<k

(
∃ t.
(
JA′0(a)K u . . . u JA′i−1(a)K u J(¬A′i)(a)K

)
v JA′i(a)K

)

Next, we ensure that all other bits stay the same:∧
0<i<k

∧
j<i

(
∃ t.
(
J(¬A′j)(a)K u JA′i(a)K

)
v JA′i(a)K

)
∧

0<i<k

∧
j<i

(
∃ t.
(
J(¬A′j)(a)K u J(¬A′i)(a)K

)
v J(¬A′i)(a)K

)

Note that due to the first m-axiom above, we enforce that every context has a t-successor. By the
other m-axioms, we make sure that we enforce a t-chain of length 2k. As in [BGL08; BGL12], it is
not necessary to initialize the counter. Since we decrement the counter along the t-chain (modulo
2k − 1), every value between 0 and 2k − 1 is reached.

The conjunction of all the ELJALCK-BKBs above yields an ELJALCK-BKB B that is consistent iff w
is accepted by M .

Finally, we obtain a lower bound of NExp in the case of rigid concept names only.

Theorem 29. The consistency problem in ELJALCK is NExp-hard if OCrig 6= ∅ and ORrig = ∅.

Proof. To show the lower bound, we again adapt the proof ideas of [BGL08; BGL12], and reduce
an exponentially bounded version of the domino problem to the consistency problem in ELJALCK
with rigid concepts, i.e. OCrig 6= ∅ and ORrig = ∅. In [BGL08; BGL12], a reduction was provided
to show NExp-hardness for the temporalized DL ALC-LTL in the presence of rigid concepts. As in
the proof of Theorem 28, we mimic the properties of the time dimension that are important for the
reduction using a role name t ∈ MR.

Our ELJALCK-BKB is the conjunction of the ELJALCK-BKBs introduced below. We proceed in a
similar way as in the proof of Theorem 28. First, we ensure that we never have a “last” time point:

> v ∃ t.>

Note that in the corresponding model, we do not enforce a t-chain since cycles are not prohibited.
As in the reduction in the proof of Theorem 28, this is not important in the reduction here.

Next, note that since the 2-operator distributes over conjunction, most of the conjuncts of the ALC-
LTL-formula of the reduction of [BGL08; BGL12] can be rewritten as conjunctions of ALC-LTL-
formulas of the form 2α, where α is an ALC-axiom. As already argued in the proof of Theorem 28,
this can equivalently be expressed by > v JαK.

In [BGL08; BGL12], a (2n+ 2)-bit binary counter is employed using concept names Z0, . . . , Z2n+1.
This counter is attached to an individual name a, which is incremented along the temporal dimension.
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This can be expressed in ELJALCK as shown in the proof of Theorem 28:∧
i<2n+2

(
∃ t.
(
JZ0(a)K u . . . u JZi−1(a)K u JZi(a)K

)
v J(¬Zi)(a)K

)
∧

i<2n+2

(
∃ t.
(
JZ0(a)K u . . . u JZi−1(a)K u J(¬Zi)(a)K

)
v JZi(a)K

)
∧

0<i<2n+2

∧
j<i

(
∃ t.
(
J(¬Zj)(a)K u JZi(a)K

)
v JZi(a)K

)
∧

0<i<2n+2

∧
j<i

(
∃ t.
(
J(¬Zj)(a)K u J(¬Zi)(a)K

)
v J(¬Zi)(a)K

)

Note that due to the first m-axiom above, we enforce that every context has a t-successor. By the
other m-axioms, we make sure that we enforce a t-chain of length 22n+2. As in [BGL08; BGL12], it
is not necessary to initialize the counter. Since we decrement the counter along the t-chain (modulo
22n+1), every value between 0 and 22n+1 is reached.

In [BGL08; BGL12], anALC-LTL-formula is used to express that the value of the counter in shared by
all domain elements belonging to the current (temporal) world. This is expressed using a disjunction,
which we can simulate as follows:∧

0≤i≤2n+1

(
JZi(a)K v J> v ZiK ∧ J(¬Zi)(a)K v JZi v ⊥K

)

Next, there is a concept name N , which is required be non-empty in every (temporal) world. We
express this using a role name r ∈ OR:

> v J(∃ r.N)(a)K

It is only left to express the following ALC-LTL-formula of [BGL08; BGL12]:

2
( ∨
d∈D

(> v d′)
)

For readability, let D = {d1, . . . , dk}. We use non-convexity of ALC as follows to express this:

> v J(d′1 t · · · t d′k)(a)K ∧
∧

1≤i≤k

(
Jd′i(a)K v J> v d′iK

)

The conjunction of all the ELJALCK-BKBs above yields an ELJALCK-BKB B that is consistent iff
the exponentially bounded version of the domino problem has a solution.

Summing up the results of this section together with the upper bounds of Section 3, we obtain the
following corollary.

Corollary 30. For all LO between ALC and SHOQ, the consistency problem in ELJLOK is

• Exp-complete if OCrig = ∅ and ORrig = ∅,
• NExp-complete if OCrig 6= ∅ and ORrig = ∅, and
• 2Exp-complete if OCrig 6= ∅ and ORrig 6= ∅.
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Proof. The lower bounds follow from Theorems 27, 28, and 29. The corresponding upper bounds
follow from Theorems 16, 17, and 18.

5 Conclusions

We have introduced and investigated a family of two-dimensional context DLs LM JLOK capable of
representing information on different contexts (using a DL LO) and the relation between them (using
a DL LM ). In these context DLs, the consistency problem is decidable even in the presence of rigid
names. We have investigated the complexity of the context DLs built from the classical DLs EL,
ALC, and SHOQ, see Table 2.

For future work, we would like to consider DLs admitting inverse roles, which are also useful for
representing information about and within contexts. As argued in [McC93], also temporal informa-
tion is often required to represent information about contexts faithfully. We think that our decision
procedures can be adapted to deal with temporalized context DLs such as LTLJLM JLOKK. More-
over, besides consistency and other standard reasoning tasks, there are also reasoning tasks specific
to contexts and rôles that we want to investigate in future, such as to check whether an object is
allowed to play two rôles (at the same time).
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