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A Tableau Algorithm for SROIQ under Infinitely
Valued Gödel Semantics

Stefan Borgwardt and Rafael Peñaloza

Abstract

Fuzzy description logics (FDLs) are knowledge representation formalisms capable of
dealing with imprecise knowledge by allowing intermediate membership degrees in the
interpretation of concepts and roles. One option for dealing with these intermediate degrees
is to use the so-called Gödel semantics. Despite its apparent simplicity, developing reasoning
techniques for expressive FDLs under this semantics is a hard task. We present a tableau
algorithm for deciding consistency of a SROIQ ontology under Gödel semantics. This
is the first algorithm that can handle the full expressivity of SROIQ as well as the full
Gödel semantics.

1 Introduction

Description logics (DLs) [1] are a family of knowledge representation formalisms designed to
represent the terminological knowledge of an application domain in an unambiguous and easy-to-
understand manner. They have been successfully applied for the modelling of many real-world
domains, including several from the bio-medical sciences. In addition, many efficient reasoners
are now available.

As it has been widely argued in the literature, one of the important deficits of classical DLs
is their inability to handle imprecise notions for which a clear-cut characterisation cannot be
achieved. To cover this gap, it has been proposed to extend the semantics of DLs following the
ideas of mathematical fuzzy logic [12]. Briefly, fuzzy description logics allow intermediate truth
degrees—usually real numbers between 0 (false) and 1 (true)—to be used in the definition of
imprecise knowledge [2]. To interpret these intermediate degrees, the logical connectives need
to be extended accordingly. In general, there are many possible extensions that can be used;
hence, each (classical) DL gives rise to a family of FDLs. However, for most of these extensions,
reasoning becomes undecidable, even if the underlying DL is relatively inexpressive [6]. In fact,
the only decidable expressive FDLs are those based on the Gödel semantics, and the variant
Zadeh semantics.

Developing a reasoning algorithm for the very expressive DL SROIQ is far from trivial, as one
needs to handle all the constructors, including nominals and number restrictions, adequately.
This difficulty is accentuated when the Gödel semantics are considered, since this logic does not
have the finitely valued model property [5]. This means that there are ontologies whose models
must use infinitely many truth degrees, and hence must have an infinite domain. Indeed, this
is one of the reasons why the crispification approach as described in [4, 7] is only valid under
finitely valued semantics.

To the best of our knowledge, the only existing algorithms for deciding consistency of ontologies
in expressive DLs with (infinitely valued) Gödel semantics are the automata-based approach
from [5, 8] and the new crispification method from [11]. Rather than trying to find a model
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directly, the automata-based approach produces an abstract representation of a large class of
models. In this representation, the actual degrees of truth used in a model are abstracted to
consider only the order among them. This abstraction from the actual degrees is also exploited
by the crispification approach, which translates a fuzzy ontology into a classical ontology by
using concepts that simulate the order between the relevant truth degrees. As an added benefit,
considering only the order between concepts allows for a more flexible representation of the
domain knowledge in which, for instance, one can express that an individual is more tall than
strong, without having to specify truth degrees for each of these concepts.

Although they provide good theoretical results such as tight complexity bounds for reasoning,
these approaches are restricted to sublogics of SROIQ, and there is no obvious way to extend
them to the full expressivity of SROIQ. Moreover, the automata-based approach is not adequate
for producing efficient implementations, as it requires the construction of an exponentially large
automaton before any reasoning steps are made. In this paper we present a new tableau-
based algorithm that combines the ideas of the classical tableau approach for SROIQ with
the order-based abstraction developed to handle the Gödel semantics. The result is the first
reasoning algorithm that can handle the full expressivity of fuzzy SROIQ under Gödel semantics.
Interestingly, our algorithm inherits the properties that allow an efficient implementation of the
classical tableau algorithm. In particular, the algorithm behaves better when the input ontology
only uses less expressive features of the logic, and applies complex constructions only when it is
absolutely necessary.

2 Preliminaries

We recall basic definitions about FDLs and weighted automata using Gödel semantics [2, 5, 11].

2.1 Gödel Fuzzy Logic and Order Structures

The two basic operators of Gödel fuzzy logic are conjunction and implication, interpreted by the
Gödel t-norm and residuum, respectively. The Gödel t-norm of two fuzzy degrees x, y ∈ [0, 1] is
defined as minimum function min{x, y}. The residuum ⇒ is uniquely defined by the equivalence
min{x, y} 6 z iff y 6 (x⇒ z) for all x, y, z ∈ [0, 1], and can be computed as

x⇒ y =

{
1 if x 6 y,
y otherwise.

For a deeper introduction to t-norms and t-norm-based fuzzy logics, see [12,13,21].

An order structure S is a finite set containing at least the numbers 0, 0.5, and 1, together with
an involutive unary operation inv : S → S such that inv(x) = 1− x for all numbers x ∈ S ∩ [0, 1].
A total preorder (on S) is a transitive and total binary relation �∗ ⊆ S × S. For α, β ∈ S, we
write α '∗ β if α �∗ β and β �∗ α, and we write α ≺∗ β if it is not the case that β �∗ α. Notice
that '∗ is an equivalence relation on S. For a relation symbol ./ ∈ {<,6,=,>, >}, we denote
by ./∗ the corresponding relation induced by �∗; that is, ≺∗, �∗, '∗, �∗, or �∗, respectively.
The set order(S) contains exactly those total preorders �∗ over S which

• have 0 and 1 as least and greatest element, respectively,
• preserve the order of the real numbers on S ∩ [0, 1], and
• satisfy α �∗ β iff inv(β) �∗ inv(α) for all α, β ∈ S.

Given �∗ ∈ order(S), the following functions on S that mimic the operators of Gödel fuzzy logic
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over [0, 1] are well-defined since �∗ is total:

min∗{α, β} :=

{
α if α �∗ β
β otherwise,

α⇒∗ β :=

{
1 if α �∗ β
β otherwise.

It is easy to see that these operators agree with min and ⇒ on the set S ∩ [0, 1].

An order assertion (over S) is an expression of the form α ./ β, where ./ ∈ {<,6,=,>, >}
and α, β ∈ S. An order formula is a Boolean combination of order assertions. An element
�∗ ∈ order(S) satisfies (or is a model of)

• the order assertion α ./ β iff α ./∗ β holds;
• an order formula if there is a satisfying Boolean valuation of all its order assertions such
that �∗ satisfies all order assertions evaluated to true, and does not satisfy any order
assertions evaluated to false.

• a set of order assertions if it satisfies all assertions contained in it.

A set of order assertions Φ is satisfiable if it has a model, and it entails an order assertion φ
if all models of Φ are also models of φ. Deciding satisfiability of a set of order assertions Φ
is clearly possible in time polynomial in the size of S: one can saturate Φ w.r.t. the axioms
defining order(S), i.e. transitivity, the order on S ∩ [0, 1], and the properties of inv, and then
check whether the resulting set contains an assertion of the form α < α. Furthermore, Φ entails
α 6 β iff Φ ∪ {β > α} is unsatisfiable (and similarly for < and >), and Φ entails α = β iff it
entails both α 6 β and α > β.

For convenience, we also sometimes use expressions like α > min{β, γ} or α = β ⇒ γ, where
min and ⇒ are interpreted using the operators min∗ and ⇒∗, respectively, introduced above.

2.2 G-SROIQ

We now define the fuzzy description logic G-SROIQ. Let NI, NC, and NR be three mutually
disjoint sets of individual names, concept names, and role names, respectively, where NR contains
the universal role ru. The set of roles is N−R := NR ∪ {r− | r ∈ NR}, where the elements
of the form r− are called inverse roles. Since we need to make several syntactic restrictions
based on which roles appear in which role axioms, we start by defining role hierarchies. A role
hierarchy Rh is a finite set of (complex) role inclusions of the form w v r > p, where r 6= ru is a
role name, w ∈ (N−R )+ is a non-empty role chain not including the universal role, and p ∈ (0, 1].
Such a role inclusion is called simple if w ∈ N−R . We extend the notation ·− to inverse roles and
role chains as usual, by setting (r−)− := r and (r1 . . . rn)− := r−n . . . r

−
1 .

We recall now the regularity condition from [3,16]. Let l be a strict partial order on N−R such
that r l s iff r− l s. A role inclusion w v r > p is l-regular if

• w is of the form rr or r−, or
• w is of the form r1 . . . rn, rr1 . . . rn, or r1 . . . rnr, and for all 1 6 i 6 n it holds that ri l r.

An role hierarchy Rh is regular if there is a strict partial order l as above such that each role
inclusion in Rh is l-regular. A role name r is simple (w.r.t. Rh) if for each w v r > p ∈ Rh
we have that w is of the form s or s− for a simple role s. This notion is well-defined since the
regularity condition prevents any cyclic dependencies between role names in Rh. An inverse
role r− is simple if r is simple. For the rest of this paper, let Rh be a regular role hierarchy.

3



Table 1: Syntax and semantics of G-SROIQ

Name Syntax Semantics (CI(d) / rI(d, e))

concept name A AI(d) ∈ [0, 1]

truth constant p p

conjunction C uD min{CI(d), DI(d)}
implication C → D CI(d)⇒ DI(d)

negation ¬C 1− CI(d)

existential restriction ∃r.C sup
e∈∆I

min{rI(d, e), CI(e)}

value restriction ∀r.C inf
e∈∆I

rI(d, e)⇒ CI(e)

nominal {a}

{
1 if d = aI

0 otherwise

at-least restriction >n s.C sup
e1,...,en∈∆I

pairwise different

n
min
i=1

min{sI(d, ei), C
I(ei)}

local reflexivity ∃s.Self rI(d, d)

role name r rI(d, e) ∈ [0, 1]

inverse role r− rI(e, d)

universal role ru 1

G-SROIQ concepts [11] are built using the constructors listed in the upper part of Table 1,
where C,D denote concepts, p ∈ [0, 1], n ∈ N, A ∈ NC, a ∈ NI, r ∈ N−R , and s ∈ N−R is a simple
role. The restriction to simple roles in at-least restrictions is necessary to ensure decidability,
already in the classical case [18]. We also use the common DL constructors > := 1 (top concept),
⊥ := 0 (bottom concept), C tD := ¬(¬C u ¬D) (disjunction), and 6n s.C := ¬(>(n+ 1) s.C)
(at-most restriction).

The semantics of G-SROIQ is based on (fuzzy) interpretations I = (∆I , ·I) over a non-empty
domain ∆I , which assign to each individual name a ∈ NI an element aI ∈ ∆I , to each concept
name A ∈ NC a fuzzy set AI : ∆I → [0, 1], and to each role name r ∈ NR a fuzzy binary relation
rI : ∆I ×∆I → [0, 1]. This interpretation is extended to complex concepts and roles as defined
in the last column of Table 1, for all d, e ∈ ∆I .

As it is common for fuzzy DLs, we restrict reasoning to witnessed interpretations [14]. Intuitively,
these interpretations require that the suprema and infima in the semantics are in fact maxima
and minima, respectively. In other words, the degrees of these constructors are witnessed by an
element in the domain. Formally, an interpretation I is witnessed if, for every d ∈ ∆I , n > 0,
r ∈ N−R , simple s ∈ N−R , and concept C, there are e, e′, e1, . . . , en ∈ ∆I such that e1, . . . , en are
pairwise different,

(∃r.C)I(d) = min{rI(d, e), CI(e)},
(∀r.C)I(d) = rI(d, e′)⇒ CI(e′), and

(>n s.C)I(d) =
n

min
i=1

min{sI(d, ei), C
I(ei)}.

As we have seen already with the role inclusions, the axioms of G-SROIQ extend classical
axioms by allowing to state a degree in (0, 1] to which the axioms hold. An ordered ABox is

4



a finite set of (fuzzy) concept assertions of the form C(a) ./ 1 for a ∈ NI, a concept C, and
./ ∈ {<,>}. A TBox is a finite set of general concept inclusions (GCIs) of the form C v D > p
for concepts C,D and p ∈ (0, 1]. An RBox R = Rh ∪Ra consists of a role hierarchy Rh and a
finite set Ra of disjoint role axioms dis(s1, s2) > p and reflexivity axioms ref(r) > p, where r is
a role, s1, s2 are simple roles, and p ∈ (0, 1]. An ontology O = (A, T ,R) consists of an ABox A,
a TBox T , and an RBox R.

For an ontology O, we denote by rol(O) the set of all roles occurring in O, together with their
inverses, and by ind(O) the set of all individual names occurring in O. We denote by VO the
closure under the involutive negation x 7→ 1− x of the set of all truth degrees appearing in O
(either in axioms or directly as truth constants), together with 0, 0.5, and 1. The size of this set
is linear in the size of O.

An interpretation I satisfies (or is a model of)

• the concept assertion C(a) ./ 1 if CI(aI) ./ 1;
• the GCI C v D > p iff CI(d)⇒ DI(d) > p for all d ∈ ∆I ;
• the role inclusion r1 . . . rn v r > p iff (r1 . . . rn)I(d0, dn) ⇒ rI(d0, dn) > p for all
d0, dn ∈ ∆I , where

(r1 . . . rn)I(d0, dn) := sup
d1,...,dn−1∈∆I

n
min
i=1

rIi (di−1, di);

• the disjoint role axiom dis(s1, s2) > p iff min{sI1 (d, e), sI2 (d, e)} 6 1− p for all d, e ∈ ∆I ;
• the reflexivity axiom ref(r) > p iff rI(d, d) > p for all d ∈ ∆I ;
• an ontology if it satisfies all its axioms.

An ontology is consistent if it has a witnessed model.

Other common reasoning problems for FDLs, such as concept satisfiability and subsumption
can be reduced to consistency in linear time [5]. For instance, the subsumption between C
and D to degree p w.r.t. a TBox T and an RBox R is equivalent to the inconsistency of
({p → (C → D)(a) < 1}, T ,R), and the satisfiability of C to degree p w.r.t. T and R is
equivalent to the consistency of ({p→ C(a) > 1}, T ,R).

Using the axioms previously introduced, it is possible to simulate other axioms that are common
for SROIQ [4, 15] as follows:

• transitivity axioms tra(r) > p by rr v r > p;
• symmetry axioms sym(r) > p by r− v r > p;
• asymmetry axioms asy(s) > p by dis(s, s−) > p;
• irreflexivity axioms irr(s) > p by ∃s.Self v ¬p > 1;
• individual equality assertions a ≈ b by {b}(a) > 1; and
• individual inequality assertions a 6≈ b by {b}(a) < 1.

Moreover, due to the expressivity of our language, we can express arbitrary order assertions as
in [5,11], even over negated roles. For example, the axiom r(a, b) > ¬s(c, d) can be expressed as((

∃r.{b}
)
→ ∃ru.

(
{c} u ¬∃s.{d}

))
(a) < 1.

2.3 Weighted Automata for Fuzzy Role Inclusions

To deal with complex role inclusions, in [16] an automata construction was developed that allows
to break down inferences about long role chains into smaller steps. We recall the generalization
of this construction to Gödel semantics from [11].
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Definition 2.1 (WFA). A weighted finite automaton (WFA) is a tuple A = (Q,Σ, qini,wt, qfin),
consisting of a non-empty set Q of states, a non-empty input alphabet Σ, an initial state qini ∈ Q,
a transition weight function wt : Q× (Σ ∪ {ε})×Q→ [0, 1], and a final state qfin ∈ Q. Given
an input word w ∈ Σ∗, a run of A on w is a non-empty sequence of pairs r = {(wi, qi)}06i6m
such that (w0, q0) = (w, qini), (wm, qm) = (ε, qfin), and for each i, 1 6 i 6 m, it holds that
wi−1 = xiwi for some xi ∈ Σ ∪ {ε}. The weight of this run is wt(r) := minmi=1 wt(qi−1, xi, qi).
The behavior of A on w is defined as (‖A‖, w) := supr∈runs(A,w) wt(r), where runs(A, w) denotes
the set of all runs of A on w.

We often denote by q x,p−−→ q′ ∈ A the fact that wt(q, x, q′) = p. Further, for a state q of A, we
denote by Aq the automaton resulting from A by making q the initial state. The following
connection is a direct consequence of the definition of the behavior of a WFA.

Proposition 2.2. Let A be a WFA over Σ, q x,p−−→ q′ ∈ A, and w ∈ Σ∗. Then we have
(‖Aq‖, xw) > min{p, (‖Aq′‖, w)}.

Let now O = (A, T ,Rh ∪Ra) be a G-SROIQ ontology. In order to characterize the complex
role inclusions in Rh, [11,16] construct a family of WFA (Ar)r∈rol(O) that “read” role chains, i.e.
words over the input alphabet Σ := rol(O). Intuitively, the automaton Ar recognizes all role
chains that imply the role r via the role hierarchy (with associated truth values). The size of
these automata may be exponential in the size of Rh.

Lemma 2.3 ( [11]). Let O = (A, T ,Rh ∪Ra) be an ontology and (Ar)r∈rol(O) be the family of
WFA constructed in [11], and I be an interpretation. Then I satisfies Rh iff for every r ∈ rol(O),
every w ∈ rol(O)+, and all d, e ∈ ∆I , we have

min
{

(‖Ar‖, w), wI(d, e)
}
6 rI(d, e).

A mirrored copy A− is constructed from such a WFA A over rol(O) by exchanging initial

and final states, and replacing each transition q x,p−−→ q′ by q′ x
−,p−−−→ q, where ε− := ε. By the

construction in [11], each automaton Ar− is a mirrored copy of Ar.

Proposition 2.4. Let A be a WFA over Σ, A′ be a mirrored copy of A, and w ∈ Σ∗. Then
we have (‖A‖, w) = (‖A′‖, w−).

We define now the relation vp, which can be understood as the “transitive closure” of the simple
role inclusions in R: we set r vp s iff p is the supremum of the values min{p1, . . . , pn} over all
sequences of simple role inclusions r v r1 > p1, . . . , rn−1 v s > pn in R. Note in particular
that r v1 r holds for every simple role r. The following is a special case of Lemma 2.3.

Proposition 2.5 ( [11]). For a simple role r and w ∈ rol(O)∗, we have

(‖Ar‖, w) =

{
p if w = s ∈ rol(O) and s vp r,
0 otherwise.

3 From Models to Tableaux

In this section, we extend the classical tableau construction from [15, 17] with the ideas de-
veloped in [5,11] to produce a reasoning algorithm for G-SROIQ. For the rest of this paper,
O = (A, T ,R) is an arbitrary, but fixed, G-SROIQ ontology. To simplify the presentation, we
will assume in the following that O contains no existential restrictions. These concepts can be
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handled in the same way as value restrictions, by dualizing the constructions, i.e. replacing 6
with > and ⇒ with min.

The set sub(C) of (extended) sub-concepts of a concept C contains at least C and ¬C, as well
as the concepts of the following set, which is defined recursively:

sub(D) if C = ¬D,
sub(D) ∪ sub(E) if C ∈ {D u E,D → E},
sub(D) ∪ {∀Aq

r.D,¬∀Aq
r.D | q is a state of Ar} if C = ∀r.D,

sub(D) ∪ {>mr.D,¬>mr.D | 1 6 m 6 n− 1} if C = >n r.D,
∅ otherwise.

In the following, we consider ¬¬C to be equal to C. The set sub(O) of sub-concepts of O is
defined as the union of all sets sub(C), sub(D) for all axioms C v D > p ∈ T and C(a) ./ 1 ∈ A.
The size of sub(O) is exponential in the size of the role hierarchy (due to the automata Ar) and
exponential in the largest number appearing in number restrictions in O (if such numbers are
given in binary encoding).

The semantics of the newly introduced expressions of form ∀A.C is defined by

(∀A.C)I(d) := inf
w∈rol(O)∗

inf
e∈∆I

min{(‖A‖, w), wI(d, e)} ⇒ CI(e),

where εI(d, e) := 1 if d = e, and εI(d, e) := 0 otherwise (cf. Lemma 2.3).

Our construction uses order assertions to deal with relations between the values of concepts.
The domain of these assertions is the order structure

U(∆) := VO ∪
{
C(x) | C ∈ sub(O), x ∈ ∆

}
∪
{
r(x, y),¬r(x, y) | r ∈ rol(O), x, y ∈ ∆

}
,

where ∆ is a set of nodes, inv(C(x)) := ¬C(x), and inv(r(x, y)) := ¬r(x, y). To simplify dealing
with inverse roles, we will treat the expressions r(x, y) and r−(y, x) as if they were the same;
this is clearly in line with the semantics of inverse roles.

As in [15, 17], we define the notion of a tableau, which is an abstract version of a model of O
that may still be infinite, but allows us to simplify the semantics: for example, all complex role
inclusions are handled by three simple rules for the behavior of the concepts ∀A.C. Recall that
we use the term “satisfiability” only w.r.t. total preorders over U(∆), and not w.r.t. full DL
interpretations.

Definition 3.1 (Tableau). A tableau for O is a pair (∆,A∗), where ∆ is a non-empty set of
nodes and A∗ is a satisfiable set of order assertions over U(∆) such that the following conditions
are satisfied, for all x, y ∈ ∆, C,D ∈ sub(O), r, s ∈ rol(O), and a ∈ ind(O):

(T1) If p(x) occurs in A∗, then A∗ entails p(x) = p.
(T2) If (∃r.Self)(x) occurs in A∗, then A∗ entails (∃r.Self)(x) = r(x, x).
(T3) If (¬C)(x) occurs in A∗, then C(x) also occurs in A∗.
(T4) If (C uD)(x) occurs in A∗, then A∗ entails (C uD)(x) = min{C(x), D(x)}.
(T5) If (C → D)(x) occurs in A∗, then A∗ entails (C → D)(x) = C(x)⇒ D(x).
(T6) If (∀r.C)(x) occurs in A∗, then there is a y ∈ ∆ such that A∗ entails

(∀r.C)(x) > r(x, y)⇒ C(y).

(T7) If (∀r.C)(x) occurs in A∗, then A∗ entails (∀r.C)(x) 6 (∀Ar.C)(x).
(T8) If (∀Aq.C)(x) and r(x, y) occur in A∗ and q r,p−−→ q′ ∈ A, then A∗ entails

(∀Aq.C)(x) 6 min{p, r(x, y)} ⇒ (∀Aq′ .C)(y).
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(T9) If (∀Aq.C)(x) occurs inA∗ and q ε,p−−→ q′ ∈ A, thenA∗ entails (∀Aq.C)(x) 6 p⇒ (∀Aq′ .C)(x).
(T10) If (∀Aq.C)(x) occurs in A∗ and q is final, then A∗ entails (∀Aq.C)(x) 6 C(x).
(T11) If (>n r.C)(x) occurs in A∗, then there are at least n elements y ∈ ∆ for which A∗ entails

(>n r.C)(x) 6 min{r(x, y), C(y)}.
(T12) If (>n r.C)(x) occurs in A∗, then there are at most n− 1 elements y ∈ ∆ for which A∗

entails (>n r.C)(x) < min{r(x, y), C(y)}.
(T13) If (>n r.C)(x) and r(x, y) occur in A∗, then A∗ entails either

(>n r.C)(x) > min{r(x, y), C(y)} or (>n r.C)(x) < min{r(x, y), C(y)}.

(T14) If {a}(x) occurs in A∗, then A∗ entails either {a}(x) > 1 or {a}(x) 6 0.
(T15) There is exactly one xa ∈ ∆ such that A∗ entails {a}(xa) > 1.
(T16) If r(x, y) occurs in A∗, then A∗ entails r(x, y) = r−(y, x).
(T17) If C(a) ./ 1 ∈ A, then A∗ entails C(xa) ./ 1.
(T18) If C v D > p ∈ T , then A∗ entails C(x)⇒ D(x) > p.
(T19) If r v s > p ∈ R, then A∗ entails r(x, y)⇒ s(x, y) > p.
(T20) If ref(r) > p ∈ R, then A∗ entails r(x, x) > p.
(T21) If dis(r, s) > p ∈ R, then A∗ entails min{r(x, y), s(x, y)} 6 1− p.
(T22) A∗ entails ru(x, y) > 1.

The main differences to the classical tableau conditions of [15,17], in addition to the use of order
assertions, are the following:

• We do not need a dedicated condition for negation other than to add the relevant subconcept
to the tableau. The semantics of the involutive negation is handled by the conditions that
define the order structure U(∆).

• We do not internalize the ABox, TBox, or the universal role, which is why we need to
include dedicated conditions for them.

• Although we do not consider existential restrictions or at-most number restrictions here,
the corresponding conditions from [15, 17] can also be found in Definition 3.1. The
reason for this is that fuzzy value restrictions and at-least number restrictions additionally
exhibit a behavior similar to that of (classical) existential restrictions and at-most number
restrictions. For example, due to the supremum used in its semantics, the value of an
at-least restriction >n r.C at a node x also imposes an upper bound (namely n− 1) on the
number of nodes y for which min{r(x, y), C(y)} can exceed this value. Similarly, a fuzzy
value restriction also enforces the existence of a successor node (classically the behavior of
an existential restriction) due to our witnessing conditions.

The following lemma shows that it suffices to construct a countable tableau to show that O
is consistent. The requirement on the cardinality of the tableau is the main difference to the
corresponding result in [15]. It is due to the necessity of finding enough values to instantiate all
relevant concepts and roles. We could also use a tableau having the same cardinality as the real
numbers, but a countable tableau suffices for our purposes (see Lemma 4.3).

Lemma 3.2. If O is consistent, then there is a tableau, and if there is a countable tableau, then
O is consistent.

Proof. Let first I = (∆I , ·I) be a model of O. We construct the tableau (∆I ,A∗), where A∗
is the set of all order assertions u ./ v such that u, v ∈ U(∆I) with uI ./ vI , where pI := p,
C(d)I := CI(d), r(d, e)I := rI(d, e), and (¬r(d, e))I := 1 − rI(d, e). By construction, A∗
is satisfiable, and hence we only need to prove that it satisfies the conditions (T1)–(T22) of
Definition 3.1. This can be verified by a trivial, but lengthy, case analysis, very similar to the
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proof of the corresponding result in [11]. For example, if (∀Aq.C)(d) occurs in A∗ and q is final,
then we know that (‖Aq‖, w) = 1 for every word w ∈ rol(O)∗, and hence

(∀Aq.C)I(d) = inf
w∈rol(O)∗

inf
e∈∆I

wI(d, e)⇒ CI(e) 6 εI(d, d)⇒ CI(d) = CI(d).

By our construction, this means that (∀Aq.C)(d) 6 C(d) is contained in A∗, and thus (T10) is
satisfied.

For the second part of the lemma, let (∆,A∗) be a tableau where ∆ is countable, and hence
U(∆) and A∗ are also countable. Since A∗ is satisfiable, it has a model �∗. Since this model
is an element of order(U(∆)), there must exist a mapping v : U(∆)→ [0, 1] with the following
properties:

(P1) for all p ∈ VO, we have v(p) = p;
(P2) for all α, β ∈ U(∆), we have v(α) 6 v(β) iff α �∗ β; and
(P3) for all α ∈ U(∆), we have v(inv(α)) = 1− v(α).

We now define the interpretation I as follows, for all a ∈ ind(O), A ∈ sub(O) ∩ NC, and x ∈ ∆:

• ∆I := ∆;
• aI := a; and
• AI(x) := v(A(x)) if A(x) occurs in A∗, and AI(x) := 0 otherwise.

The interpretation of all other individual names and concept names can be fixed arbitrarily.
For the role names r ∈ rol(O) ∩ NR, we first define a “simple” interpretation I0 as follows:
rI0(x, y) := v(r(x, y)) if r(x, y) occurs in A∗, and rI0(x, y) := 0 otherwise. By (T16) and (P2),
for every inverse role r− ∈ rol(O) for which r−(x, y) occurs in A∗, we know that r(y, x) also
occurs in A∗ and we have (r−)I0(x, y) = rI0(y, x) = v(r(y, x)) = v(r−(x, y)), similar to the
definition of rI0 . We now use the automaton Ar to “complete” I0 with additional links as
follows: we set

rI(x, y) := sup
w∈rol(O)+

min{(‖Ar‖, w), wI0(x, y)} (1)

for all x, y ∈ ∆. Note that this expression is equal to rI0(x, y) if r is simple: by Proposition 2.5,
we have (‖Ar‖, s) = p whenever s vp r, (‖Ar‖, r) = 1, and (‖Ar‖, w) = 0 for all other words w,
and moreover (T19) yields

min{(‖Ar‖, r), rI0(x, y)} = rI0(x, y) > min{p, sI0(x, y)} = min{(‖Ar‖, s), sI0(x, y)}.

The expression (1) can also be used to evaluate inverse roles due to the semantics of role
chains, the fact that Ar− is a mirrored copy of Ar [11], and Proposition 2.4. Finally, for the
universal role ru, we have rI0u (x, y) = 1 due to (T22). By the construction of Aru [11], we have
(‖Aru‖, ru) = 1, and hence the expression (1) also holds for the universal role.

To show that I is a model of O, we first prove the following claim by induction on the structure
of C:

For all x ∈ ∆ and C ∈ sub(O) for which C(x) occurs in A∗, we have CI(x) = v(C(x)). (2)

For most concept constructors, this easily follows from the conditions in Definition 3.1 and the
fact that �∗, and hence v, satisfies all entailments of A∗.

For negation, assume that (¬C)(x) occurs in A∗. We get

(¬C)I(x) = 1− CI(x) = 1− v(C(x)) = v((¬C)(x))

by (T3), (P3), and the induction hypothesis.
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Assume now that (∀r.C)(x) occurs in A∗. By (T11), there must be a y0 ∈ ∆ such that
v((∀r.C)(x)) > v(r(x, y0))⇒ v(C(y0)) = rI0(x, y0)⇒ CI(y0) > rI(x, y0)⇒ CI(y0). Hence, y0

can act as a witness for (∀r.C)I(x) if we can show that the latter implication is > v((∀r.C)(x))
for all elements y ∈ ∆. For this purpose, we consider the remaining tableau conditions for value
restrictions. By (T7), we get

rI(x, y)⇒ CI(y) =
(

sup
w∈rol(O)+

min{(‖Ar‖, w), wI0(x, y)}
)
⇒ CI(y)

= inf
w∈rol(O)+

min{(‖Ar‖, w), wI0(x, y)} ⇒ CI(y)

(∗)
> v((∀Ar.C)(x))

> v((∀r.C)(x)).

as required, if we can show (∗), i.e. it remains to show that

min{(‖Ar‖, w), wI0(x, y)} ⇒ CI(y) > v((∀Ar.C)(x))

holds for all w = r1 . . . rn ∈ rol(O)+. If y is not connected to x, i.e. we have wI0(x, y) = 0 for all
such w, then this is trivial. The claim for all other y can be shown exactly as in [10, Section 4.1].

Consider now a number restriction for which (>n r.C)(x) occurs in A∗. Recall that r must
be simple, and hence we have rI = rI0 . If, for some y ∈ ∆, r(x, y) does not occur in A∗,
then we know that v((>n r.C)(x)) > 0 = min{rI(x, y), CI(y)}. By (T12), (T13), and the
induction hypothesis, we know that there are at most n − 1 elements y ∈ ∆ for which
min{rI(x, y), CI(y)} is strictly greater than v((>n r.C)(x)). This means that for any n different
elements y1, . . . , yn ∈ ∆, we have v((>n r.C)(x)) > minni=1 min{rI(x, yi), CI(yi)}. Hence, to
prove v((>n r.C)(x)) = (>n r.C)I(x), it suffices to find n witnessing elements where the latter
inequation holds with = instead of only >. This follows directly from (T11).

4 A Tableau Algorithm

The construction of a possibly infinite tableau for O is hardly a decision procedure for consistency.
For that purpose, we need to appropriately lift the notion of blocking [15,17] to our sets of order
assertions, in order to arrive at a finite structure. We also need to take a more fine-grained
view at the structure of a tableau. First, we designate a subset ∆o ⊆ ∆ as nominal nodes.
Furthermore, in the tableau algorithm we need to introduce new individual names that do
not occur in ind(O), and we assume that the corresponding nominals are contained in sub(O).
Instead of allowing to connect arbitrary pairs of individuals with roles, we will maintain a binary
neighbor relation N on ∆. For a node x, we consider its neighborhood

N (x) := {x} ∪
{
y | (x, y) ∈ N or (y, x) ∈ N

}
.

Further, if (x, y) ∈ N , then y is a successor of x, and x is a predecessor of y. Ancestor is the
transitive closure of predecessor, and descendant the transitive closure of successor. Finally,
instead of a global set A∗, we will maintain for each node x ∈ ∆ a local set of order assertions
L(x) over the localized order structure

U(x) := VO ∪
{
C(a) | C ∈ sub(O), a ∈ ∆o

}
∪
{
r(a, b),¬r(a, b) | r ∈ rol(O), a, b ∈ ∆o

}
∪
{
C(y) | C ∈ sub(O), y ∈ N (x)

}
∪
{
r(x, y),¬r(x, y) | r ∈ rol(O), y ∈ N (x)

}
,

where inv is defined as for U(∆). It follows that U(x) is a subset of U(∆) if all nominal nodes are
neighbors of each other. However, order assertions over U(x) can only contain information about
the concepts at neighbors of x and role connections between x and its neighbors; additionally,
information about concepts and roles at nominal nodes is shared by all nodes.
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Definition 4.1. A completion graph for O is a tuple G = (∆,N ,L, 6=· ), where ∆ is a finite set
of nodes, N is a binary neighbor relation on ∆, L is a labeling function that assigns each node
x ∈ ∆ a set L(x) of oder assertions over U(x), and 6=· is a binary relation on ∆.

The relation 6=· indicates which nodes must be kept different. If x 6=· y does not hold, then we can
merge them, which may be necessary in order to satisfy some number restrictions. We denote
by .

= the complement of 6=· ; if x .
= y, then this does not mean that x and y will necessarily be

merged, but only that it is possible to do so.

Nominal nodes and blockable nodes. The set ∆o is not fixed, but rather defined as the
set of all x ∈ ∆ such that L(x) entails {a}(x) > 1 for some a ∈ NI. Recall that we may need
to introduce more such individual names in the construction of the completion graph. All
nodes in ∆ \∆o are called blockable nodes. The idea is that nominal nodes may be arbitrarily
interconnected in N , but blockable nodes always form a tree structure among themselves. Each
nominal node may be the root of such a tree, and additionally all blockable nodes may have
N -successors that are nominal nodes.

Rule applications. The initial completion graph for O is G0 := (∆0,N0,L0, 6=· 0), where
∆0 := ind(O), N0 := ∆0 ×∆0, L0(a) consists of all assertions containing a, and 6=· 0 is empty.
Starting from G0, the tableau algorithm nondeterministically applies the rules in Tables 2–6,
which modify the completion graph according to the semantics of concepts and axioms. To
guarantee termination, it is important that we only add order assertions to a label if they are
not already entailed by this label. Since labels of nodes may refer to neighboring nodes, we need
the dedicated rule ( ) to ensure that labels of neighbors are synchronized.

When we extend the neighborhood of x by adding a new node y with (x, y) ∈ N , L(x) still
contains order assertions over the (extended) order structure U(x). The same holds when we
introduce a new nominal node using the rule (NN).

We now explain all relevant notions used in the tableau rules, most of which are suitably lifted
variants of the definitions in [15,17]. For the following exposition, let G = (∆,N ,L, 6=· ) be an
arbitrary completion graph produced during the tableau algorithm.

Complete and clash-free. Our completion graph contains a clash if one of the following
conditions holds:

• For some node x ∈ ∆, the set L(x) is unsatisfiable.
• For some (>n r.C) ∈ sub(O), there are nodes x, y1, . . . , yn ∈ ∆, such that L(x) entails

(>n r.C)(x) < min{r(x, yi), C(yi)}, 1 6 i 6 n, and yi 6=· yj , 1 6 i < j 6 n.
• For some a ∈ NI, there are nodes x, y ∈ ∆ such that x 6=· y, L(x) entails {a}(x) > 1, and
L(y) entails {a}(y) > 1.

A completion graph is complete if it contains a clash or none of the tableau rules are applicable.

If the tableau rules can be applied to G0 such that a complete and clash-free completion graph
is obtained, then the algorithm has successfully proven the consistency of O. If we obtain a
clash, then either we have made the wrong choices in the rule applications, or O is inconsistent.

Blocking and safe neighbors. We adapt the notion of blocking from [17] to sets of order
assertions. A node x is directly blocked if it has ancestors x′, y, and y′ such that

• (x′, x), (y′, y) ∈ N ;
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Table 2: The tableau rules for the propositional constructors

(p) If p(x) occurs in L(x),
then add p(x) = p to L(x) unless it is already entailed.

(Self) If (∃r.Self)(x) occurs in L(x),
then then add (∃r.Self)(x) = r(x, x) to L(x) unless it is already entailed.

(¬) If (¬C)(x) occurs in L(x),
then add C(x) 6 C(x) to L(x).

(u) If (C uD)(x) occurs in L(x) and L(x) does not entail (C uD)(x) = min{C(x), D(x)},
then add either

• (C uD)(x) 6 C(x) and (C uD)(x) = D(x), or
• (C uD)(x) = C(x) and (C uD)(x) 6 D(x)
to L(x).

(→) If (C → D)(x) occurs in L(x) and L(x) does not entail (C → D)(x) = C(x)⇒ D(x),
then add either

• C(x) 6 D(x) and (C → D)(x) > 1, or
• C(x) > D(x) and (C → D)(x) = D(x)
to L(x).

(o) If {a}(x) occurs in L(x),
then add either {a}(x) > 1 or {a}(x) 6 0 to L(x) unless one of them is already

entailed.
(o6) If for some a ∈ NI there are two nodes x, y such that L(x) entails {a}(x) > 1, L(y)

entails {a}(y) > 1, and x .
= y,

then merge x into y.

• x, y, and all nodes on the path from y to x are blockable;
• for all order assertions φ over U(∆) involving only the nodes x and x′, we have that L(x)

entails φ iff L(y) entails σ(φ), where σ replaces x by y and x′ by y′.

In this case, we say that y blocks x. A node is blocked if it is directly blocked or it is blockable
and its predecessor is blocked, i.e. it is indirectly blocked.

The rules (∀), (>), and (NN) are called generating, and the rules (>6), (o6) and (NN6) are
called shrinking. Note that generating rules are not applicable to any blocked nodes, but the
other rules may be applied to all nodes. The reason for this is that, due to inverse roles, by
applying these rules to blocked nodes, the order assertions at unblocked nodes may change,
possibly leading to a clash or the breaking of a blocking relation.

A neighbor y of a node x is safe if (i) x is blockable, or (ii) x is a nominal node and y is not
blocked. The reason for this definition is that only safe neighbors really count for the satisfaction
of the witnessing conditions for value and number restrictions, since a blocked predecessor of a
nominal node does not correspond to an individual in the tableau that will be constructed in
Lemma 4.3.

Merging and pruning. We sometimes need to merge nodes in order to satisfy nominals or
number restrictions. When we merge y into x, we replace all occurrences of y in L(y) by x
and add these assertions to L(x). Additionally, we modify the neighborhood of x such that it
inherits all neighbors of y, and then remove y (and all blockable subtrees) from the completion
graph. For this reason, we also call x a direct heir of y. Formally, to merge y into x, we do the

12



Table 3: The tableau rules for inverse roles, ontology axioms, and transfer of order assertions
between neighbors

(r−) If r(x, y) occurs in L(x),
then add r(x, y) = r−(y, x) to L(x) unless it is already entailed.

(vT ) If C v D > p ∈ T ,
then add either C(x) 6 D(x) or p 6 D(x) to L(x) unless one of them is already

entailed.
(vR) If r v s > p ∈ R and y ∈ N (x),

then add either r(x, y) 6 s(x, y) or p 6 s(x, y) to L(x) unless one of them is already
entailed.

(ref) If ref(r) > p ∈ R,
then add r(x, x) > p to L(x) unless it is already entailed.

(dis) If dis(r, s) > p ∈ R and y ∈ N (x),
then add either r(x, y) 6 1− p or s(x, y) 6 1− p to L(x) unless one of them is already

entailed.
(ru) If y ∈ N (x),

then add ru(x, y) > 1 to L(x) unless it is already entailed.

( ) If 1. L(x) entails α / β and
2. there is a y ∈ ∆ such that {α, β} ⊆ U(y),

then add α / β to L(y) unless it is already entailed.

following:

1. For all nodes z ∈ ∆ with (z, y) ∈ N , we replace (z, y) by (z, x) in N .
2. For all nominal nodes z ∈ ∆ with (y, z) ∈ N , we replace (y, z) by (x, z) in N .
3. We collect all blockable nodes z ∈ ∆ with (y, z) ∈ N into the set Z; these nodes will be

removed from the completion graph together with y.
4. For all order assertions φ ∈ L(y) that do not involve nodes from Z, we add σ(φ) to L(x),

where σ is a substitution that replaces y by x.
5. For all nodes z ∈ ∆ with y 6=· z, we add x 6=· z.
6. We prune y from the completion graph,

where the operation of pruning y is defined recursively as follows:

1. For all nodes z ∈ ∆ with (y, z) ∈ N , we remove (y, z) from N and, if z is blockable,
prune z from the completion graph.

2. We remove y from ∆.

The tree-like structure of the blockable parts of a completion graph ensures that pruning removes
only subtrees, but no ancestors of y.

Strategy of rule applications. The level of a nominal node is defined as follows: Every
nominal node x where L(x) entails {a}(x) > 1 for some a ∈ ind(O) (e.g. one of the initial
nominal nodes) is of level 0; and a nominal node is of level i > 0 if it is not of some lower level
j < i and has a neighbor that is of level i− 1. Note that merging can only decrease the levels of
nodes, but not increase them.

We use a similar strategy of rule applications as in [17], i.e. the priority order between rules is
as follows:
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Table 4: The tableau rules for value restrictions

(∀) If 1. (∀r.C)(x) occurs in L(x), x is not blocked, and
2. there is no safe neighbor y ∈ N (x) such that L(x) entails

(∀r.C)(x) > r(x, y)⇒ C(y),
then 1. introduce a new node y, add (x, y) to N , and

2. add either
• r(x, y) 6 C(y) and (∀r.C)(x) > 1, or
• r(x, y) > C(y) and (∀r.C)(x) > C(y)

to L(x).

(∀A) If (∀r.C)(x) occurs in L(x),
then add (∀r.C)(x) 6 (∀Ar.C)(x) to L(x) unless it is already entailed.

(A) If (∀Aq.C)(x) and r(x, y) occur in L(x) and q r,p−−→ q′ ∈ A,
then add either p 6 (∀Aq′ .C)(y), r(x, y) 6 (∀Aq′ .C)(y), or

(∀Aq.C)(x) 6 (∀Aq′ .C)(y) to L(x) unless one of them is already entailed.

(Aε) If (∀Aq.C)(x) occurs in L(x) and q ε,p−−→ q′ ∈ A,
then add either p 6 (∀Aq′ .C)(x) or (∀Aq.C)(x) 6 (∀Aq′ .C)(x) to L(x) unless one of

them is already entailed.
(Afin) If (∀Aq.C)(x) occurs in L(x) and q is final,

then add (∀Aq.C)(x) 6 C(x) to L(x) unless it is already entailed.

1. ( )
2. (o) and (o6)
3. (NN) and (NN6) (first applied to nominal nodes with lower levels)
4. all other rules.

Now that we have introduced all relevant definitions, we can prove termination and correctness
of our algorithm. The proof of the following lemma closely follows the one from [17], but has to
deal with order assertions instead of concepts in the node labels.

Lemma 4.2. Every sequence of applications of the tableau rules to G0 terminates.

Proof. Let m := |sub(O)|, k := |rol(O)|, n be the maximal number occurring in number
restrictions in sub(O), ` := |ind(O)|, and o := |VO|. Recall that in the worst case m is
exponential in n and in the size of the role hierarchy. However, the exponential blowup in n is
irrelevant since each set L(x) can contain at most one additional at-least restriction >mr.C for
each >n r.C that occurs in O.

Observe first that the relation N restricted to the blockable nodes is always tree-shaped. More
precisely, such trees are rooted in nominal nodes and leaves may have outgoing N -edges to
nominal nodes. To see this, assume that the application of one of the tableau rules destroys
this property, i.e. creates a completion graph with a blockable node x that has two different
predecessors, i.e. (y1, x), (y2, x) ∈ N . Then the rule that was applied must be a shrinking
rule, and it must further be the case that y1 and y2 each had a blockable successor, x and x′,
respectively, and x′ was merged into x by the rule (>6) (the other two shrinking rules do merge
two blockable nodes). But then there must be a common neighbor z of x and x′ such that L(z)
entails (>n r.C)(z) < min{r(z, x), C(x)} and (>n r.C)(z) < min{r(z, x′), C(x′)}. This means
that z is a nominal node since otherwise the structure among blockable nodes would already
have been non-tree-shaped before. Furthermore, we must have either (x, z) ∈ N or (x′, z) ∈ N
since otherwise either z = y1 = y2 or either x or x′ already had two different predecessors. This
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Table 5: The tableau rules for number restrictions

(>) If 1. (>n r.C)(x) occurs in L(x), x is not blocked, and
2. there do not exist n safe neighbors y1, . . . , yn ∈ N (x) with yi 6=· yj , 1 6 i < j 6 n,

such that L(x) entails (>n r.C)(x) 6 min{r(x, yi), C(yi)}, 1 6 i 6 n,
then 1. introduce n new nodes y1, . . . , yn with (x, y1), . . . , (x, yn) ∈ N and yi 6=· yj ,

1 6 i < j 6 n, and
2. for each i, 1 6 i 6 n, add (>n r.C)(x) 6 r(x, yi) and (>n r.C)(x) 6 C(yi)

to L(x).

(>6) If 1. (>n r.C)(x) occurs in L(x) and
2. there exist at least n neighbors y ∈ N (x) such that L(x) entails

(>n r.C)(x) < min{r(x, y), C(y)},
then 1. choose two such neighbors y, z such that y .

= z and
2. do the following:
• if y is a nominal node, then merge z into y;
• else if z is a nominal node or an ancestor of y, then merge y into z;
• else merge z into y.

(ch) If 1. (>n r.C)(x) and r(x, y) occur in L(x) and
2. L(x) entails neither (>n r.C)(x) < min{r(x, y), C(y)} nor its negation,

then add either
• (>n r.C)(x) < r(x, y) and (>n r.C)(x) < C(y),
• (>n r.C)(x) > r(x, y), or
• (>n r.C)(x) > C(y)
to L(x).

means that there must be m 6 n− 1 nominal neighbors z1, . . . , zm with zi 6=· zj , 1 6 i < j 6 m,
and L(z) entails (>(m+ 1) r.C)(z) < min{r(z, zi), C(zi)}, 1 6 i 6 m; otherwise the rule (NN)
would be applicable and would have been applied before (>6). But then immediately afterwards
the rule (NN6) would have to be applied, and would merge x and x′ into one of the nominal
nodes z1, . . . , zm, thus invalidating our assumption.

Further observe that nodes and elements from node labels can only be removed by the shrinking
rules, and new nodes can only be added by the generating rules. Moreover, each generating
rule can be triggered at most once for each concept in sub(O) occurring in the label of a node x.
For the rules involving role connections to neighboring nodes, this observation is due to the
fact that, if a neighbor y of x is merged into another node z, then z inherits all relevant order
assertions from y, and either z is then a neighbor of x (if x is a nominal node or y is a successor
of x) or x is removed by pruning (if x is a blockable node and x is a successor of y). This means
that each node can have at most mn blockable successors.

The next crucial observation is that blocking, which can occur only within a path consisting
only of blockable nodes, occurs after at most λ := 22(o+2m+4k+2)2 + 1 steps. For this, it suffices
to determine the total number of possible order assertions (not involving min or ⇒, and using
only 6 or >) that can be formulated about two neighboring nodes. The underlying order
structure contains o+ 2m+ 4k+ 2 elements, and hence there are 2(o+ 2m+ 4k+ 2)2 such order
assertions. This means that each N -chain of blockable nodes must contain a directly blocked
node after at most λ steps. This implies that all blockable subtrees of the completion graph
have branching degree at most mn and depth at most λ.

The last step is to show that the number of nominal nodes is bounded by O(`(mn)λ). The proof
of this proceeds as in [17]: The rule (NN) can initially only be triggered due to a newly created
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Table 6: The special tableau rules for nominals

(NN) If 1. (>n r.C)(x) occurs in L(x), x is a nominal node,
2. there is a blockable node y with (y, x) ∈ N such that L(x) entails

(>n r.C)(x) < min{r(x, y), C(y)}, and
3. there do not exist ` 6 n− 1 nominal nodes z1, . . . , z` such that L(x) entails

(>(`+ 1) r.C)(x) = (>n r.C)(x) and (>(`+ 1) r.C)(x) < min{r(x, zi), C(zi)},
1 6 i 6 `, and zi 6=· zj , 1 6 i < j 6 `,

then 1. guess a number m between 1 and n− 1, and add
(>(m+ 1) r.C)(x) = (>n r.C)(x) to L(x),

2. introduce m new nodes y1, . . . , ym with (x, z1), . . . , (x, zm) ∈ N and zi 6=· zj ,
1 6 i < j 6 m,

3. introduce m new individual names a1, . . . , am, and for each i, 1 6 i 6 m, add
(>(m+ 1) r.C)(x) < r(x, zi), (>(m+ 1) r.C)(x) < C(zi), and {ai}(zi) > 1
to L(x).

(NN6) If 1. (>n r.C)(x) occurs in L(x), x is a nominal node,
2. there is a blockable node y ∈ N (x) such that L(x) entails

(>n r.C)(x) < min{r(x, y), C(y)}, and
3. there are nominal nodes z1, . . . , zn−1 ∈ N (x) with zi 6=· zj , 1 6 i < j 6 n− 1,

such that L(x) entails (>n r.C)(x) < min{r(x, zi), C(zi)}, 1 6 i 6 n− 1,
then 1. choose a zi, 1 6 i 6 n− 1, such that y .

= zi and
2. merge y into zi.

nominal node x, which must be of level 0 since the only individual names occurring in sub(O)
are those in ind(O). Afterwards, it may be applied to predecessors of x that were originally
blockable but were then merged into nominal neighbors of x. Since the length of such a chain
of blockable nodes is at most λ, the rule (NN) can be applied only to nominal nodes of level
below λ. Furthermore, this rule can be applied at most m times to each node of level i (or
its heirs), each time generating at most n new nominals, and hence at most `(mn)i+1 nominal
nodes of level i + 1. Since it can only be applied up to level λ, this gives an upper bound of
O(`(mn)λ) new nominal nodes. Additionally, each nominal node may be the root of a blockable
tree of size O((mn)λ). Hence, the total number of nodes in a completion graph is finite, and
thus each completion graph must become complete after finitely many steps.

We now prove that the algorithm correctly decides consistency of O (cf. Lemma 3.2).

Lemma 4.3. If the tableau rules can be applied to G0 in such a way that a complete and
clash-free completion graph is obtained, then there exists a countable tableau for O.

Proof. Assume that the tableau rules have been applied to G0, resulting in a complete and
clash-free completion graph G = (∆,N ,L, 6=· ). We first modify the labeling function for all
nominal nodes x, by removing all assertions from L(x) that refer to blockable nodes, and adding
all entailments about nominal nodes that may have been lost in this process. More formally, we
define L′(x) as the restriction of L(x) to the order structure

Uo := VO ∪
{
C(a) | C ∈ sub(O), a ∈ ∆o

}
∪
{
r(a, b),¬r(a, b) | r ∈ rol(O), a, b ∈ ∆o

}
,

and then add all order assertions over Uo that are entailed by the original L(x) to L′(x). This
allows a better separation of the behavior of the nominal nodes from that of the blockable nodes.
Observe that all relevant order assertions that refer to the connection between a nominal node x
and a blockable neighbor y have already been transferred to L(y) by the rule ( ). Furthermore,
G is still clash-free after this modification; however, it may not be complete anymore for the
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nominal nodes. The blocking relationships between nodes are not affected since they do not
involve nominal nodes.

We now construct a countable tableau (∆′,A∗) of O by following the structure of N and, at
each directly blocked node x, unraveling the structure by replacing x with a copy of an ancestor
that blocks it. At the same time, we will construct a function f : ∆′ → ∆ that specifies which
node was used to construct each element of ∆′.

We initially set

• ∆′ := {x ∈ ∆ | x is not blocked},
• A∗ :=

⋃
x∈∆′ L′(x), and

• f(x) := x for all x ∈ ∆′,

and assume first that A∗ is unsatisfiable. This can be the case only because of a sequence
of elements α1 E1 · · · En−1 αn, where Ei ∈ {<,6,=}, each order assertion αi Ei αi+1,
1 6 i 6 n− 1, is entailed by some L′(xi) with xi ∈ ∆′, we have α1 = αn, and at least one of
the Ei is a strict inequality (<). Let this be a sequence that has minimal length among all
sequences with this property. We show the following properties:

(a) We have n > 2. Otherwise, α1 <1 α1 would be entailed by L′(x1), which contradicts the
clash-freeness of G.

(b) We have xi 6= xi+1 for all i, 1 6 i 6 n−2, and xn−1 6= x1. Otherwise, by (a) we would have
a situation like α1 E1 α2 E2 α3 (modulo cyclic index shifts), where both order assertions
are entailed by the same L′(x). But then also α1 E α3 would be entailed by L′(x), where
E is < if < ∈ {E1,E2}, and otherwise it is 6. But this shows the existence of a shorter
sequence with the same properties as before, in contradiction to our minimality assumption.

(c) There is no αi that refers only to nominal nodes. Otherwise, by (a) we would have a
situation like α1 E1 α2 E2 α3, where α1 is of the form p ∈ VO, C(xa), or r(xa, xb), where
xa and xb are nominal nodes. But then we would have α1, α2 ∈ U(x2); in particular, if
x2 is a nominal node, then both α1 and α2 would refer only to nominal nodes due to our
modification. But then the rule ( ) implies that α1 E1 α2 would also entailed by L′(x2),
which contradicts (b).

Since the (modified) labels of nominal nodes may only refer to nominal nodes, (c) implies that
the xi are all blockable nodes. Furthermore, since we have αi ∈ U(xi−1) ∩ U(xi), 2 6 i 6 n− 1,
and α1 = αn ∈ U(x1) ∩ U(xn−1), each pair (xi−1, xi), 2 6 i 6 n − 1, and (x1, xn−1) must be
neighbors. The tree structure of N on the blockable nodes and (b) imply that there is a situation
like α1 E1 α2 E2 α3 E3 α4 such that x1 = x3. Hence, we have α2, α3 ∈ U(x1), which shows
by ( ) that α1 E α4 is already entailed by L′(x1), where E is obtained as in the proof of (b).
But this again contradicts the minimality of n.

This shows that the initial tableau constructed above is satisfiable. We now iteratively expand
it by unraveling N at the blocked nodes. Let x′ ∈ ∆′ be such that f(x′) has a directly blocked
successor x in G that is not yet represented in our tableau, i.e. there is no x′′ ∈ ∆′ such that
f(x′′) = x and x′′ is connected to x′ by some role assertions. Let further x@ be the name that
is used in A∗ to refer to this still missing successor of x′, y ∈ ∆ be a node that blocks x in G,
and y′ be the predecessor of y in N . Recall that y′, y, f(x′), x, and all nodes in between are
blockable. Consider now the subtree ∆y ⊆ ∆ consisting of all blockable descendants of y that
are not blocked. To distinguish these nodes from those already present in ∆′, for each blockable
node z occurring in L′(v) for some v ∈ ∆y, let z@ be a unique new node name that does not yet
occur in ∆′. We now do the following:

• add {z@ | z ∈ ∆y} to ∆′;
• replace all occurrences x@ in A∗ by y@ and add

⋃
z∈∆y

L′(z)@ to A∗, where L′(z)@ is
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obtained from L′(z) by replacing all occurrences of f(x′) by x′, and of any other blockable
nodes z by z@; and

• set f(z@) := z for all z ∈ ∆y.

The resulting set A∗ is such that it looks as if x has never been blocked, but rather that the
tableau rules have been applied to it and its successors without restrictions. Assume now that A∗
has become unsatisfiable by this construction, and hence there is a sequence α1 E1 · · · En−1 αn
as above, where n is minimal. Since the original A∗, and hence also

⋃
z∈∆y

L′(z)@, are satisfiable,
it must be the case that this sequence involves nodes from the previous ∆′ as well some of the
form z@ for z ∈ ∆y. We can show the properties (a)–(c) as before. Moreover, the tree-shape
of the connections between blockable nodes is maintained by our construction. To derive a
contradiction in the same way as above, it suffices to note that due to the blocking condition all
order assertions shared by f(x′) and x′ are also shared by x′ and y@ (after renaming x@ to y@

and f(x′) to x′), and hence L′(y)@ and the set corresponding to L′(f(x′)) in A∗ behave as if
the rule ( ) has been applied exhaustively.

If we continue this process infinitely, taking care that every directly blocked node is unraveled
eventually, we obtain the final tableau (∆′,A∗). The set A∗ is satisfiable due to the compactness
theorem of first-order logic. It remains to verify the tableau conditions. It is easy to verify that
the local conditions (T1)–(T5), (T7), (T9), (T10), (T14), (T18), and (T20), are satisfied due to
the corresponding tableau rules. We consider the remaining ones:

(T6) If x ∈ ∆′ is such that (∀r.C)(x) occurs in A∗, then we know that f(x) is not blocked in G.
Hence, by the rule (∀) there must be a safe neighbor y ∈ N (x) such that L(x) entails
(∀r.C)(f(x)) > r(f(x), y)⇒ C(y).
Consider first the case that x is blockable. If y is not blocked, then we have directly
introduced (a copy y′ of) y into ∆′, together with (the copy x of) f(x), and the (renamed)
entailment still holds in A∗. If y is a successor of x, then it may be the case that y is
directly blocked in G. But then we have introduced a node y′ into ∆′ that can serve as a
replacement for this missing successor, i.e. A∗ entails (∀r.C)(x) > r(x, y′)⇒ C(y′) due
to the blocking condition.
If x is a nominal node, then we know that y is not blocked since it is a safe neighbor
of x. Nevertheless, it may be that we have removed from L(x) some assertions that
were necessary to derive the above entailment; this can only be the case if y is blockable.
However, by the rule ( ), this entailment has been transferred to L(y), and is still present
in L′(y), which is why it is still entailed by A∗.

(T8) If (∀A.C)(x) and r(x, y) occur in A∗, then the required entailment is provided by the
rule (A). Again, the modification of L to L′ for the nominal nodes is rendered irrelevant
by the rule ( ).

(T11) This case can be handled by similar arguments as for (T6). Additionally, the n safe
neighbors created by the rule (>) are still distinct in ∆′ since they can never be merged.

(T12) Assume that (>n r.C)(x) occurs in A∗ and there are different y1, . . . , yn ∈ ∆′ such
that A∗ entails (>n r.C)(x) < min{r(x, yi), C(yi)}. By our construction, we know that
(>n r.C)(f(x)) occurs in L(f(x)) and there exist n neighbors y′1, . . . , y′n of f(x) (which
are possibly blocked) for which similar assertions are entailed by L(f(x)). Since G is
clash-free, there must be two of these neighbors that are not in the relation 6=· , and hence
the rule (>6) is applicable to G. This contradicts our assumption that G is complete.

(T15) For each a ∈ ind(O), the existence of exactly one nominal node for a is due to the
definition of the initial completion graph G0, clash-freeness of G, the rule (o6), and our
construction of the tableau.

(T17) We consider the example of an assertion r(a, b) > C(c) in A. In G0, there exist nodes
a, b, c that are all neighbors, and each label entails r(a, b) > C(c). Due to merging, in G
there exist heirs xa, xb, xc of these original nodes, which inherit the neighbor relationships
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as well as the required entailment. Hence, A∗ also entails r(xa, xb) > C(xc). The proofs
for the other kinds of assertions are similar.

Finally, (T13), (T16), (T19), (T21), and (T22) can be shown using similar arguments.

The other direction is easier to show.

Lemma 4.4. If there is a tableau for O, then the tableau rules can be applied to G0 in such a
way that a complete and clash-free completion graph is obtained.

Proof. If O is consistent, then by Lemma 3.2 there exists a tableau (∆′,A∗) for O. We use this
tableau to guide the application of the completion rules to G0. We will maintain a function
f : ∆→ ∆′ that matches the nodes of our completion graph to the nodes of the tableau, such
that the following conditions are satisfied:

(i) If α ./ β occurs in L(x) and α, β do not involve number restrictions or nominals that do
not occur in O, then A∗ entails f(α) ./ f(β), where f(α) is obtained from α by replacing
all nodes according to f .

(ii) If x 6=· y, then f(x) 6= f(y).
(iii) If >mr.C ∈ sub(O) does not occur in O and (>mr.C)(x) occurs in L(x), then there are

exactly m− 1 elements y ∈ ∆′ such that A∗ entails

(>n r.C)(f(x)) < min{r(f(x), y), C(y)}.

For each (>mr.C)(x) occurring in L(x) for which >mr.C does not occur in O, we know that
L(x) entails (>mr.C)(x) = (>n r.C)(x) for some >n r.C that does occur in O. Hence, (i) and
the satisfiability of A∗ imply that all node labels of our completion graph will be satisfiable.
Furthermore, clashes due to number restrictions are ruled out by (i)–(iii) and (T12). Finally,
nominals behave correctly due to (i), (ii), and (T15). Hence, our final completion graph will be
clash-free.

For the initial completion graph, we set f(a) := xa for all ind(O), where xa is the nominal node
that exists by (T15). Due to (T15) and (T17), this mapping satisfies all our conditions. We now
show by induction on the sequence of rule applications how the tableau rules can be applied in
order to maintain the conditions (i)–(iii). For most of the tableau rules, it is trivial to show that
they can be applied in such a way that the conditions remain satisfied. In particular, for the
simple rules that only have to make nondeterministic choices because of the semantics of ⇒
and min (i.e. the rules (u), (→), (vT ), (vR), (dis), (A), (Aε), (ch), and (o)), we know by the
corresponding conditions of Definition 3.1 and our semantics that we can always choose one of
the alternatives such that (i) is not violated. It is also clear that the rule ( ) does not affect
this condition.

Consider now the generating rule (>); the arguments needed for (∀) are similar. Assume that
we have to apply this rule because (>n r.C)(x) occurs in L(x), and hence by (i) the element
(>n r.C)(f(x)) occurs in A∗. Due to (T11), there are at least n elements y1, . . . , yn ∈ ∆′ such
that A∗ entails (>n r.C)(x) 6 min{r(x, y), C(y)}, and hence we can introduce n new neighbors
y′1, . . . , y

′
n according to (>) and set f(y′i) := yi, 1 6 i 6 n, in order to keep the conditions (i)–(iii)

satisfied.

For the shrinking rule (NN6), consider any (>n r.C)(x), y, and z1, . . . , zn−1 as in the precondi-
tions of this rule. Then by (iii) or (i) and (T12), we know that ∆′ contains at most n−1 nodes z
for which A∗ entails (>n r.C)(f(x)) < min{r(f(x), z), C(z)}. Furthermore, by (i), the nodes
f(y), f(z1), . . . , f(zn−1) all satisfy this condition. By (ii), this implies that there is an index i,
1 6 i 6 n− 1, such that f(y) = f(zi), and hence y .

= zi. This shows that the rule (NN6) can be
applied in such a way that all conditions remain satisfied. The same can be shown for (>6)
using similar arguments.
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For (o6), assume that there exist an a ∈ NI and two nodes x, y whose labels entail {a}(x) > 1
and {a}(y) > 1, respectively. This can only be the case for a ∈ ind(O) since the rule (NN)
always introduces new individual names. Hence, (i) and (T15) imply that π(x) = π(y), and thus
we can again merge these two nodes.

Finally, consider the rule (NN). If all its preconditions are satisfied by (>n r.C)(x) and y,
then we know that it has not been applied to this number restriction at x (or any node
that was merged into x) before. Hence, >n r.C must occur in O, and thus (i) and (T12)
imply that there are exactly m 6 n − 1 elements z′1, . . . , z′m ∈ ∆′ for which L(x) entails
(>n r.C)(x) < min{r(f(x), z′i), C(z′i)}, 1 6 i 6 m. This shows that we can apply the rule and
create m new nominal nodes z1, . . . , zm ∈ ∆, for which we set f(zi) := z′i, 1 6 i 6 m, without
violating the conditions.

Using Lemma 4.2, this shows that after finitely many steps we will have produced a complete
and clash-free completion graph.

Note that the bound on the number of nodes derived in Lemma 4.2 is triply exponential in
the size of O, and hence Lemmas 3.2, 4.3, and 4.4 prove a 3-NExpTime upper bound on the
complexity of consistency in G-SROIQ, which is the same bound that is obtained from the
classical tableau algorithm for SROIQ [15]. This is in contrast to 2-NExpTime-completeness
of classical SROIQ [20], where the upper bound is obtained by a reduction to the two-variable
fragment of first-order logic with counting quantifiers. The 2-NExpTime-hardness can be
transferred to our setting via a linear reduction from consistency in a sublogic of G-SROIQ to
consistency in classical SROIQ [6].

5 Conclusions

This paper continues the study of fuzzy extensions of expressive DLs with the Gödel semantics
of [5, 11]. We extend the previous constructions to develop a goal-oriented tableau algorithm
that can be the basis of a practical implementation to decide consistency in G-SROIQ. In
contrast, the reduction to a classical ontology proposed in [11] exhibits an exponential blowup if
both nominals and number restrictions are used, and furthermore is restricted to sublogics of
G-SROIQ with the (quasi-)forest model property only.

Tableau algorithms developed for FDLs using the closely related Zadeh semantics [24, 25] or
finitely valued semantics [9, 19, 26] are conceptually much closer to the classical algorithms, and
explicitly represent the truth degrees of all concepts in the node labels. In contrast, due to
the lack of the finitely valued model property, our tableau algorithm needs to use a novel data
structure to reason about order relations between truth degrees for different concepts. The main
technical challenge was to find a way to represent these relations that still allowed us to keep
the good characteristics of the classical algorithm.

Nevertheless, in order to obtain a practically feasible implementation, more optimizations are
necessary. For example, we can reduce the amount of nondeterminism in some of the tableau
rules by exploiting the order assertions that are already entailed by L(x); e.g., in the rule (→),
if L(x) already entails C(x) 6 D(x), then it suffices to add (C → D)(x) > 1 to L(x), and the
other case can be discarded immediately. Moreover, the naive algorithm suggested in Section ??
to decide satisfiability and entailment for sets of order assertions is hardly practical. This should
be done by a more streamlined algorithm, e.g. using reachability analysis in the graph formed
by an order structure S and a set of order assertions over S. Moreover, this algorithm should
employ caching techniques in order to avoid having to repeat the whole reachability analysis
every time a single assertion (i.e. edge) is added. Another obvious optimization would be to put

20



all order assertions that refer only to the nominal nodes into a global set that is shared by all
nodes, instead of replicating these assertions in all node labels.

On the theoretical side, future work includes the analysis of sublogics with better complexities,
e.g. Horn variants of G-SROIQ [22], and other reasoning problems such as answering (fuzzy)
conjunctive queries [7, 23].
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