
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

LTL over EL Axioms

Stefan Borgwardt Veronika Thost

LTCS-Report 15-07

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden



Contents

1 Introduction 2

2 Preliminaries 3

2.1 EL and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Propositional LTL . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 EL-LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 A Lower Bound 6

4 Two Upper Bounds 12

5 Global GCIs 15

5.1 Canonical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 r-satisfiability and r-completeness . . . . . . . . . . . . . . . . . . 19

6 Conclusions 24

1



1 Introduction

Description Logics (DLs) [BCM+07] are popular knowledge representation for-
malisms, mainly because they are the basis of the standardized OWL 2 Direct
Semantics,1 their expressiveness can be tailored to the application at hand, and
many optimized reasoning systems are available.2 DLs describe domain knowl-
edge using axioms such as

∃teaches.Course v ∃holdsDegree.DoctoralDegree,

which says that everyone who teaches a (university) course must necessarily
hold a doctoral degree. The basic building blocks are concept names (Course,
DoctoralDegree) that describe subsets the domain of discourse, and role names
(teaches, holdsDegree) that allow to draw connections between domain elements.

However, pure DLs are not suited for representing temporal dependencies that oc-
cur in many real-world domains. For this purpose, diverse extensions of DLs with
temporal formalisms have been developed [AF00, LWZ08]. In particular, combi-
nations of DLs with the operators of propositional temporal logics have received
much attention [WZ00, AKL+07, AKRZ09, BGL12, GK12, BLT13, AKWZ13].
The approach we follow in this report is based on the idea to replace the propo-
sitional variables in formulae of Linear-Time Temporal Logic (LTL) [Pnu77] by
description logic axioms to describe the possible evolution of a system. In this
setting, concept and role names may be designated as rigid to express that their
interpretation is not allowed to change over time.

The satisfiability problem of LTL over axioms of different DLs has been ana-
lyzed before. For the lightweight description logic DL-Litekrom, this problem has
been shown to be PSpace-complete in [AKL+07], matching the complexity of
propositional LTL [SC85]. For the more expressive DL ALC, the complexity
increases, depending on what kind of rigid names one allows to occur in the for-
mulae [BGL12]. Using similar techniques, the same results can be shown even
for SHOQ, if role axioms are restricted to be global, which means that they must
be satisfied at every time point [Lip14]. It is therefore interesting to investigate
whether EL shows a similarly nice behavior as DL-Lite in this regard, or whether
EL-LTL is as complex as ALC-LTL, as conjectured in [BGL12].

We show in this report that, while EL-LTL is not as well-behaved as its DL-Lite
counterpart, the complexity of satisfiability is reduced when compared to ALC-
LTL. Only in the case that rigid concept names are allowed, but no rigid role
names, does the complexity match that of satisfiability in ALC-LTL. If we allow
only global GCIs, then the satisfiability problem is PSpace-complete in all cases.
Table 1.1 gives an overview over all mentioned complexity results (all of them are

1http://www.w3.org/TR/owl2-overview/
2http://www.w3.org/2001/sw/wiki/OWL/Implementations

2

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/2001/sw/wiki/OWL/Implementations


Table 1.1: The complexity of satisfiability in LTL over DL axioms
Global GCIs

rigid symbols? none concepts roles none concepts roles
DL-Litekrom PSpace PSpace PSpace PSpace PSpace PSpace
EL PSpace NExpTime NExpTime PSpace PSpace PSpace

ALC/SHOQ ExpTime NExpTime 2-ExpTime ExpTime ExpTime 2-ExpTime

tight). Rigid concept names can be simulated by rigid role names [BGL12], and
thus there are only three cases to consider.

2 Preliminaries

We first introduce syntax and semantics of the description logic EL, of the propo-
sitional linear-temporal logic LTL, and of their combination into EL-LTL.

2.1 EL and Extensions

In the description logic EL, (complex) concepts are constructed from a set NC of
concept names and a set NR of role names inductively as follows: Every concept
name and the special symbol > (top) are concepts, and whenever C and D are
concepts, then so are C u D (conjunction), and ∃r.C (existential restriction for
r ∈ NR).

Given a set NI of individual names, an interpretation I = (∆I , ·I) consists of a
non-empty set ∆I , the domain of I, and an interpretation function ·I assigning
to every individual name a an element aI ∈ ∆I , to every concept name A a set
AI ⊆ ∆I and to every role name r a relation rI ⊆ ∆I × ∆I . This function is
extended to complex concepts as follows:

• >I := ∆I ,

• (C uD)I := CI ∩DI , and

• (∃r.C)I := {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI and y ∈ CI}.

In this report, we make the standard unique name assumption (UNA) for all
interpretations, which requires that different individual names always be inter-
preted by different domain elements, i.e. we have aI 6= bI for all a, b ∈ NI with
a 6= b.

An assertion is an expression of the form C(a) (concept assertion) or r(a, b) (role
assertion) for a, b ∈ NI, r ∈ NR, and a concept C. A general concept inclusion

3



(GCI) is of the form C v D for concepts C and D. An axiom is either an
assertion or a GCI, a TBox is a finite set of GCIs, and an ABox is a finite set
of assertions. Together, a TBox T and an ABox A form a knowledge base (KB)
K = 〈T ,A〉. An interpretation I satisfies (or is a model of)

• an assertion C(a) if aI ∈ CI (written I |= C(a));

• an assertion r(a, b) if (aI , bI) ∈ rI (written I |= r(a, b));

• a GCI C v D if CI ⊆ DI (written I |= C v D);

• a KB if it satisfies all its axioms (written I |= K).

We further denote the fact that every model of a knowledge base K satisfies an
axiom α by K |= α. A knowledge base is consistent if it has a model.

In the course of this report, we will need the two following extensions of EL.
First, EL⊥ extends EL by the concept constructor ⊥ (bottom) that is interpreted
as ⊥I := ∅ in all interpretations I. Second, ELO⊥ further extends EL⊥ with the
constructor {a} (nominal for a ∈ NI) with the semantics that {a}I := {aI} in
any interpretation I.

2.2 Propositional LTL

(Propositional) LTL-formulae are built from a set of propositional variables P by
applying the constructors φ∧ψ (conjunction), ¬φ (negation), #φ (next) and φUψ
(until). An LTL-structure is a sequence I = (wi)i≥0 of worlds wi ⊆ P that specify
which propositional variables are true at the (linearly ordered) time points i ≥ 0.
Validity of an LTL-formula φ in an LTL-structure I at time point i ≥ 0, written
I, i |= φ, is inductively defined as follows:

I, i |= p for p ∈ P iff p ∈ wi
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= #φ iff I, i+ 1 |= φ
I, i |= φUψ iff there is some k ≥ i such that I, k |= ψ

and I, j |= φ for all j, i ≤ j < k

An LTL-formula is satisfiable if it is valid in some LTL-structure at time point 0.

As usual, we use the abbreviations true := p ∨ ¬p for an arbitrary p ∈ P ,
ψ ∨ φ := ¬(¬ψ ∧ ¬φ), φ → ψ := ¬φ ∨ ψ, φ ↔ ψ := (φ → ψ) ∧ (ψ → φ),
3φ := true Uφ, and 2φ := ¬3¬φ.

4



2.3 EL-LTL

As was done for DL-Lite [AKL+07] and ALC [BGL12], we combine LTL with
EL into the temporalized description logic EL-LTL by applying the temporal
operators of LTL to axioms of EL. The resulting EL-LTL-formulae are then
analyzed for their satisfiability according to a semantics that is suitably lifted
from propositional worlds to EL-interpretations over a common domain. We
additionally consider some concept and role names to be rigid, which means that
they are not allowed to change over time. For this purpose, we designate the two
sets NRC ⊆ NC of rigid concept names and NRR ⊆ NR of rigid role names. All
other names are called flexible. All individual names are implicitly assumed to
be rigid.

We now introduce the formal semantics of EL-LTL. An EL-LTL-structure is
a sequence I = (Ii)i≥0 of EL-interpretations (also called worlds) over a com-
mon domain ∆ that respect the rigid names, i.e. we have xIi = xIj for all
x ∈ NI ∪ NRC ∪ NRR and i, j ≥ 0. Validity of an EL-LTL-formula φ in an EL-
LTL-structure I = (Ii)i≥0 at time point i ≥ 0, written I, i |= φ, is inductively
defined as for LTL, but we have I, i |= α for an axiom α iff α is satisfied by Ii.
An EL-LTL-formula is satisfiable if it is valid in some EL-LTL-structure at time
point 0.

Before we present the main results of this report, we establish an auxiliary result
about the satisfiability of certain atemporal combinations of EL-axioms, which
will be used in the proofs of the upper bounds. For this, we consider conjunctions
of EL-literals, which are axioms and negated axioms.3 Since these formulae do
not contain temporal operators, it suffices to consider a single interpretation to
determine satisfiability, and thus rigid names are irrelevant.

Lemma 2.1. Satisfiability of conjunctions of EL-literals can be decided in P.

Proof. We reduce this problem to the consistency problem of ELO⊥. Given a
conjunction φ of EL-literals, we construct a knowledge base that is consistent iff
φ is satisfiable. We convert the literals of φ into a KB 〈T ,A〉 by replacing all

• negated concept assertions ¬C(a) by the axioms C ′(a) and C u C ′ v ⊥,
where C ′ is a fresh concept name;

• negated role assertions ¬r(a, b) by the axiom {a} u ∃r.{b} v ⊥;

• negated GCIs ¬(C v D) by the axioms C(a), D′(a), and D u D′ v ⊥,
where a is a fresh individual name and D′ is a fresh concept name.

3Such conjunctions are also called Boolean knowledge bases in the literature [BGL12].

5



It is easy to check with the help of the introduced definitions that 〈T ,A〉 is
consistent iff φ is satisfiable. Since consistency in ELO⊥ is decidable in polynomial
time [BBL05], this implies the claim.

3 A Lower Bound

We first show the negative result of this report, namely that satisfiability in EL-
LTL w.r.t. rigid concept names is already NExpTime-hard, as in ALC-LTL.
However, allowing also rigid role names does not further increase the complexity,
and we show a matching upper bound in Section 4. Furthermore, satisfiability
without rigid names is in PSpace—as for propositional LTL—which we also show
in Section 4.

NExpTime-hardness is shown in two steps: we first reduce the 2n+1-bounded
domino problem [Lew78, BGG97] to the satisfiability problem in EL⊥-LTL, and
afterwards get rid of the unwanted constructor ⊥ in the axioms. The basic idea
of the first reduction is the same as for ALC-LTL in [BGL12], with some added
difficulties due to the lower expressivity of EL⊥. We will describe the differences
to the proof in [BGL12] in detail during the construction.

We start introducing the bounded version of the domino problem used in our
reduction. A domino system is a triple D = (D,H, V ), where D is a finite set
of domino types and H, V ⊆ D × D are the horizontal and vertical matching
conditions. Let D be a domino system and I = d0, . . . , dn−1 ∈ Dn an initial
condition, which is a sequence of domino types of length n > 0. A mapping
τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → D is a 2n+1-bounded solution of D
respecting the initial condition I iff, for all x, y < 2n+1, the following holds:

• If τ(x, y) = d and τ(x⊕2n+1 1, y) = d′, then (d, d′) ∈ H;

• If τ(x, y) = d and τ(x, y ⊕2n+1 1) = d′, then (d, d′) ∈ V ;

• τ(i, 0) = di for i < n;

where ⊕2n+1 denotes addition modulo 2n+1. It is shown in [BGG97, Theo-
rem 6.1.2] that there is a domino system D = (D,H, V ) such that, given an
initial condition I = d0, . . . , dn−1 ∈ Dn, the problem of deciding if D has a 2n+1-
bounded solution respecting I is NExpTime-hard. In what follows, we show
that this problem can be reduced in polynomial time to satisfiability in EL⊥-LTL
w.r.t. rigid concept names.

In our reduction, we discern global4 concept names that are flexible and are
satisfied either by all individuals of the domain or by none; in contrast, local

4Not to be confused with rigid or always (in time).

6



concept names are rigid and used to identify specific domain elements. We need
the following concept and individual names:

• an individual name a;

• flexible (global) concept names Gd, Gh
d , Gv

d, and a rigid (local) concept name
Ld for all d ∈ D;

• rigid (local) concept names X0, . . . , Xn and Y0, . . . , Yn that are used to re-
alize two binary counters modulo 2n+1, where the X-counter describes the
horizontal and the Y -counter the vertical position of a domino;

• flexible (global) concept names Z0, . . . , Z2n+1, Zh
0 . . . , Z

h
2n+1, Zv

0 , . . . , Z
v
2n+1

that are used to realize three binary counters modulo 22n+2, whose function
is explained below;

• concept names X0, . . . , Xn, Y 0, . . . , Y n, Z0, . . . , Z2n+1, Z
h

0 , . . . , Z
h

2n+1, and
Z
v

0, . . . , Z
v

2n+1 representing the complements of above counters;

• auxiliary flexible concept names N , Eh
0 , . . . , E

h
2n+1, Ev

0 , . . . , E
v
2n+1.

The first n + 1 bits of the Z-, Zh- and Zv-counters are used to represent 2n+1

horizontal components 0 ≤ x < 2n+1, and the second n+ 1 bits of these counters
are used to represent 2n+1 vertical components 0 ≤ y < 2n+1. By counting
with the Z-counter up to 22n+2 in the temporal dimension, we ensure that every
position (x, y) ∈ {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} is represented at some
time point. To count, we enforce that, for every possible value of the Z-counter,
there is a world where a belongs to the concepts from the corresponding subset
of {Z0, . . . , Z2n+1}. We will restrict the concept names Zi to be global, and thus
the value of the Z-counter is transferred to all other elements of the domain. For
every position given by the Z-counter, the Zh- and Zv-counters represent the top
and right neighbor position, respectively.

The rigid concept names X0, . . . , Xn and Y0, . . . , Yn are then used to ensure that,
in every world, there is one individual whose X- and Y -values match the value
of the global Z-counter. Since they are rigid, this enforces that every position
(x, y) ∈ {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} is represented by at least one indi-
vidual in every world. Thus, for every position, we have a world representing it
with the help of the global Z-counter, but we also have an individual representing
it in every world with the help of the local X- and Y -counters.

Furthermore, appropriate GCIs are used to ensure that (i) every global/local
position has exactly one domino type (given by Gd/Ld), and two global domino
types for two neighbors (Gh

d , Gv
d); (ii) the domino types of Gd and Ld are the

same, and Gh
d/Gv

d represent the same types as the value of Ld at the individuals
corresponding to the correct neighbors (ii) the horizontal and vertical matching
conditions are respected; and (iii) the initial condition is satisfied.

7



One of the main differences to the proof forALC-LTL [BGL12] lies in the presence
of three global domino types. In ALC-LTL, it was enough to have one local and
one global type in order to enforce the matching conditions. Here, we enforce
the matching conditions globally and then ensure that the local types of certain
individuals are the same. Another difference is the presence of the concept names
of the form Xi representing the complements of the various counters. In ALC,
these can be directly expressed as ¬Xi.

We now construct the EL-LTL-formula φD,I as the conjunction of the following
formulae:

• For every possible value of the Z-counter, there is a world where a belongs
to the concepts from the corresponding subset of {Z0, . . . , Z2n+1}:

2
∧

0≤i≤2n+1

(( ∧
0≤j<i

Zj(a)
)
↔
(
Zi(a)↔ #¬Zi(a)

))

This formula expresses that the i-th bit of the Z-counter is flipped from
one world to the next iff all preceding bits were true. Thus, the value of
the Z-counter at the next world is equal to the value at the current world
incremented by one.

• In every world, the counters Zh and Zv are synchronized to the Z-counter,
meaning that a belongs to the concepts from the subsets of {Zh

0 , . . . , Z
h
2n+1}

and {Zv
0 , . . . , Z

v
2n+1} that point to the right and top neighbor position, re-

spectively, of the position distinguished by the Z-counter. This is enforced
using formulae similar to the ones for the Z-counter above. First, the hor-
izontal component of the Zh-counter is equal to the horizontal component
of the Z-counter plus 1:

2
∧

0≤i≤n

(( ∧
0≤j<i

Zj(a)
)
↔
(
Zi(a)↔ ¬Zh

i (a)
))

The vertical component of the Zh-counter is equal to that of the Z-counter:

2
∧

n+1≤i≤2n+1

(
Zi(a)↔ Zh

i (a)
)

And similarly for the Zv-counter:

2
∧

n+1≤i≤2n+1

(( ∧
n+1≤j<i

Zj(a)
)
↔
(
Zi(a)↔ ¬Zv

i (a)
))

2
∧

0≤i≤n

(
Zi(a)↔ Zv

i (a)
)

8



• The values of the three global counters Z, Zh, and Zv are shared by all
individuals in each world:

2
∧

0≤i≤2n+1

((
(> v Zi) ∨ (Zi v ⊥)

)
∧

(
(> v Zh

i ) ∨ (Zh
i v ⊥)

)
∧
(
(> v Zv

i ) ∨ (Zv
i v ⊥)

))

• In every world, there is at least one individual for which the combined values
of the X- and the Y -counter correspond to the value of the global Z-counter
in this world:

2
(
¬(N v ⊥) ∧

∧
0≤i≤n

(N u Zi v Xi) ∧
∧

n+1≤i≤2n+1
(N u Zi v Yi−(n+1)) ∧

∧
0≤i≤n

(N uXi v Zi) ∧
∧

n+1≤i≤2n+1
(N u Yi−(n+1) v Zi)

)

Since the concept names Xi, Yi are rigid, this ensures that in every world
every possible combination of values of the X- and Y -counters is realized
by some individual. For a given such combination, the corresponding indi-
vidual represents the same value combination in every world.

• The interpretation of the concept names Zi, Z
h

i , Z
v

i , X i, Y i as the comple-
ments of Zi, Zh

i , Zv
i , Xi, Yi is enforced by the following formulae. First, we

must restrict Zi, Z
h

i , Z
v

i to be global concept names:

2
∧

0≤i≤2n+1

((
(> v Zi) ∨ (Zi v ⊥)

)
∧

(
(> v Z

h

i ) ∨ (Zh

i v ⊥)
)
∧
(
(> v Z

v

i ) ∨ (Zv

i v ⊥)
))

The complements of the global counters are easy to express:

2
∧

0≤i≤2n+1

((
Zi(a)↔ ¬Zi(a)

)
∧
(
Z
h
i (a)↔ ¬Zh

i (a)
)
∧
(
Z
v
i (a)↔ ¬Zv

i (a)
))

For the complements of the local counters, we again use the concept name N
that marks the individual whose X- and Y -counter values correspond to the
current value of the Z-counter:

2
( ∧

0≤i≤n
(N u Zi v X i) ∧

∧
n+1≤i≤2n+1

(N u Zi v Y i−(n+1)) ∧

∧
0≤i≤n

(N uX i v Zi) ∧
∧

n+1≤i≤2n+1
(N u Y i−(n+1) v Zi)

)

9



• Every world gets exactly one (global) domino type that belongs to the
position given by the global Z-counter:

2
( ∨
d∈D

(
(> v Gd) ∧

∧
d′∈D\{d}

(Gd′ v ⊥)
))

Furthermore, every world has exactly one global domino type Gh
d and Gv

d

for the right and top neighbor positions, respectively (corresponding to the
positions given by Zh and Zv):

2
( ∨
d∈D

(
(> v Gh

d) ∧
∧

d′∈D\{d}
(Gh

d′ v ⊥)
))

2
( ∨
d∈D

(
(> v Gv

d) ∧
∧

d′∈D\{d}
(Gv

d′ v ⊥)
))

• Given the global types of the neighbor positions, the horizontal and vertical
matching condition can be enforced easily:

2
( ∨

(d,d′)∈H

(
(> v Gd) ∧ (> v Gh

d′)
)
∧

∨
(d,d′)∈V

(
(> v Gd) ∧ (> v Gv

d′)
))

• To synchronize the domino types Gd, Gh
d , and Gv

d among the different worlds
(otherwise Gh

d need not be equal to the value of Gd at the world whose Z-
counter is equal to the current Zh-counter), we use the local (rigid) domino
types Ld. First, we ensure that the local type of the individual representing
the same position as the current world is the same as the current global
type:

2
∧
d∈D

(
(N uGd v Ld) ∧ (N u Ld v Gd)

)
Since the concept names Ld are rigid, this type is then associated with the
individual in every world. And because every world has exactly one global
domino type Gd (which is shared by all its individuals), every individual
also has exactly one local domino type: the one of the world representing
the same position.
To synchronize the domino types of the neighbors given by Gh

d and Gv
d, we

employ the auxiliary concept names Eh
i , Ev

i :

2
∧

0≤i≤n

(
(Zh

i uXi v Eh
i ) ∧ (Zh

i uX i v Eh
i ) ∧

(Zv
i uXi v Ev

i ) ∧ (Zv
i uX i v Ev

i )
)

2
∧

n+1≤i≤2n+1

(
(Zh

i u Yi−(n+1) v Eh
i ) ∧ (Zh

i u Y i−(n+1) v Eh
i ) ∧

(Zv
i u Yi−(n+1) v Ev

i ) ∧ (Zv
i u Y i−(n+1) v Ev

i )
)

10



In this way, the interpretation of Eh
1 u · · · u Eh

2n+1 must include all those
domain elements whose X- and Y -counters match the current Zh-counter.
This includes in particular the one individual that was created in the corre-
sponding world using the literal ¬(N v ⊥)—at which the local domino type
equals the current global domino type. Thus, all that remains to do is to
ensure that the global domino type Gh

d matches the local domino type Ld at
all domain elements satisfying Eh

1u· · ·uEh
2n+1. Of course, similar arguments

apply for the vertical direction.

2
(
(Eh

0 u . . . u Eh
2n+1 uGh

d v Ld) ∧ (Eh
0 u . . . u Eh

2n+1 u Ld v Gh
d) ∧

(Ev
0 u . . . u Ev

2n+1 uGv
d v Ld) ∧ (Ev

0 u . . . u Ev
2n+1 u Ld v Gv

d)
)

• It remains to represent the initial condition I = d0, . . . , dn−1. For this, we
use the following formula for all i = 0, . . . , n− 1:

2
(
(Cx

Z = i) u Zn+1 u · · · u Z2n+1 v Gdi

)
,

where, for any bj ∈ {0, 1}, 0 ≤ j ≤ n,(
Cx
Z =

∑
0≤j≤n

2j ∗ bj
)

:=
l

0≤j≤n
bj=0

Zj u
l

0≤j≤n
bj=1

Zj.

This conjunction identifies a particular x-position in the Z-counter. When
additionally the y-component of the Z-counter is 0, then the corresponding
type of the initial condition is enforced.

This finishes the definition of the EL⊥-LTL-formula φD,I , which is the conjunction
of all the 2-formulae introduced above. It is easy to see that the size of φD,I is
polynomial in n. Moreover, φD,I is satisfiable iff D has a 2n+1-bounded solution
respecting I.

In the last step, we describe how to eliminate the use of the bottom constructor
from this reduction. We follow the idea of [BBL05] and introduce a new (rigid)
concept name L and a new role name r for which the following formula φL must
be satisfied:

¬L(a) ∧2(∃r.L v L)
By replacing the negated GCI ¬(N v ⊥) in φD,I with > v ∃r.N , we ensure that

• all individuals representing the doubly exponentially many positions are
connected to a via the role r (at the time point that represents the same
position via the Z-counter), and

• the individual represented by a as well as those mentioned above do not
satisfy L at any time point (since L is rigid).

11



This means that we can now use L instead of ⊥ at all other places in the for-
mula φD,I without changing the semantics. The reason for this is that it suffices
to enforce the GCIs of the form Zi v ⊥ at the individuals representing the 22n+2

relevant positions. We denote by φ′D,I the formula resulting from φD,I by do-
ing the described replacements. We now have that φ′D,I ∧ φL is satisfiable iff
D has a 2n+1-bounded solution respecting I. NExpTime-hardness of the latter
problem [BGG97] yields the following result.

Theorem 3.1. If NRC 6= ∅, then satisfiability in EL-LTL is NExpTime-hard.

4 Two Upper Bounds

We now show that we can match the lower bound from the previous section even
if rigid roles are allowed in addition. On the other hand, if no rigid names are
used, then satisfiability in EL-LTL becomes PSpace-complete. Our proofs of
both upper bounds follow the basic approach from [BGL12], but additionally
utilize the characteristics of EL. In a nutshell, the problem of checking if an
EL-LTL-formula is satisfiable is split into two separate satisfiability tests—one
for an LTL-formula and one for a conjunction of EL-literals.

In the following, let φ be an EL-LTL-formula to be tested for satisfiability. The
propositional abstraction φp of φ is created by replacing each axiom by a proposi-
tional variable such that there is a 1–1 relationship between the axioms α1, . . . , αn
occurring in φ and the propositional variables p1, . . . , pn used for the abstraction.
In what follows, we assume that pi was used to replace αi for all i, 1 ≤ i ≤ n.
For a subset X ⊆ {p1, . . . , pn}, we denote by X its complement {p1, . . . , pn} \X.

We now consider sets of the form S ⊆ 2{p1,...,pn} that constrain the types of
interpretations allowed to occur in the model of φ. Every such set induces the
LTL-formula

φp
S := φp ∧2

 ∨
X∈S

 ∧
p∈X

p ∧
∧
p∈X

¬p


that expresses satisfiability of φp in an LTL-structure that is restricted to only
use the worlds contained in S.

The satisfiability of φ implies the satisfiability of φp
S for some S. However, guessing

such a set S and then testing whether the induced formula φp
S is satisfiable is not

sufficient for checking satisfiability of φ. It must also be checked whether S can
indeed be induced by some EL-LTL-structure that respects the rigid concept and
role names.

Assume for now that a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} is given. For every
i, 1 ≤ i ≤ k, and every flexible (concept or role) name x occurring in φ, we
introduce a copy x(i), the i-th copy of x. The axiom α

(i)
j is obtained from αj by

12



replacing every occurrence of a flexible name by its i-th copy. In this way, the
set S induces the following conjunction of EL-literals:

χS :=
k∧
i=1

( ∧
pj∈Xi

α
(i)
j ∧

∧
pj∈Xi

¬α(i)
j

)

The following fact has been shown in [BGL12] for ALC-LTL, but also applies to
our setting since every EL-LTL-formula is also an ALC-LTL-formula.
Proposition 4.1 ([BGL12]). The EL-LTL-formula φ is satisfiable iff there is a
set S ⊆ 2{p1,...,pn} such that φp

S and χS are both satisfiable.

The first upper bound now follows from this proposition, Lemma 2.1, and the
observation that satisfiability of φp

S can be checked in exponential time.
Theorem 4.2. Satisfiability in EL-LTL is decidable in NExpTime.

Proof. To check the EL-LTL-formula φ for satisfiability, we first guess a set
S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} in exponential time, and then construct φp

S and χS
as above. It was shown in [BGL12] that satisfiability of φp

S can be tested in expo-
nential time by appropriately modifying a Büchi automaton accepting all LTL-
structures satisfying φp and testing this automaton for emptiness. Furthermore,
χS is of exponential size in the size of φ, and thus can be tested for satisfiability
in exponential time using Lemma 2.1. In conclusion, Proposition 4.1 yields the
desired upper bound.

For the case that no rigid names are used, PSpace-hardness of satisfiability in
EL-LTL directly follows from PSpace-completeness of the satisfiability problem
in propositional LTL [SC85]. Obtaining inclusion in PSpace is a little more
involved.

We consider again an EL-LTL-formula φ (without rigid names). By Proposi-
tion 4.1, φ is satisfiable iff there is a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} such that
both φp

S and χS are satisfiable. There are three problems with applying this re-
duction directly. First, the set S is of exponential size, and thus guessing (and
storing) it is not possible in PSpace. Second, the reduction to the emptiness
of a Büchi automaton employed in [BGL12] to test satisfiability of φp

S yields a
complexity of ExpTime. Finally, checking χS for satisfiability using Lemma 2.1
also requires exponential time.

The latter problem was solved in [BGL12] by observing that the conjunctions

χXi
:=

∧
pj∈Xi

α
(i)
j ∧

∧
pj∈Xi

¬α(i)
j

do not share any concept or role names, and thus can be independently tested for
satisfiability. By Lemma 2.1, each of these (exponentially many) tests requires
only polynomial time.

13



To solve the first two problems, we propose a procedure based on the origi-
nal polynomial-space-bounded Turing machines for LTL-satisfiability constructed
in [SC85]. Given a propositional LTL-formula φp, the machine Mφp iteratively
guesses complete sets of (negated) subformulae of φp specifying which subformu-
lae are satisfied at each point in time. Every such set induces a unique world
Xi ⊆ {p1, . . . , pn} containing the propositional variables that are true.

In [SC85, Theorem 4.7], it is shown that if φp is satisfiable, there must be a
periodic model of φp with a period that is exponential in the size of φp. Hence,
Mφp first guesses two polynomial-sized indices specifying the beginning and end
of the first period. Then it continuously increments a (polynomial-sized) counter
and in each step guesses a complete set of (negated) subformulae of φp. It then
checks Boolean consistency of this set and consistency with the set of the previous
time point according to the temporal operators. For example, if the previous set
contains the formula p1 U p2, then either it also contains p2 or it must contain p1
and the current set must contain p1 U p2. In this way, the satisfaction of the
U-formula is deferred to the next time point.

In each step, the oldest set is discarded and replaced by the next one. When the
counter reaches the beginning of the period, it stores the current set and contin-
ues until it reaches the end of the period. At that point, instead of guessing the
next set of subformulae, the set stored at the beginning of the period is used and
checked for consistency with the previous set as described above. Mφp addition-
ally has to ensure that all U-subformulae are satisfied within the period. Thus,
the Turing machine never has to remember more than three sets of polynomial
size.

We now modify this procedure to obtain the claimed upper bound.

Theorem 4.3. If NRC = NRR = ∅, then satisfiability in EL-LTL is decidable in
PSpace.

Proof. By Proposition 4.1, the satisfiability of an EL-LTL-formula φ is equivalent
to the existence of a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} such that φp

S and all χXi
,

1 ≤ i ≤ k, are satisfiable. Note that the only difference between φp and φp
S

is the requirement that all worlds in an LTL-structure satisfying φp
S should be

included in S. It is thus not necessary to actually construct the whole set S—it
is enough to show that each world X we encounter when checking φp (not φp

S)
for satisfiability induces a satisfiable conjunction χX .

To check φ for satisfiability, we can thus run a modified version of the Turing
machine Mφp that tests for each guessed complete set of subformulae whether
the induced world satisfies the additional requirement that χX is satisfiable. The
latter tests can be done in polynomial time. The set S from Proposition 4.1
corresponds to the set of all worlds X encountered during a run of Mφp . As
described before, this set does not have to be stored explicitly.

14



Since all this can be done with a nondeterministic Turing machine using only
polynomial space (in the size of φ), according to [Sav70], satisfiability in EL-LTL
can be decided in PSpace.

5 Global GCIs

In this section, we propose an approach that makes it possible to consider rigid
names while the complexity is still in PSpace, and hence overcome the rather
negative result of NExpTime-hardness for this case. Specifically, we restrict the
EL-LTL-formulae to be of the form (2∧ T )∧ψ, where T is a TBox whose GCIs
should hold globally, i.e., at every point in time, and ψ is an EL-LTL-formula
that contains only assertions [BGL12].

5.1 Canonical Models

To facilitate the proofs, we recall the construction of canonical models for deciding
subsumption w.r.t. EL-knowledge bases K = 〈T ,A〉 [BBL05]. In the following,
we denote by NC(T ) the set of all concept names occurring in the TBox T , and
similarly define NI(A), NR(T ), and so on. We denote by Sub(T ) the set of all
concepts occurring as subconcepts in axioms of T . Further, a concept over T is
a concept that is constructed from the concept and role names occurring in T .
If it contains only rigid names, then it is called a rigid concept over T . An atom
over T is a concept over T of the form A or ∃r.A, where A ∈ NC(T ) ∪ {>} and
r ∈ NR(T ).

We assume the KB to be normalized, i.e., the TBox may only contain GCIs of
the following forms:

A1 u A2 v B, ∃r.A v B, and A v ∃r.B,

and the ABox may only contain assertions of the forms

A(a), r(a, b), and ∃r.A(a)

where A1, A2, A,B ∈ NC ∪ {>}, r ∈ NR, and a, b ∈ NI. We further assume that
all concept and role names occurring in K also occur in T . These assumptions
are clearly without loss of generality [BBL05].

Definition 5.1. Let K = 〈T ,A〉 be a normalized EL-knowledge base. We first
define the set

∆IKu := {cA | A ∈ NC(T ) ∪ {>}}.

15



The canonical interpretation IK for K is defined as follows, for all a ∈ NI,
A ∈ NC, and r ∈ NR:

∆IK := NI(A) ∪∆IKu ,

aIK := a,

AIK := {a ∈ NI(A) | K |= A(a)} ∪
{cB ∈ ∆IKu | T |= B v A}, and

rIK := {(a, b) | r(a, b) ∈ A} ∪
{(a, cB) ∈ NI(A)×∆IKu | K |= ∃r.B(a)} ∪
{(cA, cB) ∈ ∆IKu ×∆IKu | T |= A v ∃r.B}.

Based on IK, we now define the rigid canonical interpretation I ′K for K. Similar
as above, we first define the set

∆I
′
Ku := {c′A | A ∈ NC(T ) ∪ {>}}.

For all a ∈ NI and A ∈ NRC:

∆I′K := ∆IK ∪∆I
′
Ku ,

aI
′
K := a, and

AI
′
K := {e ∈ ∆IK | e ∈ AIK} ∪ {c′B ∈ ∆I

′
Ku | T |= B v A}.

The interpretation of all A ∈ NC\NRC, r ∈ NRR, and s ∈ NR\NRR, is now specified
iteratively, where we assume that all interpretations I ′K,i are defined as I ′K up to
this point and further as below:

AI
′
K,0 := {c′B ∈ ∆I

′
Ku | T |= B v A},

rI
′
K,0 := {(e1, e2) ∈ ∆IK ×∆IK | (e1, e2) ∈ rIK} ∪

{(c′A, c′B) ∈ ∆I
′
Ku ×∆I

′
Ku | T |= A v ∃r.B},

sI
′
K,0 := {(c′A, c′B) ∈ ∆I

′
Ku ×∆I

′
Ku | T |= A v ∃s.B},

AI
′
K,i+1 := {e ∈ CI′K,i | T |= C v A, C an atom over T },

rI
′
K,i+1 := rI

′
K,i ∪ {(e, c′B) ∈ CI′K,i ×∆I

′
Ku | T |= C v ∃r.B, C an atom over T },

sI
′
K,i+1 := sI

′
K,i ∪ {(e, c′B) ∈ CI′K,i ×∆I

′
Ku | T |= C v ∃s.B, C an atom over T },

AI
′
K :=

⋃
i≥0

AI
′
K,i ,

rI
′
K :=

⋃
i≥0

rI
′
K,i , and

sI
′
K :=

⋃
i≥0

sI
′
K,i .

16



Since the domain of I ′K is of polynomial size, it is easy to see that the above
construction is finished after polynomially many iterations, and thus I ′K can be
constructed in polynomial time.

For future reference, we next state the known result that the canonical interpre-
tation of a KB always is a model of that KB.

Proposition 5.2 ([BBL05]). For a normalized EL-KB K, we have IK |= K.

We now refer to so-called simulations, which in [Baa03] are described as binary
relations between nodes of two so-called EL-description graphs that respect the
labels and edges of those graphs. Such an EL-description graph is obtained for
an interpretation I by regarding I as a graph such that the domain elements are
the nodes, labeled by the concept names the elements satisfy; and the (labeled)
edges are given by the roles connecting the elements in I. We define the notion
of simulation directly w.r.t. two interpretations.

Definition 5.3. A simulation σ : I → J (of I by J ), is a relation σ ⊆ ∆I×∆J
iff the following hold, for all (x, y) ∈ σ:

• x ∈ AI implies y ∈ AJ , for all A ∈ NC; and

• (x, x′) ∈ rI implies that there is an element y′ ∈ ∆J , such that (x′, y′) ∈ σ
and (y, y′) ∈ rJ , for all r ∈ NR.

It is easy to inductively construct a simulation of the canonical model of a KB K
by any other model of K.

Proposition 5.4. Let J be a model of a knowledge base K. Then there is a
simulation σ of IK by J such that (a, aJ ) ∈ σ, for all a ∈ NI.

We now prove some auxiliary lemmas concerning I ′K. The first is a characteriza-
tion of the behavior of I ′K,i, i ≥ 0, on the newly introduced elements from ∆I

′
Ku .

Since it is independent of i, it in particular shows that the interpretation of these
elements is never changed.

Lemma 5.5. Let K = 〈T ,A〉 be an EL-knowledge base. For all c′B ∈ ∆I
′
Ku ,

atoms C over T , and i ≥ 0, we have c′B ∈ C
I′K,i iff T |= B v C.

Proof. We show the claim by induction on i and start with i = 0. If C ∈ NC(T ),
then it holds by the definition of CI′K,0 . For the case that C = ∃r.A with
r ∈ NR(T ) and A ∈ NC(T ), assume first that c′B ∈ (∃r.A)I′K,0 . Then, there
must be an element c′D ∈ ∆I

′
Ku such that (c′B, c′D) ∈ rI

′
K,0 and c′D ∈ AI

′
K,0 , and

hence T |= B v ∃r.D and T |= D v A, which implies that T |= B v ∃r.A.
Conversely, if T |= B v ∃r.A, then we have (c′B, c′A) ∈ rI′K,0 and c′A ∈ AI

′
K,0 , and

hence c′B ∈ (∃r.A)I′K,0 .

17



Consider now the case that i > 0. If C ∈ NC(T ), then there is an atom D over T
such that c′B ∈ DI

′
K,i−1 and T |= D v C. By the induction hypothesis, we know

that T |= B v D, and hence T |= B v C, as claimed. If C = ∃r.A for r ∈ NR(T )
and A ∈ NC(T ), then there is a c′E ∈ ∆I

′
Ku such that (c′B, c′E) ∈ rI′K,i and c′E ∈ AI

′
K,i .

From the former and the definition of rI′K,0 , . . . , rI
′
K,i , we know that there is an

atom D over T such that c′B ∈ DI
′
K,j for some j < i and T |= D v ∃r.E. From

the latter, we find an atom F over T such that c′E ∈ F I
′
K,i−1 and T |= F v A.

By the induction hypothesis, we get T |= B v D and T |= E v F . Putting all
this together, we conclude that T |= B v ∃r.A.

The second auxiliary lemma describes the behavior of I ′K on the original domain
elements of IK.

Lemma 5.6. Let K = 〈T ,A〉 be a consistent KB, e ∈ ∆IK, and an atom C
over T . If e ∈ CI′K, then there is a rigid concept C ′ over T such that e ∈ C ′IK
and T |= C ′ v C.

Proof. For C ∈ NRC, we have e ∈ CIK by Definition 5.1, and trivially T |= C v C.
For the remaining cases, we prove the claim by induction over the construction
of I ′K, i.e., we show that for all i ≥ 0, e ∈ CI

′
K,i implies the existence of a

concept C ′ as above. Consider first i = 0:

• For C ∈ NC \ NRC, the claim is vacuously true since CI′K,0 ∩∆IK is empty.

• For C = ∃r.A, there must be an element e′ ∈ ∆I′K such that (e, e′) ∈ rI′K,0

and e′ ∈ AI
′
K,0 . Since e ∈ ∆IK , we must have r ∈ NRR, e′ ∈ ∆IK , and

(e, e′) ∈ rIK . But then also A ∈ NRC and e′ ∈ AIK , and thus we can choose
C ′ := ∃r.A.

We come to the induction step and assume that e ∈ CI′K,i+1 \ CI′K,i .

• In case C ∈ NC \ NRC, we have an atom D over T such that e ∈ DI
′
K,i

and T |= D v C. By the induction hypothesis, there is a rigid concept C ′
over T such that e ∈ C ′IK and T |= C ′ v D. But then we also have
T |= C ′ v C.

• If C = ∃r.A, there is an e′ ∈ ∆I′K such that (e, e′) ∈ rI′K,i+1 and e′ ∈ AI′K,i+1 .
If e′ ∈ ∆IK , then we must have r ∈ NRR, (e, e′) ∈ rI′K,0 , and thus (e, e′) ∈ rIK .
By the assumption that e ∈ CI′K,i+1\CI′K,i , we thus obtain e′ ∈ AI′K,i+1\AI′K,i .
By our analysis above, we know that there is a rigid concept C ′ over T such
that e′ ∈ C ′IK and T |= C ′ v A. But then ∃r.C ′ is as required since
e ∈ (∃r.C ′)IK and T |= ∃r.C ′ v ∃r.A.

If e′ = c′B ∈ ∆I
′
Ku , then Lemma 5.5 yields that T |= B v A and c′B ∈ AI

′
K,0 .

Since e ∈ CI′K,i+1 \CI′K,i , we know that there is an atom D over T such that

18



e ∈ DI′K,i and T |= D v ∃r.B. By the induction hypothesis, there is a rigid
concept C ′ over T such that e ∈ C ′IK and T |= C ′ v D. Thus, we conclude
that T |= C ′ v ∃r.A, as required.

5.2 r-satisfiability and r-completeness

In what follows, let φ = (2∧ T ) ∧ ψ be an EL-LTL-formula with global GCIs
to be tested for satisfiability, where T is a normalized TBox and ψ contains
only normalized assertions of the forms A(a) and r(a, b). We again consider a
set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, where α1, . . . , αm are the assertions in ψ,
and the propositional LTL-formula ψp

S from Section 4. We define the ABoxes
Ai := {αj | pj ∈ Xi} ∪ {¬αj | pj ∈ Xi}, for 1 ≤ i ≤ k. Observe that we also
consider negated assertions ¬A(a) and ¬r(a, b) here, with the obvious semantics
that an interpretation I satisfies them if aI /∈ AI and (aI , bI) /∈ rI , respectively.

Similar to before, we now show that the test for satisfiability of φ can be again
split into two parts. We now restate the property described by χS in terms of
the knowledge bases 〈T ,Ai〉.

Definition 5.7. A set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} is r-satisfiable if there are
interpretations J1, . . . ,Jk such that

• each Ji, 1 ≤ i ≤ k, is a model of 〈T ,Ai〉; and

• they share the same domain and respect rigid names (cf. Section 2.3).

The following result is the same as Proposition 4.1, restated using the above
definition.

Proposition 5.8 ([BBL15]). The EL-LTL-formula φ is satisfiable iff there is an
r-satisfiable set S = {X1, . . . , Xk} ⊆ 2{p1,...,pn} such that φp

S is satisfiable.

Contrary to the PSpace-result of Theorem 4.3, we cannot simply split the r-
satisfiability test into individual consistency tests for 〈T ,Ai〉, due to the presence
of rigid names. We can nevertheless combine this test with the satisfiability test
for φp

S using the Turing machineMφp described before, by guessing polynomially
many additional assertions that allow us to separate the r-satisfiability test for S
into independent consistency tests.

Definition 5.9. An ABox type for φ is a set

AR ⊆ {A(a),¬A(a), r(a, b),¬r(a, b) | a, b ∈ NI(φ), A ∈ NRC(T ), r ∈ NRR(T )}

such that A(a) ∈ AR iff ¬A(a) /∈ AR, and r(a, b) ∈ AR iff ¬r(a, b) /∈ AR.

19



We now consider tuples of the form (AR,A′R), where AR is an ABox type for φ
and

A′R ⊆ {∃r.A(a) | a ∈ NI(φ), r ∈ NRR(T ), A ∈ NC(T ) ∪ {>}}.
For all i, 1 ≤ i ≤ k, we denote by KiR the knowledge base 〈T ,AR ∪ A′R ∪ Ai〉
and consider the rigid canonical interpretation I ′i := I ′[Ki

R]+, where [KiR]+ is equal
to KiR without the negated assertions in AR ∪ Ai. A tuple (AR,A′R) as above is
called r-complete for φ (w.r.t. S) if, for all i, 1 ≤ i ≤ k,

• KiR is consistent, and

• for all a ∈ NI(φ), r ∈ NRR(T ), and A ∈ NC(T ) ∪ {>}, a ∈ (∃r.A)I′i implies
∃r.A(a) ∈ A′R.

The idea is that AR fixes the interpretation of the rigid names on the named
individuals, and A′R specifies what kind of r-successors (for a rigid r) need to be
present at every time point. Note that each KiR can be seen as a conjunction of
EL-literals (whose size is polynomial in the size of φ), and thus its consistency
can be decided in deterministic polynomial time, by Lemma 2.1. Likewise, since
the size of I ′i is polynomial in the size of φ (see Definition 5.1), we can check the
second condition in polynomial time (for a single index i).

As described above, we show in Lemmas 5.10 and 5.15 that the existence of an
r-complete tuple fully characterizes the r-satisfiability of S.

Lemma 5.10. If S is r-satisfiable, then there is an r-complete tuple for φ w.r.t. S.

Proof. Let J1, . . . ,Jk be the interpretations that exist by the r-satisfiability of S.
We construct AR as follows:

AR := {A(a) | A ∈ NRC(T ), a ∈ NI(φ), J1 |= A(a)} ∪
{¬A(a) | A ∈ NRC(T ), a ∈ NI(φ), J1 6|= A(a)} ∪
{r(a, b) | r ∈ NRR(T ), a, b ∈ NI(φ), J1 |= r(a, b)} ∪
{¬r(a, b) | r ∈ NRR(T ), a, b ∈ NI(φ), J1 6|= r(a, b)}.

This set is obviously an ABox type. Since J1, . . . ,Jk respect the rigid names,
each Ji is also a model of AR. We further define

A′R := {∃r.A(a) | r ∈ NRR(T ), A ∈ NC(T ) ∪ {>}, a ∈ NI(φ),
C a rigid concept over T , a ∈ CJ1 , T |= C v ∃r.A}.

Since all Ji agree on all rigid names and satisfy T , they also satisfy A′R. This
already shows that each KiR = 〈T ,AR ∪ A′R ∪ Ai〉 is consistent.

For the second condition of Definition 5.9, assume now that a ∈ (∃r.A)I′i holds
for some a ∈ NI(φ), r ∈ NRR(T ), and A ∈ NC(T )∪{>}. We need to show that we

20



then have ∃r.A ∈ A′R. By Lemma 5.6, there is a rigid concept C over T such that
a ∈ CIi and T |= C v ∃r.A, where Ii := I[Ki

R]+ is the canonical interpretation
for [KiR]+. By Proposition 5.4, we obtain that a ∈ CJi , and thus a ∈ CJ1 since
Ji and J1 agree on all rigid names.

In the remainder of this section, we prove the converse of this lemma. We thus
consider an r-complete tuple (AR,A′R), and denote by Ii the canonical interpreta-
tion Ii := I[Ki

R]+ . We first show that Ii is also a model of KiR, for each i, 1 ≤ i ≤ k.
Since it satisfies [KiR]+ by Proposition 5.2, we need to consider only the negated
assertions in AR and Ai. Since KiR is consistent by assumption, we know that
[KiR]+ 6|= A(a) holds for every negated concept assertion ¬A(a) ∈ AR ∪ Ai, and
thus Ii |= ¬A(a) by Definition 5.1. Similarly, for any negated role assertion
¬r(a, b) ∈ AR ∪ Ai, we cannot have r(a, b) ∈ AR ∪ Ai, and thus Ii |= ¬r(a, b) by
Definition 5.1.

To distinguish the elements of ∆Ii
u , we write cA,i for the element cA ∈ ∆Ii

u in the
domain of Ii. Thus, the domain of each Ii is composed of the pairwise disjoint
components NI(φ) and ∆Ii

u . We state this fact for future reference.

Fact 5.11. The set NI(φ) and all sets ∆Ii
u , 1 ≤ i ≤ k, are pairwise disjoint.

We now construct the interpretations J1, . . . ,Jk as required for the r-satisfiability
of S by joining the domains of the interpretations Ii and ensuring that they
interpret all rigid names in the same way. We use the common domain

∆ := NI(φ) ∪
k⋃
i=1

∆Ii
u

and, for all i, 1 ≤ i ≤ k, define the interpretations Ji as follows:

• For all a ∈ NI(φ), we set aJi := a.

• For all rigid concept names A, we define AJi := ⋃k
j=1 A

Ij .

• For all flexible concept names A, we define

AJi := AIi ∪ {e | 1 ≤ j ≤ k, e ∈ ∆Ij
u , e ∈ AI

′
j}.

• For all rigid role names r, we define

rJi :=
k⋃
j=1

rIj ∪
k⋃
`=1
{(e, cA,`) | 1 ≤ j ≤ k, e ∈ ∆Ij

u , e ∈ (∃r.A)I′j}.

• For all flexible role names r, we define

rJi := rIi ∪ {(e, cA,i) | 1 ≤ j ≤ k, e ∈ ∆Ij
u , e ∈ (∃r.A)I′j}.

21



We have thus constructed interpretations J1, . . . ,Jk that have the same domain,
respect rigid names, and satisfy the UNA, for all relevant individual names. It
remains to show that each Ji is still a model of 〈T ,Ai〉. To facilitate this, we
first provide an auxiliary lemma.

Lemma 5.12. For all i, j ∈ {1, . . . , k} and all concepts C ∈ Sub(T ), the follow-
ing hold:

a) For all a ∈ NI(φ), we have a ∈ CJi iff a ∈ CIi.

b) For all e ∈ ∆Ij
u , we have e ∈ CJi iff

• i = j and e ∈ CIi, or
• e ∈ CI′j .

Proof. Observe first that e ∈ CI
′
i implies that e ∈ CIi by Lemma 5.6 and the

fact that Ii is a model of T . This means that, if i = j, then the two items in b)
are actually equivalent to the first item. On the other hand, if i 6= j, then only
the second item has to be considered.

We now prove a) and b) simultaneously by induction on the structure of C. The
claims obviously hold for C = >. For a flexible concept name C, they follow
directly from the definition of Ji and Fact 5.11. Consider now any C ∈ NRC(T ).

• We begin with a). We have a ∈ CJi iff there is some j, 1 ≤ j ≤ k, such
that a ∈ CIj , by the definition of Ji. Since both Ii and Ij are models of
the ABox type AR, this is equivalent to a ∈ CIi .

• We consider b). For i = j, Fact 5.11 and the definition of Ji yield the claim.
For i 6= j, we additionally observe that CI′j ∩∆Ij = CIj by Definition 5.1.

We now come to the induction steps. Since it can be easily treated based on
the semantics, we skip the case for C = A1 u A2. Let thus C = ∃r.A. The
direction (⇐) of both claims easily follows from the observations that rIi ⊆ rJi ,
AIi ⊆ AJi , and that e ∈ (∃r.A)I′j implies (e, cA,i) ∈ rJi and cA,i ∈ AJi by the
definition of Ji and Definition 5.1. We now consider the direction (⇒).

• We again begin with the proof of a). If r is rigid, then the definition of Ji
implies that there is an element e ∈ ∆Ij , 1 ≤ j ≤ k, such that (a, e) ∈ rIj

and e ∈ AJi .

– If e ∈ NI(φ), then we have r(a, e) ∈ Aj ∪ AR by Definition 5.1. Since
KjR is consistent and AR is an ABox type, this yields that r(a, e) ∈ AR,
and leads to (a, e) ∈ rIi , by Proposition 5.2. Now a ∈ (∃r.A)Ii can be
obtained by the induction hypothesis for e.

22



– If i = j and e ∈ ∆Ii
u , the induction hypothesis yields that e ∈ AIi , and

thus we again obtain a ∈ (∃r.A)Ii .
– It remains to consider the case that i 6= j and e ∈ ∆Ij

u . Then, we
have (a, e) ∈ rI

′
j by Definition 5.1. By the induction hypothesis, we

obtain that e ∈ AI
′
j . But this implies that a ∈ (∃r.A)I′j . Thus, we

have ∃r.A(a) ∈ A′R, and hence a ∈ (∃r.A)Ii since Ii is a model of A′R.

If r is flexible, then there is an element e ∈ ∆Ii such that (a, e) ∈ rIi and
e ∈ AJi , by the definition of Ji and Fact 5.11. By applying the induction
hypothesis to e (and i = j), we obtain that e ∈ AIi and thus a ∈ (∃r.A)Ii .

• We finally consider b) and begin with r ∈ NRR. By the definition of Ji,
either (i) there is an element d such that (e, d) ∈ rIj and d ∈ AJi ∩ ∆Ij

u
(see Definition 5.1 and Fact 5.11), or (ii) e ∈ (∃r.A)I′j , (e, cA,`) ∈ rJi , and
cA,` ∈ AJi , for some `, 1 ≤ ` ≤ k (again by Fact 5.11). In case (ii) we are
immediately done. We consider (i). By the induction hypothesis, we have
either (i’) i = j and d ∈ AIi , or (ii’) d ∈ AI′j . In the first case, we can infer
that e ∈ (∃r.A)Ii , while in the second case, we have (e, d) ∈ rI′j since r is
rigid, and thus e ∈ (∃r.A)I′j .
If r is flexible, then either (i) there is an element d such that (e, d) ∈ rIi

and d ∈ AJi ∩ ∆Ii
u (see Definition 5.1 and Fact 5.11), or (ii) e ∈ (∃r.A)I′j ,

(e, cA,i) ∈ rJi , and cA,i ∈ AJi . Again, case (ii) is trivial. In case (i), we
have i = j, and thus by the induction hypothesis we get d ∈ AIi . Thus, we
conclude that e ∈ (∃r.A)Ii .

We finally show that the interpretations Ji are in fact as intended, i.e., they
satisfy the knowledge bases 〈T ,Ai〉.

Lemma 5.13. For all i, 1 ≤ i ≤ k, Ji is a model of Ai.

Proof. We know that Ii satisfies Ai, by Definition 5.9. Since we have AIi ⊆ AJi

and rIi ⊆ rJi for all relevant concept names A and role names r, this means that
the positive assertions in Ai are also satisfied by Ji.

Consider now any negated concept assertion ¬A(a) ∈ Ai. Since Ii is a model
of Ai, we have a /∈ AIi , and thus a /∈ AJi by Lemma 5.12.

If ¬r(a, b) ∈ Ai for a flexible role name r, then we similarly get (a, b) /∈ rIi , and
thus (a, b) /∈ rJi , by the definition of Ji.

Finally, if ¬r(a, b) ∈ Ai and r is rigid, then we must have ¬r(a, b) ∈ AR, by
the consistency of KiR and the fact that AR is an ABox type. Thus, we have
(a, b) /∈ rIj for all j, 1 ≤ j ≤ k, and hence (a, b) /∈ rJi , again by the definition
of Ji.

It remains to show that all GCIs in T are satisfied by Ji.

23



Lemma 5.14. For all i, 1 ≤ i ≤ k, Ji is a model T .

Proof. We consider an arbitrary GCI C v D ∈ T . Let first e ∈ ∆Ii ∩ CJi . By
Lemma 5.12, we have e ∈ CIi , and hence e ∈ DIi since Ii satisfies T . And, by
applying Lemma 5.12 again, we obtain e ∈ DJi .

For i 6= j and e ∈ ∆Ij
u ∩CJi , we get e ∈ CI′j by Lemma 5.12. We show below that

then e ∈ DI′j holds, and hence e ∈ DJi , by another application of Lemma 5.12.

Since e ∈ CI′j , there is an ` ≥ 0 such that e ∈ CI′j,` , where I ′j,` := I ′[Kj
R]+,` is as in

Definition 5.1. If D = >, then obviously e ∈ DI′j , as desired. If D is a flexible
concept name, then we get e ∈ DI′j,`+1 ⊆ DI

′
j by the definition of I ′j,`+1. If D is a

rigid concept name, then we have e ∈ CIj ⊆ DIj ⊆ DI
′
j,0 ⊆ DI

′
j by Lemma 5.6,

Proposition 5.2, and the definition of I ′j,0. Finally, if D = ∃r.A, then we get
(e, c′A) ∈ rI′j,`+1 ⊆ rI

′
j by the definition of I ′j,`+1. Since also c′A ∈ AI

′
j,0 ⊆ AI

′
j , we

obtain e ∈ (∃r.A)I′j .

We hence have proven the following lemma.
Lemma 5.15. If there is an r-complete tuple for φ w.r.t. S, then S is r-satisfiable.

This finishes the proof that the existence of an r-complete tuple characterizes the
r-satisfiability of S. Together with the PSpace-hardness result for propositional
LTL [SC85], we thus obtain the following.
Theorem 5.16. Satisfiability in EL-LTL with global GCIs is PSpace-complete,
even if NRR 6= ∅.

Proof. We can argue as in the proof of Theorem 4.3. That is, to check φ for
satisfiability, we can run a modified version of the Turing machineMφp . However,
the difference now is that, before runningMφp , we guess AR and A′R, which can
be done in PSpace, and then include the two tests described in Definition 5.9, for
each guessed complete set of subformulae (and world Xi and ABox Ai induced
by it). Both of these tests can be done in polynomial time. The set S from
Proposition 4.1 corresponds to the set of all worlds X encountered during a run
ofMφp . As described before, this set does not have to be stored explicitly.

Since all this can be done with a nondeterministic Turing machine using only
polynomial space (in the size of φ), according to [Sav70], satisfiability in EL-LTL
with global GCIs can be decided in PSpace.

6 Conclusions

We have shown that satisfiability in EL-LTL is PSpace-complete without rigid
names and NExpTime-complete if any rigid names are used. This is lower than

24



for ALC-LTL in some cases, but not as good as DL-Lite-LTL, where satisfiability
is decidable in PSpace even in the presence of rigid role names.

We plan to investigate the complexity of answering so-called temporal conjunc-
tive queries [BBL15] over temporal EL- and DL-Lite-knowledge bases, which is
a closely related problem. For all DLs between ALC and SHQ, the (combined)
complexity of this problem is the same as that of the (complement of the) satis-
fiability problem in ALC-LTL [BGL12, BBL15].

References

[AF00] Alessandro Artale and Enrico Franconi. A survey of temporal ex-
tensions of description logics. Annals of Mathematics and Artificial
Intelligence, 30(1/4):171–210, 2000.

[AKL+07] Alessandro Artale, Roman Kontchakov, Carsten Lutz, Frank Wolter,
and Michael Zakharyaschev. Temporalising tractable description log-
ics. In Valentin Goranko and X. Sean Wang, editors, Proc. of the 14th
Int. Symp. on Temporal Representation and Reasoning (TIME’07),
pages 11–22. IEEE Press, 2007.

[AKRZ09] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev. DL-Lite with temporalised concepts, rigid
axioms and roles. In Silvio Ghilardi and Roberto Sebastiani, editors,
Proc. of the 7th Int. Symp. on Frontiers of Combining Ssystem (Fro-
CoS’09), volume 5749 of Lecture Notes in Computer Science, pages
133–148, 2009.

[AKWZ13] Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael
Zakharyaschev. Temporal description logic for ontology-based data
access. In Francesca Rossi, editor, Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence (IJCAI’13), pages 711–717. AAAI Press,
2013.

[Baa03] Franz Baader. Terminological cycles in a description logic with ex-
istential restrictions. In Georg Gottlob and Toby Walsh, editors,
Proceedings of the 18th International Joint Conference on Artificial
Intelligence, pages 325–330. Morgan Kaufmann, 2003.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the
EL envelope. In Leslie Pack Kaelbling and Alessandro Saffiotti, edi-
tors, Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’05), pages 364–369. Professional Book Center, 2005.

25



[BBL15] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Tempo-
ral query entailment in the description logic SHQ. Journal of Web
Semantics, 2015. In press.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2 edition, 2007.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Deci-
sion Problem. Perspectives in Mathematical Logic. Springer-Verlag,
1997.

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over de-
scription logic axioms. ACM Transactions on Computational Logic,
13(3):21:1–21:32, 2012.

[BLT13] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal
query answering in the description logic DL-Lite. In Pascal Fontaine,
Christophe Ringeissen, and Renate A. Schmidt, editors, Proc. of the
9th Int. Symp. on Frontiers of Combining Systems (FroCoS’13), vol-
ume 8152 of Lecture Notes in Artificial Intelligence, pages 165–180.
Springer-Verlag, 2013.

[GK12] Víctor Gutiérrez-Basulto and Szymon Klarman. Towards a unifying
approach to representing and querying temporal data in description
logics. In Markus Krötzsch and Umberto Straccia, editors, Proc.
of the 6th Int. Conf. on Web Reasoning and Rule Systems (RR’12),
volume 7497 of Lecture Notes in Computer Science, pages 90–105.
Springer-Verlag, 2012.

[Lew78] Harry R. Lewis. Complexity of solvable cases of the decision prob-
lem for the predicate calculus. In Proc. of the 19th Annual Symp.
on Foundations of Computer Science (SFCS’78), pages 35–47. IEEE
Press, 1978.

[Lip14] Marcel Lippmann. Temporalised Description Logics for Monitoring
Partially Observable Events. PhD thesis, TU Dresden, Germany,
2014.

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal
description logics: A survey. In Stéphane Demri and Christian S.
Jensen, editors, Proc. of the 15th Int. Symp. on Temporal Represen-
tation and Reasoning (TIME’08), pages 3–14. IEEE Press, 2008.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proc. of the 18th
Annual Symp. on Foundations of Computer Science (SFCS’77), pages
46–57. IEEE Press, 1977.

26



[Sav70] Walter J. Savitch. Relationships between nondeterministic and de-
terministic tape complexities. Journal of Computer and System Sci-
ences, 4(2):177–192, 1970.

[SC85] A. Prasad Sistla and Edmund M. Clarke. The complexity of propo-
sitional linear temporal logics. J. ACM, 32(3):733–749, 1985.

[WZ00] Frank Wolter and Michael Zakharyaschev. Temporalizing description
logics. In FroCoS 2, volume 7 of Studies in Logic and Computation,
pages 379–402, 2000.

27


	Introduction
	Preliminaries
	EL and Extensions
	Propositional LTL
	EL-LTL

	A Lower Bound
	Two Upper Bounds
	Global GCIs
	Canonical Models
	r-satisfiability and r-completeness

	Conclusions

