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Abstract

Context-aware systems use data about their environment for adapta-
tion at runtime, e.g., for optimization of power consumption or user ex-
perience. Ontology-based data access (OBDA) can be used to support
the interpretation of the usually large amounts of data. OBDA augments
query answering in databases by dropping the closed-world assumption
(i.e., the data is not assumed to be complete any more) and by includ-
ing domain knowledge provided by an ontology. We focus on a recently
proposed temporalized query language that allows to combine conjunctive
queries with the operators of the well-known propositional temporal logic
LTL. In particular, we investigate temporalized OBDA w.r.t. ontologies in
the DL EL, which allows for efficient reasoning and has been successfully
applied in practice. We study both data and combined complexity of the
query entailment problem.
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1 Introduction

Context-aware systems use data about their environment for adaptation at run-
time [BBB+09, HSK09], e.g., for optimization of power consumption or user ex-
perience. This data is usually collected in a large scale and continuously by
different sensors (e.g., the operating system or other, possibly external, sources)
and stored in a database. Interpreting the information available in the database,
the context-aware system is supposed to recognize certain predefined situations
(e.g., that an application is out of user focus), which require an adaptation (e.g.,
the optimization of application parameters w.r.t. power consumption).

OBDA

In a simple setting, such a context-aware system can be realized by using stan-
dard database techniques: the sensor information is stored in a database, and the
situations to be recognized are specified as database queries [AHV95]. However,
we cannot assume that the sensors provide a complete description of the cur-
rent state of the environment. Thus, the closed-world assumption employed by
database systems (i.e., facts not present in the database are assumed to be false)
is not appropriate since there may be facts of which the truth is not known. For
example, a sensor for specific information might not be available for some time
or not even exist.

In addition, though a complete specification of the environment usually does not
exist, some knowledge about its behavior is often available (e.g., that a video
application is out of user focus if the user does not watch the video for a while).
This background knowledge could be used to support the interpretation of the
sensor data to identify predefined, more complex contexts at runtime (e.g., that
an application actually is out of user focus); by answering queries based on the
predefined contexts, the contexts identified in this way then can be used to dy-
namically recognize complex situations.

Ontology-based data access (OBDA) [PLC+08, DEFS98] addresses these two
points by (i) viewing the data as an ABox, which is interpreted under the open-
world assumption, and (ii) representing additional background knowledge in a
TBox (or ontology). ABox and TBox together form a knowledge base, and are
written in an appropriate ontology language; for example, a Description Logic
(DL) [BCM+03].

For example, assume that we have an ABox containing the following facts about
individuals, formed using unary and binary predicates, in DL terminology called
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concepts and roles, respectively:

User(bob), NotWatchingVideo(bob),
VideoApplication(xPlayer), hasUser(xPlayer, bob),
TextApplication(openOffice), hasUser(openOffice, bob),
OperatingSystem(os)

We can thus describe that the individual Bob is a user that is not watching
a video, that there are two applications used by Bob, and that the system is
currently optimizing the user experience w.r.t. the video application, e.g., by
setting a high resolution.

In addition, a corresponding TBox may contain the following background infor-
mation:

VideoApplication u ∃hasUser.NotWatchingVideo v ∃hasState.OutOfFocus,

Hence, a video application is described to have the state ‘out of user focus’ if its
user does not watch the video.

Given that kind of information, we can recognize the situation when the system
is optimizing for an application that is out of user focus to potentially adapt and
optimize w.r.t. a different application; for example, by answering the following
simple conjunctive query (CQ) over the example knowledge base, we can identify
applications x that can potentially be assigned a lower priority:

ψ(x) := ∃y.hasState(x, y) ∧ OutOfFocus(y)

This method has several drawbacks. For example, a context-aware system usually
optimizes the application parameters once and adjusts them in random intervals,
but not continuously. Moreover, it is questionable to assume that a user not
watching the video at a single moment in time is not focusing on the application
any more.

For that reason, we want to investigate temporal conjunctive queries (TCQs)
[BBL15], where the query may refer to several points in time.

Temporalized OBDA

Originally proposed by [BBL13, BBL15], TCQs allow to combine CQs via Boolean
operators and the temporal operators of the well-known propositional temporal
logic LTL [Pnu77]. For example, the situation described above could be specified
more elaborately as follows:(

#− ψ(x)
)
∧
(

#− #−ψ(x)
)
∧
(

#− #− #− ψ(x)
)
∧(

¬
(
∃y.GotPriority(y) ∧ notEqual(x, y)

)
SGotPriority(x)

)
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to obtain all applications that were out of user focus during the three previous
(#−) moments of observation, were prioritized by the operating system at some
point in time, and the priority has not (¬) changed since (S) then.

To apply context-aware situation recognition by answering TCQs, we extend
the overall setting of OBDA as proposed in [BBL15]. Specifically, we consider
a temporal knowledge base, which, in addition to the TBox for the background
knowledge (this knowledge is assumed to hold at all points in time), contains
a sequence of ABoxes A0,A1, . . . ,An, each containing the sensor data observed
—and thus describing the state of the system—at a specific point in time. We
designate with n the most recent time point at which we have observed the state
of the system, and will call it the current time point. Given this data, we want
to evaluate a TCQ recognizing a certain situation at the current time point.

In our setting, the information within the TBox and the ABoxes thus does not ex-
plicitly refer to the temporal dimension, but is written in a classical (atemporal)
DL; only the query is temporalized. In contrast, so-called temporal DLs [LWZ08,
AKL+07, AKRZ14, AKK+14, GJS14, ABM+14] extend classical DLs by temporal
operators, which then occur within the knowledge base. However, as it is shown
in [LWZ08, AKL+07, AKRZ14, GJS14], most of these logics yield high reasoning
complexities, even if the underlying atemporal DL allows for tractable reason-
ing. For that reason, lower complexities are only obtained by either considerably
restricting the set of temporal operators or the underlying DL.

A simplified version of TCQs called ALC-LTL, which allows to combine only a
very restricted subset of CQs (i.e., ALC axioms) via LTL operators, has been
introduced in [BGL12]. In [BBL13, BBL15], the problem of answering TCQs
over knowledge bases in the rather expressive DLs ALC and SHQ has been
investigated. However, reasoning in these DLs is not tractable anymore, and
context-aware systems often need to deal with large quantities of data and adapt
fast. Several lightweight logics have been considered in [BLT15], but this article
does not consider full TCQs since it does not allow negation in the query language.
Similarly, the formulas considered in [AKL+07] w.r.t. KBs in tractable DLs are
very restricted. This motivates our study focusing on TCQs and the DL EL,
which allows for efficient reasoning [BBL05] and has been successfully applied in
practice, e.g., in large biomedical ontologies like SNOMEDCT.1

Contribution

In this report, we consider TCQ answering over temporal knowledge bases in EL
and investigate the complexity of the query entailment problem.

As in [BGL12, BBL15], we also consider rigid concepts and roles, whose inter-
pretation does not change over time. This makes sense regarding our application

1http://www.ihtsdo.org/snomed-ct/
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Table 1.1: The complexity of TCQ entailment in EL
allowed rigid symbols data complexity combined complexity
none P PSpace

LB: [CDL+06], UB: 5.2 LB: [SC85]
concept names co-NP PSpace

LB: 5.4 UB: 4.14
role names co-NP co-NExpTime

UB: 5.5 LB: 4.16, UB: 4.17

scenario of a context-aware system, where certain concepts and roles should def-
initely be interpreted rigidly (e.g., an application will always be an application).

We investigate both the combined and the data complexity of the query entail-
ment problem in three different settings: (i) both concepts and roles may be rigid
(Sections 4.2 and 5.2); (ii) only concepts may be rigid (Sections 4.1 and 5.2);
and (iii) neither concepts nor roles are allowed to be rigid (Sections 4.1 and 5.1).
The case where roles, but not concepts, are allowed to be rigid, is the same as
setting (i) since rigid concepts can be simulated using rigid roles [BGL12].

Our results are summarized in Table 1.1. Compared to TCQs in ALC and
SHQ [BBL15], the combined complexity decreases in all cases (from 2-ExpTime
to co-NExpTime, from co-NExpTime to PSpace, and from ExpTime to
PSpace, respectively). For the data complexity, we can show reduced upper
bounds for cases (i) and (iii) (co-NP instead of ExpTime and P instead of
co-NP, respectively), whereas the data complexity remains in co-NP for the
second case. Apart from the latter case, the only previous results that directly
apply to TCQ answering in EL are the PSpace lower bound for satisfiability in
propositional LTL [SC85] and the P lower bound for the data complexity of CQ
answering in atemporal EL [CDL+06].

2 Preliminaries

We first introduce the description logic EL and then define TCQs over temporal
knowledge bases formulated in EL, as it was done for ALC in [BBL15].

2.1 The Description Logic EL

The syntax of EL is defined as follows.

Definition 2.1 (Syntax of EL). Let NC, NR, and NI, respectively, be non-empty,
pairwise disjoint sets of concept names, role names, and individual names. In
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the description logic EL, the set of (complex) concepts is the smallest set such
that

• all concept names A ∈ NC are concepts,

• if C and D are concepts, and r ∈ NR, then > (top), C uD (conjunction),
and ∃r.C (existential restriction) are concepts.

A general concept inclusion (GCI) is of the form C v D, where C and D are
concepts, and an assertion is of the form A(a) or r(a, b), where A ∈ NC, r ∈ NR,
and a, b ∈ NI. An axiom is either a GCI or a assertion.

A TBox is a finite set of GCIs and an ABox is a finite set of assertions. Together,
a TBox T and an ABox A form a knowledge base K = 〈T ,A〉.

We furthermore denote by NI(K) the set of individual names that occur in the
knowledge base K, by NC(T ) (NRC(T )) the set of (rigid) concept names that
occur in the TBox T , and by Sub(T ) the set of all subconcepts that occur in
the TBox T . Sometimes, we use the abbreviation ∃r1 . . . r`.C for the concept
∃r1. . . .∃r`.C.

We define the semantics of EL as usual in a model-theoretic way.

Definition 2.2 (Semantics of EL). An interpretation is a pair I = (∆I , ·I),
where ∆I is a non-empty set (called domain), and ·I is a function that assigns
to every A ∈ NC a set AI ⊆ ∆I, to every r ∈ NR a binary relation rI ⊆ ∆I×∆I,
and to every a ∈ NI an element aI ∈ ∆I.

This function is extended to complex concepts as follows:

• >I := ∆I;

• (C uD)I := CI ∩DI; and

• (∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I , (d, e) ∈ rI , e ∈ CI}.

The interpretation I satisfies (or is a model of)

• a GCI C v D if CI ⊆ DI;

• an assertion A(a) if aI ∈ AI;

• an assertion r(a, b) if (aI , bI) ∈ rI;

• an knowledge base if it satisfies all axioms contained in it.
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We write I |= α if I satisfies the axiom α, I |= T if I satisfies all GCIs in the
TBox T , I |= A if I satisfies all assertions in the ABox A, and I |= K if I
is a model of the knowledge base K. Further, a knowledge base K is said to be
consistent iff it has model.

Throughout the report, we assume that all interpretations I satisfy the unique
name assumption (UNA), (i.e., for all a, b ∈ NI with a 6= b, we have that aI 6= bI).

We sometimes consider also ABoxes that contain negated concept assertions of
the form ¬A(a), which are satisfied by an interpretation I if aI /∈ AI . How-
ever, they can be simulated in the extension EL++ of EL by GCIs of the form
{a}uA v ⊥.2 Thus, consistency of knowledge bases containing negated assertions
can be decided in polynomial time [BBL05].

2.2 Temporal Conjunctive Queries

This report focuses on a temporal query language originally proposed in [BBL13],
but we consider here knowledge bases formulated in EL instead of ALC. The
queries are formulas of propositional LTL, where the propositions are replaced
by CQs, and are then answered over temporal knowledge bases, according to a
semantics that is suitably lifted from propositional worlds to interpretations.

In the following, we assume (as in [BGL12, BBL15]) that a subset of the concept
and role names is designated as being rigid (as opposed to flexible). The intuition
is that the interpretation of the rigid names is not allowed to change over time.
In particular, the individual names are implicitly assumed to be rigid (i.e., an
individual always has the same name). We denote by NRC ⊆ NC the rigid concept
names, and by NRR ⊆ NR the rigid role names.

Definition 2.3 (Temporal Knowledge Base). A temporal knowledge base (TKB)
K = 〈T , (Ai)0≤i≤n〉 consists of a TBox T and a finite sequence of ABoxes Ai,
where the latter only contain concept names that also occur in T .

Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (∆, ·Ii) over a
non-empty domain ∆ that is fixed (constant domain assumption). Then I is a
model of K (written I |= K) if

• for all i ≥ 0, we have Ii |= T ;

• for all i, 0 ≤ i ≤ n, we have Ii |= Ai; and

• I respects rigid names (i.e., sIi = sIj for all symbols s ∈ NI ∪ NRC ∪ NRR
and i, j ≥ 0.

2The constructor ⊥ (bottom) is interpreted as the empty set, whereas {a} (nominal) is
interpreted as the singleton set {aI} [BBL05].

8



We denote by NI(K) the set of all individual names occurring in the TKB K.

As mentioned above, our query language combines conjunctive queries via LTL
operators.

Definition 2.4 (Syntax of TCQs). Let NV be a set of variables. A conjunctive
query (CQ) is of the form φ = ∃x1, . . . , xm.ψ, where x1, . . . , xm ∈ NV and ψ is a
(possibly empty) finite conjunction of atoms of the form

• A(t) ( concept atom), for A ∈ NC and t ∈ NI ∪ NV, or

• r(t1, t2) ( role atom), for r ∈ NR and t1, t2 ∈ NI ∪ NV.

The empty conjunction is denoted by true. Temporal conjunctive queries (TCQs)
are built from CQs as follows:

• each CQ is a TCQ; and

• if φ1 and φ2 are TCQs, then the following are also TCQs:

– ¬φ1 (negation), φ1 ∧ φ2 (conjunction),
– #φ1 (next), #−φ1 (previous),
– φ1 Uφ2 (until), and φ1 Sφ2(since).

We denote the set of individuals occurring in a TCQ φ by NI(φ), the set of
variables occurring in φ by NV(φ), the set of free variables of φ by FVar(φ), and
the set of atoms occurring in φ by At(φ). A TCQ φ with FVar(φ) = ∅ is called a
Boolean TCQ. A CQ-literal is either a CQ or a negated CQ, and a union of CQs
(UCQ) is a disjunction of CQs.

As usual, we use the following abbreviations: φ1∨φ2 (disjunction), for ¬(¬φ1∧φ2),
3φ1 (eventually) for true Uφ1, 2φ1 (always) for ¬3¬φ1, and analogously for the
past: 3−φ1 for true Sφ1, and 2−φ1 for ¬3−¬φ1.

Since we focus on the analysis of entailment of TCQs, we define the semantics of
CQs and TCQs only for Boolean queries. As usual, it is given through the notion
of homomorphisms [CM77].

Definition 2.5 (Semantics of TCQs). Let I = (∆I , ·I) be an interpretation and
ψ be a Boolean CQ. A mapping π : NV(ψ) ∪ NI(ψ) → ∆I is a homomorphism of
ψ into I if

• π(a) = aI, for all a ∈ NI(ψ);

• π(t) ∈ AI, for all concept atoms A(t) in ψ; and

• (π(t1), π(t2)) ∈ rI, for all role atoms r(t1, t2) in ψ.
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We say that I is a model of ψ (written I |= ψ) if there is such a homomorphism.

Let now φ be a Boolean TCQ and I = (Ii)i≥0 be an infinite sequence of interpre-
tations. We define the satisfaction relation I, i |= φ, where i ≥ 0, by induction
on the structure of φ:

I, i |= ∃x1, . . . , xm.ψ iff Ii |= ∃x1, . . . , xm.ψ
I, i |= ¬φ1 iff Ii 6|= ∃φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= φ1 Uφ2 iff there is some k ≥ i such that I, k |= φ2

and I, j |= φ1, for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is some k, 0 ≤ k ≤ i, such that I, k |= φ2

and I, j |= φ1, for all j, k < j ≤ i.

Given a TKB K = 〈T , (Ai)0≤i≤n〉, I is called a model of φ w.r.t. K if I |= K and
I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K. Furthermore,
φ is entailed by K (written K |= φ) if every model of K is also a model of φ.

Especially note that, as mentioned in the introduction, models of TCQs consider
the current time point n.

We will often deal with conjunctions of CQ-literals φ. Since φ contains no tem-
poral operators, the satisfaction of φ by an infinite sequence of interpretations
I = (Ii)i≥0 at time point i only depends on the interpretation Ii. For simplicity,
we then often write Ii |= φ instead of I, i |= φ. For the same reason, we use
this notation also for unions of CQs. In this context, it is sufficient to deal with
classical knowledge bases K = 〈T ,A〉, which can be seen as TKBs with only one
ABox.

We now define the semantics of non-Boolean TCQs.

Definition 2.6 (Certain Answer). Let φ be a TCQ and K = 〈T , (Ai)0≤i≤n〉, be a
temporal knowledge base. The mapping a : FVar(φ) → NI(K) is a certain answer
to φ w.r.t. K if, for every I |= K, we have I, n |= a(φ), where a(φ) denotes the
Boolean TCQ that is obtained from φ by replacing the free variables according
to a.

As usual, the problem of computing all certain answers to a TCQ reduces to
exponentially many entailment problems. In this report, we study the complexity
of entailment via the satisfiability problem, which has the same complexity as the
complement of the entailment problem [BBL15].

We consider two kinds of complexity measures: combined complexity and data
complexity. For the combined complexity, all parts of the input, meaning the
TCQ φ and the entire temporal knowledge base K, are taken into account. In
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contrast, for the data complexity, the TCQ φ and the TBox T are assumed to
be constant, and thus the complexity is measured only w.r.t. the data, i.e., the
sequence of ABoxes. Note that the data complexity is actually suited quite well
for our use case, where we can assume that both the domain knowledge and the
specifications of the situations we want to recognize are given at design time as
a TBox and a set of TCQs, respectively.

Recall that we assumed that all concept names in the ABoxes also occur in the
TBox. If this was not the case, we could simply add trivial axioms like A v >
to T in order to satisfy this requirement. Although formally this increases the size
of T , these axioms do not affect the semantics of T , and can thus be ignored in
all reasoning problems involving T . All complexity results remain valid without
this assumption.

We will also assume that TCQs use only individual names that occur in the
ABoxes, and only concept and role names that occur in the TBox; this is clearly
without loss of generality.

All our proofs of upper bounds are based on the approach described in [BGL12,
BBL15]. We now introduce definitions that are important in this construction.

The propositional abstraction φp of a TCQ φ is built by replacing each CQ occur-
ring in φ by a propositional variable such that there is a 1–1 relationship between
the CQs α1, . . . , αm occurring in φ and the propositional variables p1, . . . , pm
occurring in φp. The formula φp obtained in this way is a propositional LTL-
formula [Pnu77].

Definition 2.7 (LTL). Let {p1, . . . , pm} be a finite set of propositional variables.
An LTL-formula φ is built inductively from these variables using the construc-
tors negation (¬φ1), conjunction (φ1 ∧ φ2), next (#φ1), previous (#−φ1), until
(φ1 Uφ2), and since (φ1 Sφ2).

An LTL-structure is an infinite sequence J = (wi)i≥0 of worlds wi ⊆ {p1, . . . , pm}.
The propositional variable pj is satisfied by J at i ≥ 0 (written J, i |= pj) if
pj ∈ wi. The satisfaction of a complex propositional LTL-formula by an LTL-
structure is defined as in Definition 2.5

Note that the above definition extends the usual definition of LTL, which only
considers the temporal operators # and U [Pnu77]. For this reason, this extended
logic is often referred to as Past-LTL.

2.3 Atemporal Queries and Canonical Models

We conclude the introductory definitions by considering some properties of atem-
poral queries.
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Definition 2.8 (Tree-shaped). We call a CQ tree-shaped if it does not contain
individual names and the directed graph described by its atoms is a tree, i.e., it
has a unique root variable from which all other variables can be reached by a
unique path described by role atoms.

For a tree-shaped CQ α with root variable x, we set Con(α) := Con(α, x), where

Con(α, y) :=
l

A(y)∈α

A u
l

r(y,z)∈α

∃r.Con(α, z).

This definition of Con(α) is similar to the notion of “rolled-up” queries used
by [Ros07].

For simplicity, we assume that all Boolean CQs we encounter are connected,
meaning that the variables and individual names are related by roles, as defined
in [RG10], for example.

Definition 2.9 (Connected). A Boolean CQ ψ is called connected if, for all
t, t′ ∈ NI(ψ) ∪ NV(ψ), there exists a sequence t1, . . . , t` ∈ NI(ψ) ∪ NV(ψ) such that
t = t1 and t′ = t` and for all i,1 ≤ i ≤ `, there is a r ∈ NR such that either
r(ti, ti+1) ∈ At(ψ) or r(ti+1, ti) ∈ At(ψ). A collection of Boolean CQs ψ1, . . . , ψm
is a partition of ψ if At(ψ) = At(ψ1) ∪ · · · ∪ At(ψm), the sets NI(ψi) ∪ NV(ψi),
1 ≤ i ≤ m, are pairwise disjoint, and each ψi is connected.

It follows from a result in [Tes01] that we can assume Boolean TCQs to only
contain connected CQs without loss of generality: if a Boolean TCQ φ contains a
CQ ψ that is not connected, then we can replace ψ by the conjunction ψ1∧· · ·∧ψ`,
where ψ1, . . . , ψ` is a partition of ψ. This conjunction is of linear size in the
size of ψ and the resulting TCQ has exactly the same models as φ since every
homomorphism of ψ into an interpretation I can be uniquely represented by a
collection of homomorphisms of ψ1, . . . , ψ` into I.

We now recall the well-known construction of so-called canonical models for
knowledge bases in EL [KL07, LTW09, Ros07, KRH07]. We consider elements c%,
where % is a path of the form ar1C1 . . . rnCn, where a is an individual name,
r1, . . . , rn are role names, and C1, . . . , Cn are concepts appearing in the knowl-
edge base. Intuitively, % describes a role path in a model of the knowledge base
that starts at the domain element denoted by a and proceeds through role con-
nections via r1, . . . , rn to new elements e1, . . . , en such that each ei satisfies Ci.
The canonical model contains only those elements c% for which the presence of a
path corresponding to % is enforced by the knowledge base.

Definition 2.10 (Canonical Model). Let K = 〈T ,A〉 be a knowledge base. We
first define the set

∆IK
u :=

∞⋃
j=0

∆j
u,
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where

∆0
u := {carD | a ∈ NI(A), D ∈ Sub(T ), K |= ∃r.D(a)} and

∆j+1
u := {c%rDsE | ∃c%rD ∈ ∆j

u, T |= D v ∃s.E}.

The canonical interpretation IK for K is defined as follows, for all a ∈ NI(A),
A ∈ NC, and r ∈ NR:

∆IK := NI(A) ∪∆IK
u ,

aIK := a,

AIK := {a ∈ NI(A) | K |= A(a)} ∪
{c%rD ∈ ∆IK

u | T |= D v A}, and
rIK := {(a, b) | r(a, b) ∈ A} ∪

{(a, carD) ∈ NI(A)×∆IK
u } ∪

{(c%, c%rD) ∈ ∆IK
u ×∆IK

u }.

It is easy to see that this indeed defines a model of the input knowledge base. It is
also a prototype for all other models of the KB in the sense that it includes only
those domain elements whose presence is enforced by the axioms. Therefore, the
canonical interpretation can be embedded into every other model and we have
the property that entailment of CQs w.r.t. the KB can simply be answered over
the canonical model.

Proposition 2.11 ([LTW09]). IK is a model of K and, for all CQs ψ, we have
K |= ψ iff IK |= ψ.

The following auxiliary lemma is easy to prove by induction on the structure of
concepts (cf. Lemma 4.9).

Lemma 2.12. For all elements c%rD ∈ ∆IK
u and concepts C ∈ Sub(T ), we have

c%rD ∈ CIK iff T |= D v C.

3 On Upper Bounds

In this section, we describe a general approach to solve the satisfiability problem
(and thus the entailment problem), which has been proposed in [BBL15, BGL12].
This procedure is then used in later sections to obtain several upper bounds.

In a nutshell, the satisfiability problem of a TCQ w.r.t. a TKB is reduced to two
separate satisfiability problems—one in LTL and one in EL. We describe this
approach in the following. Let K = 〈T , (Ai)0≤i≤n〉 be a TKB and φ be a Boolean
TCQ. For the LTL part, we consider the propositional abstraction φp of φ, which
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contains the propositional variables p1, . . . , pm in place of the CQs α1, . . . , αm
occurring in φ. Let them be such that αi was replaced by pi, for 1 ≤ i ≤ m.
Furthermore, we define a set S ⊆ 2{p1,...,pm}, which specifies the worlds that are
allowed to occur in an LTL-structure satisfying φp. This can be described with
the following propositional LTL-formula:

φp
S = φp ∧2

 ∨
X∈S

 ∧
p∈X

p ∧
∧
p∈X

¬p

 ,
where we denote by X := {p1, . . . , pm} \X the complement of a world X ∈ S.

Nevertheless, for checking whether φ has a model w.r.t. K it is not sufficient to
guess a set S and to then test whether the induced LTL-formula φp

S is satisfiable
at time point n. We must also check whether the guessed set S can indeed be
induced by some sequence of interpretations that is a model of K. The following
definition introduces a condition that needs to be satisfied for this to hold. That
is, it covers the part of satisfiability regarding EL.

Definition 3.1 (r-satisfiable). Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and
a mapping ι : {0, . . . , n} → {1, . . . , k}, S is called r-satisfiable w.r.t. ι and K if
there are interpretations J1, . . . ,Jk, I0, . . . , In such that

• the interpretations share the same domain and respect rigid names;3

• the interpretations are models of T ;

• for all i, 1 ≤ i ≤ k, Ji is a model of χi :=
∧

pj∈Xi

αj ∧
∧

pj∈Xi

¬αj; and

• for all i, 0 ≤ i ≤ n, Ii is a model of Ai and χι(i).

Note that, through the existence of the interpretations Ji, 1 ≤ i ≤ k, it is
ensured that the conjunction χi of CQ-literals specified by Xi is consistent. A
set S containing a set Xi for which this does not hold cannot be induced by any
model of K. Moreover, the ABoxes are considered through the interpretations Ii,
0 ≤ i ≤ n, which represent the first n+ 1 interpretations in such a model.

This two-fold approach for solving the satisfiability problem, which we sketched
above, is formalized in the next lemma.

Lemma 3.2 ([BBL15, Lemma 4.7]). The TCQ φ has a model w.r.t. the TKB K
iff there are a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} →
{1, . . . , k} such that

• there is an LTL-structure J = (wi)i≥0 such that J, n |= φp
S and wi = Xι(i),

for all i, 0 ≤ i ≤ n, and
3This is defined analogously to the case of sequences of interpretations (cf. Definition 2.3).
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• S is r-satisfiable w.r.t. ι and K.

This result still holds in our setting since every TKB formulated in EL is also a
TKB according to [BBL15], which considers the DL SHQ.

Note that the choice of methods to obtain the set S and the mapping ι strongly
depends on which symbols are allowed to be rigid. In particular, we can obtain
S and the ι by enumeration, guessing, or direct construction, depending on the
complexity class we are aiming for. Given S and ι, we then need to check the
two conditions of Lemma 3.2, which basically describe two satisfiability problems:
one in LTL and one (or rather several) in EL. In the following, we recall results
that provide upper bounds for these two tests.

Lemma 3.3 ([BBL15, Lemma 4.12]). Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}

and a mapping ι : {0, . . . , n} → {1, . . . , k}, the problem of deciding the existence
of an LTL structure J = (wi)i≥0 such that J, n |= φp

S and wi = Xι(i), for all i,
0 ≤ i ≤ n, is

• in ExpTime w.r.t. combined complexity, and

• in P w.r.t. data complexity.

The EL part consists of testing of the r-satisfiability of S. It is especially impor-
tant whether rigid names are considered or not. In the latter case, the satisfiability
of each of the conjunctions χi, 1 ≤ i ≤ k, and χι(i) ∧

∧
α∈Ai

α, 0 ≤ i ≤ n, from
Definition 3.1 can be checked separately. Otherwise, each such conjunction has
to be regarded in context of the other conjunctions.

To this end, we apply the renaming technique from [BGL12], which introduces
copies of the flexible symbols and then regards the conjunction of all relevant
conjunctions as an atemporal query. More formally, for 1 ≤ i ≤ k and every
flexible concept name A ∈ NC \ NRC (flexible role name r ∈ NR \ NRR) that
occurs in T or φ, the symbol A(i) (r(i)) is introduced and called the i-th copy
of A (r). The conjunctive query α(i) (the GCI β(i)) is then obtained from a
CQ α (a GCI β) by replacing every occurrence of a flexible name by its i-th copy.
Similarly, for 1 ≤ i ≤ k, the conjunction of CQ-literals χ(i)

i is obtained from χi
(cf. Definition 3.1) by replacing each CQ α occurring in χi by α(i). Finally, we
define

χS,ι :=
∧

1≤i≤k
χ(i) ∧

∧
0≤i≤n

χ(k+i+1)
ι(i)

∧
α∈Ai

α(k+i+1)

 and

TS,ι := {β(i) | β ∈ T , 1 ≤ i ≤ k + n+ 1}.

Note that, for this approach it is essential that the ABoxes do not contain complex
concepts since otherwise we could not view the assertions as CQs. We now again
refer to a result from [BBL15].
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Lemma 3.4 ([BBL15, Lemma 4.14]). The set S is r-satisfiable w.r.t. ι and K iff
the conjunction of CQ-literals χS,ι has a model w.r.t. TS,ι.

The next lemma specifies upper bounds for deciding satisfiability of such a con-
junction of CQ literals, i.e., for the atemporal case.

Lemma 3.5. Let K = 〈T ,A〉 be a knowledge base and ψ be a Boolean conjunction
of CQ-literals. Then, the decision whether ψ has a model w.r.t. K can be reduced
to several deterministic polynomial tests w.r.t. combined complexity, the number
of which is polynomial in the number of conjuncts of ψ and exponential in the
size of the largest negated conjunct in ψ.

Proof. We first proceed as in [BBL15] and reduce the problem of deciding whether
ψ has a model w.r.t. K to a UCQ non-entailment problem. Let

ψ = ρ1 ∧ . . . ∧ ρ` ∧ ¬σ1 ∧ . . . ∧ ¬σm,

where ρ1, . . . , ρ`, σ1, . . . , σm are Boolean CQs. Now, the positive CQs ρ1, . . . , ρ`
are instantiated by omitting the existential quantifiers and replacing the variables
by fresh individual names. The set A′ of all resulting assertions is then regarded
as an additional ABox restricting possible models of ψ. It can be easily seen that
ψ is satisfiable w.r.t. K iff there is an interpretation I ′ such that I ′ |= 〈T ,A∪A′〉
and I ′ |= ¬σ1 ∧ . . . ∧ ¬σm.

This is the complement of the entailment problem 〈T ,A ∪ A′〉 |= σ1 ∨ . . . ∨ σm.
In [Ros07], it is proven that this problem is NP-complete w.r.t. combined com-
plexity. The proof is based on the algorithm computeQueryEntailment for deciding
UCQ entailment. In particular, it is stated in [Ros07] that the nondeterminism is
caused only by the first step of the algorithm; all other steps run in deterministic
polynomial time w.r.t. their inputs. This first step (Unify) nondeterministically
chooses one CQ σi, 1 ≤ i ≤ m, and one substitution unifying some terms of σi.
But this means that we can instead consider all (exponentially many) possible
unifiers, for each σi, 1 ≤ i ≤ m, and execute the remaining deterministic steps
of the algorithm computeQueryEntailment for each of them in polynomial time.
The entailment holds iff one of these runs succeeds. Thus, also the complement
problem, satisfiability, can be decided deterministically by applying exponentially
many (in the size of the largest negated conjunct in ψ) polynomial tests.

In particular, this implies that the satisfiability problem for conjunctions of CQ-
literals is P-complete w.r.t. data complexity, as it is P-hard already for a single
CQ [CDL+06]. We will show in Section 5 that this also holds for TCQs if no rigid
names are allowed; however, the complexity jumps to co-NP as soon as rigid
concept names are allowed.
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4 Regarding Combined Complexity

In this section, we investigate the combined complexity and show that the entail-
ment problem, even w.r.t. rigid concept names, can be solved in PSpace, which
matches the lower bound given by propositional LTL. In a nutshell, this can be
done by guessing the rigid concept names satisfied by the named individuals, a
certain set of CQs characterizing the set S, and—in a step-wise fashion—S itself
and the mapping ι. Nevertheless, if rigid role names are considered, similar guess-
ing leads to a complexity of in NExpTime, and we indeed prove NExpTime-
completeness for this case.

4.1 The Case With(out) Rigid Concept Names

We first show that in the case that NRR is empty, the complexity of PSpace
carries over from propositional LTL.

Theorem 4.1. If NRC 6= ∅ but NRR = ∅, then TCQ entailment in EL is PSpace-
complete w.r.t. combined complexity.

PSpace-hardness follows from the fact that the satisfiability problem of propo-
sitional LTL is PSpace-complete [Pnu77]. The remainder of this section is ded-
icated to the proof of the matching upper bound.

For ease of presentation, we encode the ABoxes into the query, as proposed
in [BBL15]. This is done by rewriting the Boolean TCQ φ into a Boolean TCQ φ′

of polynomial size in the size of φ and the TKB K such that answering φ at time
point n is equivalent to answering φ′ at time point 0 w.r.t. the trivial sequence
of ABoxes. However, this obviously does not work for data complexity, as the
resulting TCQ is no longer independent of the data.

Proposition 4.2 ([BBL15, Lemma 6.1]). Let K = 〈T , (Ai)0≤i≤n〉 be a TKB and
φ be a Boolean TCQ. Then, there is a Boolean TCQ ψ of size polynomial in the
size of φ and K such that K |= φ iff 〈T , ∅〉 |= ψ.

Note that, according to Definition 3.1, we have to ensure that there is a world
Xι(0) that is consistent w.r.t. the knowledge base 〈T , ∅〉. However, this is true as
soon as S contains any world that is consistent w.r.t. T . Moreover, we always
require that |S| ≥ 1, and thus this holds whenever S satisfies the first three re-
quirements of Definition 3.1. This means that we do not have to guess a mapping
ι : {0} → {1, . . . , k} in the following.

Let now φ be a TCQ and K = 〈T , ∅〉 be a TKB. Note that in this section we have
to drop the assumption that all individual names in the query φ also occur in
the ABoxes; in fact, φ is now the only place where individual names may occur.
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We assume without loss of generality that the CQs occurring in φ use disjoint
variables4 and denote by Qφ the set of exactly those CQs. We further assume
that all concepts of the form Con(α), for all tree-shaped CQs α ∈ Qφ, also occur
in T .

For now, we assume that a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} is given; in the
proof of Lemma 4.14, we describe how to actually obtain S within PSpace. For
all i, 1 ≤ i ≤ k, we denote by Qi the set {αj | pj ∈ Xi}, and by AQi

the ABox
obtained from Qi by instantiating all variables x with fresh individual names ax.
We collect all these new individual names in the set Naux

I .

To check the conditions of Lemma 3.2, we guess polynomially many additional
assertions and queries that allow us to separate the r-satisfiability test for S into
independent consistency tests for the individual time points. In the following,
we use sets B = {B1, . . . , B`} ⊆ NRC(T ) as witnesses for the satisfaction of tree-
shaped CQs. In an abuse of notation, we denote by B also the associated concept
B1 u · · · uB`, and write B(x) for the conjunction B1(x) ∧ · · · ∧B`(x).

Definition 4.3. A set B ⊆ NRC(T ) is a witness of a concept C w.r.t. T if there
are r1, . . . , r` ∈ NR, ` ≥ 0, such that T |= B v ∃r1 . . . r`.C. Furthermore, B is a
witness of a tree-shaped CQ α w.r.t. T if it is a witness of Con(α) w.r.t. T .

It should be clear from these definitions that, if a model of T contains an element
that satisfies a witness for α, then this model satisfies α.

Lemma 4.4. Let I be a model of T and B be a witness of a tree-shaped CQ α
w.r.t. T . Then, I |= ∃x.B(x) implies that I |= α.

We will use witnesses to fully characterize the satisfaction of the CQs in Qφ in
the anonymous part of an interpretation. We now describe a property that has
to be fulfilled by the polynomially many additional assertions and queries which
we guess.

Definition 4.5. An ABox type for K is a set

AR ⊆ {A(a),¬A(a) | a ∈ NI(φ), A ∈ NRC(T )}

with the property that A(a) ∈ AR iff ¬A(a) /∈ AR. Given an ABox type AR, for
all i, 1 ≤ i ≤ k, we define KiR := 〈T ,AR ∪ AQi

〉.

A tuple (AR, Q
¬
R) consisting of an ABox type AR for K and a set Q¬R ⊆ Qφ is

called r-complete (w.r.t. S) if the following hold:

(R1) For all i ∈ {1, . . . , k}, KiR is consistent.

(R2) For all i ∈ {1, . . . , k} and pj ∈ Xi, we have KiR 6|= αj.
4If this was not the case, we could simply rename them.
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(R3) For all i ∈ {1, . . . , k}, all tree-shaped CQs α ∈ Q¬R, and all witnesses B of α
w.r.t. T , we have KiR 6|= ∃x.B(x).

(R4) For all αj ∈ Qφ \Q¬R, we have pj ∈
⋂
S.

The idea is to fix the interpretation of the rigid names on all named individu-
als (AR) and specify a set of CQs that are allowed to occur negatively in S (Q¬R).
The first two conditions ensure that, for all considered worlds Xi, 1 ≤ i ≤ k,
exactly the queries specified by Xi can be satisfied w.r.t. T , together with the
assertions from AR. The third condition ensures that the canonical model of KiR
does not satisfy any of the witnesses of the tree-shaped queries in Q¬R (cf. Propo-
sition 2.11). Finally, the last condition checks that only the queries from Q¬R can
occur negatively in any X ∈ S.

In the main part of this section we show that the existence of an r-complete tuple
w.r.t. S fully characterizes the r-satisfiability of S.

Lemma 4.6. S is r-satisfiable iff there is an r-complete tuple w.r.t. S.

The proof of this lemma is split over the following two subsections. The last
subsection then describes how this lemma can be used to decide the entailment
problem using only polynomial space.

4.1.1 If S is r-satisfiable, then there is an r-complete tuple w.r.t. S.

Let J1, . . . ,Jk be the interpretations over the domain ∆ that exist according to
the r-satisfiability of S (cf. Definition 3.1). We define the tuple (AR, Q

¬
R) as

follows:

AR := {A(a) | a ∈ NI(φ), A ∈ NRC(T ), aJ1 ∈ AJ1} ∪
{¬A(a) | a ∈ NI(φ), A ∈ NRC(T ), aJ1 /∈ AJ1};

Q¬R := {αj ∈ Qφ | pj /∈
⋂
S}.

Obviously, AR is an ABox type for K, and Q¬R satisfies Condition (R4). Further-
more, it is easy to verify that each Ji, 1 ≤ i ≤ k, can be extended to a model J ′i of
KiR by appropriately defining the interpretations of the new individual names ax
that are introduced by AQi

. Thus, Condition (R1) is also satisfied.

Regarding Condition (R2), assume that there are i, 1 ≤ i ≤ k, and pj ∈ Xi such
that KiR |= αj, and thus J ′i |= αj. This means that also Ji |= αj since αj does not
contain any of the new individual names. But this contradicts the assumption
that Ji |= χi.

The proof of Condition (R3) is also by contradiction. We assume that there
are i, 1 ≤ i ≤ k, a tree-shaped CQ αj ∈ Q¬R, and a witness B of αj such that
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KiR |= ∃x.B(x), and thus Ji |= ∃x.B(x) as above. However, by the definition
of Q¬R, there must be an i′, 1 ≤ i′ ≤ k, such that pj /∈ Xi′ , and thus Ji′ 6|= αj.
Lemma 4.4 then yields that Ji′ 6|= ∃x.B(x), which contradicts the facts that
B ⊆ NRC(T ) and Ji and Ji′ respect the rigid names.

4.1.2 If there is an r-complete tuple w.r.t. S, then S is r-satisfiable.

The proof of the converse direction is more involved. For each i, 1 ≤ i ≤ k, we
consider the canonical interpretation Ii := I[Ki

R]+ , where [KiR]+ is equal to KiR
without the negated assertions in AR. Since KiR is consistent by Condition (R1),
we know that [KiR]+ 6|= A(a) for any negated assertion ¬A(a) ∈ AR. By Proposi-
tion 2.11, it follows that Ii |= ¬A(a), and hence Ii is a model of KiR.

To distinguish the elements contained in Naux
I , we define ∆Ii

a := Naux
I ∩ ∆Ii ,

and write aix instead of ax for the elements of this set. We further write ∆Ii
u

for the set containing the unnamed domain elements unique to the canonical
interpretation Ii, and similarly write ci%rD for every element c%rD ∈ ∆Ii

u . Thus,
the domain of each Ii is composed of the pairwise disjoint components NI(φ), ∆Ii

a ,
and ∆Ii

u . We next state that as fact for future reference.

Fact 4.7. For all i, j ∈ {1, . . . , k}, the sets NI(φ), ∆Ij
a , and ∆Ii

u are pairwise
disjoint.

In our construction, we make use of the subset ∆Ii
uR

:= ⋃∞
j=0 ∆i,j

uR
of ∆Ii

u , which is
inductively defined as follows:

∆i,0
uR

:= {ci%rD | B ⊆ NRC(T ), ci% ∈ BIi ∩∆Ii
u , D ∈ Sub(T ), T |= B v ∃r.D} ∪

{ciai
xrD
| B ⊆ NRC(T ), aix ∈ BIi ∩∆Ii

a , D ∈ Sub(T ), T |= B v ∃r.D}
∆i,j+1

uR
:= {ci%rDsE | ci%rD ∈ ∆i,j

uR
, E ∈ Sub(T ), T |= D v ∃s.E}.

This definition is similar to that of ∆Ii
u (cf. Definition 2.10), the only difference

being that we here only consider those elements whose existence is enforced by
some combination of rigid concept names at an already unnamed domain element.
Thus, there are no direct role connections between elements of NI(φ) and ∆Ii

uR
.

Fact 4.8. For all i, 1 ≤ i ≤ k, we have ∆Ii
uR
⊆ ∆Ii

u .

We now construct the interpretations J1, . . . ,Jk as required for the r-satisfiability
of S, that is, they share the same domain and respect rigid names, and each Ji is
a model of T and χi = ∧

pj∈Xi
αj ∧

∧
pj∈Xi

¬αj. Recall that we then do not need
to specifically define an interpretation for time point 0, since any Jι(0) will be a
model of A0 = ∅ and χι(0). To obtain interpretations J1, . . . ,Jk as required, we
join the domains of the interpretations Ii and ensure that they interpret all rigid
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concept names in the same way. We first construct the common domain

∆ := NI(φ) ∪
k⋃
i=1

(∆Ii
a ∪∆Ii

u )

and then define the interpretations Ji, 1 ≤ i ≤ k, as follows:

• For all a ∈ NI(φ), we set aJi := a.

• For all rigid concept names A, we define AJi :=
k⋃
j=1

AIj .

• For all flexible concept names A, we define

AJi := AIi ∪
k⋃
j=1

⋃
B⊆NRC(T ),
T |=BvA

BIj ∪
k⋃
j=1
{cj%rD ∈ ∆Ij

uR
| T |= D v A}.

• For all (flexible) role names r, we define

rJi := rIi ∪
k⋃
j=1

(
{(cj%, c

j
%rD) ∈ ∆Ij

u ×∆Ij
uR
} ∪ {(ajx, c

j

aj
xrD

) ∈ ∆Ij
a ×∆Ij

uR
}
)
.

In this way, we have constructed interpretations J1, . . . ,Jk that have the same
domain and respect the rigid concept names since, for all A ∈ NRC, the defini-
tion of AJi is independent of i. It remains to show that they satisfy the other
requirements for the r-satisfiability of S as described above.

We start by showing some facts about the elements in the sets ∆Ij
uR .

Lemma 4.9. For all i, j ∈ {1, . . . , k} and cj%rD ∈ ∆Ij
uR, the following hold:

a) For all concepts C ∈ Sub(T ), we have cj%rD ∈ CJi iff T |= D v C.

b) There is a witness B of ∃r.D w.r.t. T such that BIj is non-empty.

Proof. We begin with the proof of a), for which we use induction on the shape
of C. For the induction start, let cj%rD ∈ ∆Ij

uR and C = A ∈ NC(T ). We consider
(⇒) and the definition of Ji. If cj%rD ∈ AIj , then we immediately have T |= D v A

by Definition 2.10. If cj%rD ∈ BIj for some B ⊆ NRC(T ) with T |= B v A, then
we also get cj%rD ∈ AIj since Ij |= T , and thus T |= D v A as above. The other
direction, (⇐), immediately follows from Definition 2.10 and the definition of Ji.

The claim for C = > holds because of the interpretation of >.

For C = C1 uC2, we have cj%rD ∈ CJi
1 ∩CJi

2 iff T |= D v C1 and T |= D v C2 by
the induction hypothesis. This is equivalent to T |= D v C1 u C2.
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Let now C = ∃s.C1. If cj%rD ∈ (∃s.C1)Ji , then there exists cj%rDsE ∈ ∆Ij
uR with

(cj%rD, c
j
%rDsE) ∈ sJi and cj%rDsE ∈ CJi

1 . By the induction hypothesis, we get
T |= E v C1. Moreover, we have T |= D v ∃s.E by Definition 2.10, which
implies that T |= D v ∃s.C1. On the other hand, if T |= D v ∃s.C1, then we
have cj%rDsC1 ∈ ∆Ij

uR . Since T |= C1 v C1, by the induction hypothesis we get
cj%rDsC1 ∈ CJi

1 . By the definition of Ji, we also have (cj%rD, c
j
%rDsC1) ∈ sJi , and

thus cj%rD ∈ (∃s.C1)Ji .

For the proof of b), we proceed by induction on the construction of ∆Ij
uR . For

elements cj%rD ∈ ∆j,0
uR
, the definition of ∆j,0

uR
directly yields the claim.

For the induction step, we consider cj%sErD ∈ ∆j,l+1
uR

, l ≥ 0, i.e., we have cj%sE ∈ ∆j,l
uR

and T |= E v ∃r.D. By the induction hypotheses, there are r1, . . . , r` ∈ NR,
` ≥ 0, and a set B ⊆ NRC(T ) such that T |= B v ∃r1 . . . r`s.E and BIj is non-
empty. This implies that T |= B v ∃r1 . . . r`sr.D, which concludes the proof.

We now state a basic connection between the interpretations Ji and Ii concerning
the interpretation of role names.

Lemma 4.10. For all i ∈ {1, . . . , k}, role names r ∈ NR, and d, e ∈ ∆Ii, we
have (d, e) ∈ rJi iff (d, e) ∈ rIi.

Proof. The “if”-direction follows directly from the definition of rJi . For the
“only if”-direction, Facts 4.7 and 4.8 and the definition of Ji either directly yield
(d, e) ∈ rIi , or e ∈ ∆Ii

uR
is of the form cj%rD and either d = cj% or d = ajx = %. By

Definition 2.10, the latter two options also imply that (d, e) ∈ rIi .

There is a similar connection between the interpretations of concepts in Ij and Ji.

Lemma 4.11. For all i, j ∈ {1, . . . , k} and all concepts C ∈ Sub(T ), the follow-
ing hold:

a) For all e ∈ NI(φ), we have e ∈ CJi iff e ∈ CIi.

b) For all e ∈ ∆Ij
a ∪ (∆Ij

u \∆Ij
uR), we have e ∈ CJi iff

• i = j and e ∈ CIi, or
• there is a B ⊆ NRC(T ) such that e ∈ BIj and T |= B v C.

c) For all e ∈ ∆Ij
uR, we have e ∈ CJi iff e ∈ CIj .

Proof. Item c) is a direct consequence of Lemmata 2.12, and 4.9a) and Fact 4.8.
We now prove the other two items simultaneously by induction on the structure
of C.
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For the induction start, we begin with a). For rigid concept names, it follows
from the fact that each Ij, 1 ≤ j ≤ k, is a model of AR and from the definition
of Ji. For flexible concept names C, by Fact 4.7 we have e ∈ CJi iff e ∈ CIi or
e ∈ BIj for some j, 1 ≤ j ≤ k and B ⊆ NRC(T ) with T |= B v C. Since both Ii
and Ij are models of AR, in the latter case we also have e ∈ BIi . Since Ii |= T ,
this implies that e ∈ CIi .

We consider b). Because of Fact 4.7, for C ∈ NRC, the definition of Ji directly
yields e ∈ CJi iff e ∈ CIj . For C ∈ NC \ NRC, we obtain the claim from Fact 4.7,
the definition of Ji, and the fact that all Ij are models of T .

The claim for C = > is again trivial by the interpretation of >.

We consider C = C1 u C2 for a) and b) under the assumption that i = j. The
induction hypothesis directly yields the equivalence between e ∈ CJi

1 ∩ CJi
2 and

e ∈ CIi
1 ∩ CIi

2 . Moreover, any B ⊆ NRC(T ) with e ∈ BIi and T |= B v C1 u C2
also yields that e ∈ (C1 u C2)Ii , and thus e ∈ (C1 u C2)Ji as above.

For case b) with i 6= j, by the induction hypothesis e ∈ (C1 u C2)Ji implies that
there are B1,B2 ⊆ NRC(T ) with e ∈ (B1uB2)Ij , T |= B1 v C1, and T |= B2 v C2.
But then it also holds that T |= B1 u B2 v C1 u C2, and thus e ∈ (C1 u C2)Ij .
On the other hand, if e ∈ BIj and T |= B v C1 u C2 for some B ⊆ NRC(T ), then
also T |= B v C1 and T |= B v C2. Together with the induction hypothesis, this
leads to e ∈ (C1 u C2)Ji .

Finally, we consider the case of an existential restriction C = ∃r.C1. For a) and b)
with i = j, by the definition of Ji, Lemma 4.10, Item c), and the induction
hypothesis the existence of a d ∈ (C1)Ji with (e, d) ∈ rJi is equivalent to the
existence of a d ∈ (C1)Ii with (e, d) ∈ rIi . As before, the second option of b) is
subsumed by the first one, in this case.

For case b) with i 6= j, e ∈ (∃r.C1)Ji implies that there is a cj%rD ∈ (C1)Ji ∩∆Ij
uR

such that either e = cj% or e = ajx = %. Since e /∈ ∆Ij
uR , in both case we must

have cj%rD ∈ ∆j,0
uR
, and thus there exists a B ⊆ NRC(T ) such that e ∈ BIj

and T |= B v ∃r.D. Furthermore, the fact that cj%rD ∈ (C1)Ji implies that
T |= D v C1 by Lemma 4.9, and thus T |= B v ∃r.C1. On the other hand, if
there exists a B ⊆ NRC(T ) with e ∈ BIj and T |= B v ∃r.C1, then by the defini-
tion of ∆j,0

uR
we have cj%rC1 ∈ ∆j

uR
, where again either e = cj% or e = ajx = %. Thus,

in particular it holds that (e, cj%rC1) ∈ rJi . Since T |= C1 v C1, by Lemma 4.9 we
have cj%rC1 ∈ (C1)Ji , and thus e ∈ (∃r.C1)Ji , as required.

We finally show that Ji is in fact as intended.

Lemma 4.12. Each Ji, 1 ≤ i ≤ k, is a model of T .

Proof. Consider a GCI C v D ∈ T and an element d ∈ CJi . If d ∈ NI(φ) ∪∆Ij
uR

for some j, 1 ≤ j ≤ k, we get d ∈ CIj by Lemma 4.11. Since Ij |= T , we obtain
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d ∈ DIj , and thus d ∈ DJi again by Lemma 4.11. A similar argument applies in
case that d ∈ ∆Ii

a ∪ (∆Ii
u \∆Ii

uR
).

For d ∈ ∆Ij
a ∪ (∆Ij

u \ ∆Ij
uR) with i 6= j, by Lemma 4.11b) we know that there is

a set B ⊆ NRC(T ) such that d ∈ BIj and T |= B v C. But then we also have
T |= B v D, which leads to d ∈ DJi by another application of Lemma 4.11.

We now provide the final missing piece to show r-satisfiability of S.

Lemma 4.13. Each Ji, 1 ≤ i ≤ k, is a model of χi.

Proof. Consider first any CQ α that occurs positively in the conjunction χi.
Since Ii |= AQi

and AQi
contains an instantiation of α, we know that there is

a homomorphism π of α into Ii that maps all variables to elements in ∆Ii
a . By

Lemmata 4.10 and 4.11b), we know that π is also a homomorphism of α into Ji.

We now consider a CQ α that occurs negatively in χi. By Condition (R2), we
know that [KiR]+ 6|= α, and thus Ii |= ¬α by Proposition 2.11. We now assume to
the contrary that there is a homomorphism π of α into Ji. Since α is connected
and domain elements d, e ∈ ∆ can only be connected by rJi if they belong to
the same domain ∆Ij (cf. Fact 4.7), we can assume that there is an index j,
1 ≤ j ≤ k, such that π maps all terms of α into ∆Ij .

Assume first that π maps all terms into ∆Ii , which in particular includes NI(φ).
Then by Lemmata 4.10 and 4.11, π is also a homomorphism of α into Ii, which
contradicts the fact that Ii |= ¬α.

Otherwise, we have j 6= i and π maps at least one term into ∆Ij \ NI(φ). By the
interpretation of roles in Ji and since α is connected, this means that no term
of α can be mapped into NI(φ), (i.e., α contains no individual names and π maps
all variables into ∆Ij

a ∪∆Ij
u ). Furthermore, for all role atoms r(y, z) ∈ At(α), we

either have (i) π(y) ∈ ∆Ij
a ∪ (∆Ij

u \∆Ij
uR) and π(z) ∈ ∆Ij

uR , or (ii) π(y), π(z) ∈ ∆Ij
uR .

Since α is connected, there is at most one variable in α that is mapped into
∆Ij

a ∪ (∆Ij
u \∆Ij

uR) by π. Thus, in α, there are only role connections starting from
this variable and role connections between other variables (mapped into ∆Ij

uR) via
a single role and in one direction. This means that α is tree-shaped.

We now show that there is a witness B of α w.r.t. T such that BIj is non-
empty. For this, let x be the root variable of α. By our assumption that π is a
homomorphism of α into Ji, we know that π(x) ∈ (Con(α))Ji .

• If π(x) is contained in ∆Ij
a ∪ (∆Ij

u \ ∆Ij
uR), then Lemma 4.11b) yields that

there is a witness B of α w.r.t. T such that π(x) ∈ BIj .5

5Recall that we assumed that Con(α) occurs in T .
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• If π(x) is of the form cj%rD ∈ ∆Ij
uR , then by Lemma 4.9b) there is a witness B

of ∃r.D such that BIj is non-empty. Since cj%rD ∈ (Con(α))Ji , Lemma 4.9a)
implies that B is also a witness of α.

However, by Condition (R4) we know that α ∈ Q¬R. Hence, by Condition (R3)
we have [KjR]+ 6|= ∃x.B(x), and thus Ij |= ¬∃x.B(x) by Proposition 2.11. This
contradicts the fact that BIj is non-empty.

This finishes the proof of Lemma 4.6. We next use this characterization to solve
TCQ satisfiability (and entailment) in polynomial space.

4.1.3 The Upper Bound ctd.

The key insight of the previous section is that we do not need to store the expo-
nentially large set S in order to check the conditions of Definition 4.5. It suffices
to guess an ABox type AR and a set Q¬R in advance, and then check, in each step
of an LTL-satisfiability test for φp, if there is a world Xi ⊆ {p1, . . . , pm} that
satisfies the requirements specified in Definition 4.5.

For this purpose, we use the polynomial-space-bounded Turing machines for LTL-
satisfiability constructed in [SC85]. Given the propositional LTL-formula φp, the
machine Mφp iteratively guesses complete sets of (negated) subformulae of φp

specifying which subformulae are satisfied at each point in time. Every such set
induces a unique world Xi ⊆ {p1, . . . , pm} containing the propositional variables
that are true.

In [SC85, Theorem 4.7], it is shown that if φp is satisfiable, then there must be a
periodic model of φp with a period that is exponential in the size of φp. Hence,
Mφp first guesses two polynomial-sized indices specifying the beginning and end
of the first period. Then it continuously increments a (polynomial-sized) counter
and in each step guesses a complete set of (negated) subformulae of φp. It then
checks Boolean consistency of this set and consistency with the set of the previous
time point according to the temporal operators. For example, if the previous set
contains the formula p1 U p2, then either it also contains p2 or it must contain p1
and the current set must contain p1 U p2. In this way, the satisfaction of the
U-formula is deferred to the next time point.

In each step, the oldest set is discarded and replaced by the next one. When the
counter reaches the beginning of the period, it stores the current set and contin-
ues until it reaches the end of the period. At that point, instead of guessing the
next set of subformulae, the set stored at the beginning of the period is used and
checked for consistency with the previous set as described above. Mφp addition-
ally has to ensure that all U-subformulae are satisfied within the period. Thus,
the Turing machine never has to remember more than three sets of polynomial
size.
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Note that [SC85] do not directly regard past operators, which are considered by
us. However, we can certainly adapt the complete sets of subformulae guessed by
Mφp to also include the past operators. This does not affect the space require-
ments of the Turing machines; in particular, the period that has to be guessed
is still exponential in the size of φp. We now modify this procedure to prove the
desired PSpace upper bound.

Lemma 4.14. If NRC 6= ∅ but NRR = ∅, then TCQ entailment in EL is in PSpace
w.r.t. combined complexity.

Proof. Let K = 〈T , ∅〉 be a TKB and φ be a TCQ. We analyze the complexity
of the satisfiability problem by showing how an r-satisfiable set S can be found.
By Lemma 4.6, it suffices to find a tuple (AR, Q

¬
R) satisfying conditions (R1)–

(R4). All these conditions are such that it is not necessary to actually construct
the whole set S—it is enough to show that each world Xi we encounter when
checking φp (not φp

S) for satisfiability induces a knowledge base KiR that satisfies
all requirements.

We can thus run a modified version of the Turing machineMφp that first guesses
the sets AR and Q¬R required by Definition 4.5, which can clearly be done in poly-
nomial space, and then proceeds as before, but additionally executes the following
checks for the world X induced by each guessed complete set of propositional sub-
formulae:

(R1) Check the KB KR = 〈T ,AR ∪ AQX
〉 for consistency, where AQX

is formed
by instantiating all CQs αj with pj ∈ X.
This consistency test can be done in polynomial time in the (polynomial)
size of KR [BBL05] and thus needs only polynomial space.

(R2) Check, for each pj ∈ X, whether KR 6|= αj holds.
Note that we have KR 6|= αj iff [KR]+ 6|= αj. For (⇐), we have that, if
[KR]+ 6|= αj, then I[KR]+ 6|= αj by Proposition 2.11. Furthermore, the canon-
ical model I[KR]+ is also a model of KR (cf. the beginning of Section 4.1.2),
and thus [KR]+ 6|= αj. For (⇒), we directly have that every model of KR
that does not satisfy αj is also a model of [KR]+. Hence, it suffices to
check the non-entailment [KR]+ 6|= αj, which can be done in (deterministic)
exponential time and polynomial space by Lemma 3.5.

(R3) Check, for each α ∈ Q¬R and every witness B of α w.r.t. T , whether it holds
that KR 6|= ∃x.B(x).
Since each B is of polynomial size, the actual non-entailment test can be
done in polynomial space by the same arguments as above. However, while
we can easily enumerate all α ∈ Q¬R and B ⊆ NRC(T ) in polynomial space,
we still have to determine whether B is actually a witness of α w.r.t. T .
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In [BBM11, Lemma 12], it is shown that, for two concept names A,B, it can
be decided in polynomial time whether there are role names r1, . . . , r` such
that T |= A v ∃r1 . . . r`.B. Essentially, it suffices to check reachability of B
from A in an appropriate graph derived from T . This idea is also implicitly
used in the form of the reachability relation ; in [BBL05, KKS12].
We can use this approach for our problem by introducing two new concept
names AB and Aα and then checking in polynomial time whether

T ∪ {AB v B,Con(α) v Aα} |= AB v ∃r1 . . . r`.Aα

holds for some role names r1, . . . , r`, which is equivalent to the fact that B
is a witness of α w.r.t. T .

(R4) Check, for each pj ∈ X, whether αj ∈ Q¬R.

The set S required for Lemma 3.2 corresponds to the set of all worlds X encoun-
tered during a run of this modified Turing machine. Under this definition of S,
it is easy to see that the above checks are actually equivalent to (R1)–(R4) from
Definition 4.5. By Lemmata 3.2 and 4.6, the described Turing machine accepts
the input K and φ iff φ has a model w.r.t. K (recall that we can disregard the
mapping ι due to our assumptions). Since we do not have to store S explic-
itly and all checks can be done with a nondeterministic Turing machine using
only polynomial space, according to [Sav70], TCQ entailment can be decided in
PSpace.

This finishes the proof of Theorem 4.1.

4.2 The Case With Rigid Role Names

If the set NRR is allowed to be non-empty, the combined complexity of the entail-
ment problem increases significantly—in particular, because a polynomial amount
of information does not suffice anymore to test the r-satisfiability of S by testing
the worlds contained in S individually.

Theorem 4.15. If NRR 6= ∅, then TCQ entailment in EL is co-NExpTime-
complete w.r.t. combined complexity.

In the following, we first prove the lower bound and then describe a procedure to
obtain a corresponding co-NExpTime upper bound.

4.2.1 The Lower Bound

Lemma 4.16. If NRR 6= ∅, then TCQ entailment in EL is co-NExpTime-hard
w.r.t. combined complexity.
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Proof. The proof is by reduction of the 2n+1-bounded domino problem [Lew78,
BGG97], known to be NExpTime-hard [BGG97], to the satisfiability problem of
Boolean TCQs w.r.t. a TO with rigid role names. The basic idea of the reduction
is the same as for ALC-LTL in [BGL12]. However, the lower expressivity of EL
imposes restrictions that complicate the construction. We specifically describe
the differences to the proof in [BGL12] in detail during our construction.

We start introducing the bounded version of the domino problem used in our
reduction. A domino system is a triple D = (D,H, V ), where D is a finite set
of domino types and H, V ⊆ D × D are the horizontal and vertical matching
conditions. Let D be a domino system and I = d0, . . . , dn−1 ∈ Dn an initial
condition, which is a sequence of domino types of length n > 0. A mapping
τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → D is a 2n+1-bounded solution of D
respecting the initial condition I iff, for all x, y < 2n+1, the following holds:

• If τ(x, y) = d and τ(x⊕2n+1 1, y) = d′, then (d, d′) ∈ H;

• If τ(x, y) = d and τ(x, y ⊕2n+1 1) = d′, then (d, d′) ∈ V ;

• τ(i, 0) = di for i < n;

where ⊕2n+1 denotes addition modulo 2n+1. It is shown in [BGG97, Theo-
rem 6.1.2] that there is a domino system D = (D,H, V ) such that, given an
initial condition I = d0, . . . , dn−1 ∈ Dn, the problem of deciding if D has a 2n+1-
bounded solution respecting I is NExpTime-hard. In what follows, we show
that this problem can be reduced in polynomial time to satisfiability of Boolean
TCQs w.r.t. a TO using rigid role names.

Our reduction focuses on a specific named individual a, which serves as successor
w.r.t. a rigid role r, to certain other (at least 22n+2 many) individuals. Fur-
thermore, we particularly discern global6 concept names that are flexible and are
satisfied either by a and all its r-predecessors or by none of the above; in contrast,
local concept names are rigid and used to identify specific domain elements. We
need the following concept and individual names:

• an individual name a;

• a rigid role name r;

• flexible (global) concept names Gd, Gh
d , Gv

d, and a rigid (local) concept name
Ld for all d ∈ D;

• rigid (local) concept names X0, . . . , Xn and Y0, . . . , Yn that are used to re-
alize two binary counters modulo 2n+1, where the X-counter describes the
horizontal and the Y -counter the vertical position of a domino;

6Not to be confused with rigid or always (in time).
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• flexible (global) concept names Z0, . . . , Z2n+1, Zh
0 . . . , Z

h
2n+1, Zv

0 , . . . , Z
v
2n+1

that are used to realize three binary counters modulo 22n+2, whose function
is explained below;

• concept names X0, . . . , Xn, Y 0, . . . , Y n, Z0, . . . , Z2n+1, Z
h
0 , . . . , Z

h
2n+1, and

Z
v

0, . . . , Z
v

2n+1 representing the complements of the above counters;

• auxiliary flexible concept names N , Eh
0 , . . . , E

h
2n+1, Ev

0 , . . . , E
v
2n+1.

The first n + 1 bits of the Z-, Zh- and Zv-counters are used to represent 2n+1

horizontal components 0 ≤ x < 2n+1, and the second n+ 1 bits of these counters
are used to represent 2n+1 vertical components 0 ≤ y < 2n+1. By counting
with the Z-counter up to 22n+2 in the temporal dimension, we ensure that every
position (x, y) ∈ {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} is represented at some
time point. To count, we enforce that, for every possible value of the Z-counter,
there is a world where a belongs to the concepts from the corresponding subset
of {Z0, . . . , Z2n+1}. We will restrict the concept names Zi to be global, and thus
the value of the Z-counter is in every world transferred to all r-predecessors of a.
For every position given by the Z-counter, the Zh- and Zv-counters represent the
top and right neighbor position, respectively.

The rigid concept names X0, . . . , Xn and Y0, . . . , Yn are then used to ensure that,
in every world, there is one r-predecessor of a whose X- and Y -values match the
value of the global Z-counter. Since they are rigid, this enforces that every posi-
tion (x, y) ∈ {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} is represented by at least one
r-predecessor of a in every world. Thus, for every position, we have a world rep-
resenting it with the help of the global Z-counter, but we also have an individual
representing it in every world with the help of the local X- and Y -counters.

Furthermore, appropriate assertions on a and specific GCIs are used to ensure
that (i) every global/local position has exactly one domino type (given by Gd/Ld),
and two global domino types for two neighbors (Gh

d , Gv
d); (ii) the domino types of

Gd and Ld are the same, and Gh
d/Gv

d represent the same types as the value of Ld
at the individuals corresponding to the correct neighbors; (iii) the horizontal and
vertical matching conditions are respected; and that (iv) the initial condition is
satisfied.

One of the main differences to the proof forALC-LTL [BGL12] lies in the presence
of three global domino types. In ALC-LTL, it was enough to have one local and
one global type in order to enforce the matching conditions. Here, we enforce
the matching conditions globally and then ensure that the local types of certain
individuals are the same. Another difference is the presence of the concept names
of the form Xi representing the complements of the various counters. In ALC,
these can be directly expressed as ¬Xi.

We now construct the Boolean TCQ φD,I as a conjunction of several formulae
listed in the following. At the same time, we add GCIs to a global TBox TD,I .
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• For every possible value of the Z-counter, there is a world where a belongs
to the concepts from the corresponding subset of {Z0, . . . , Z2n+1}. This is
expressed using the following conjunct of φD,I :

2
∧

0≤i≤2n+1

(( ∧
0≤j<i

Zj(a)
)
↔
(
Zi(a)↔ #¬Zi(a)

))

This formula expresses that the i-th bit of the Z-counter is flipped from
one world to the next iff all preceding bits are true. Thus, the value of
the Z-counter at the next world is equal to the value at the current world
incremented by one.

• In every world, the counters Zh and Zv are synchronized with the Z-counter,
meaning that a belongs to the concepts from the subsets of {Zh

0 , . . . , Z
h
2n+1}

and {Zv
0 , . . . , Z

v
2n+1} that, respectively, point to the right and top neighbor

position of the position distinguished by the Z-counter. This is enforced
using formulae similar to the ones for the Z-counter above. First, the hor-
izontal component of the Zh-counter is equal to the horizontal component
of the Z-counter plus 1:

2
∧

0≤i≤n

(( ∧
0≤j<i

Zj(a)
)
↔
(
Zi(a)↔ ¬Zh

i (a)
))

The vertical component of the Zh-counter is equal to that of the Z-counter:

2
∧

n+1≤i≤2n+1

(
Zi(a)↔ Zh

i (a)
)

And similarly for the Zv-counter:

2
∧

n+1≤i≤2n+1

(( ∧
n+1≤j<i

Zj(a)
)
↔
(
Zi(a)↔ ¬Zv

i (a)
))

2
∧

0≤i≤n

(
Zi(a)↔ Zv

i (a)
)

• The interpretation of the concept names Zi, Z
h
i , and Z

v
i , as the complements

of Zi, Zh
i , and Zv

i is enforced by the following formula:

2
∧

0≤i≤2n+1

((
Zi(a)↔ ¬Zi(a)

)
∧
(
Z
h

i (a)↔ ¬Zh
i (a)

)
∧
(
Z
v

i (a)↔ ¬Zv
i (a)

))

• The values of the three global counters Z, Zh, and Zv (and their comple-
ments) are shared by a and all its r-predecessors in each world. This is
expressed by the following GCIs in TD,I for 0 ≤ i ≤ 2n+ 1:

∃r.Zi v Zi, ∃r.Zh
i v Zh

i , ∃r.Zv
i v Zv

i ,

∃r.Zi v Zi, ∃r.Z
h
i v Z

h
i , ∃r.Z

v
i v Z

v
i

30



We also need the following formula to enforce that satisfaction of Zi prevents
satisfaction of Zi, and vice versa:

2
∧

0≤i≤2n+1
¬∃x.Zi(x) ∧ Zi(x)

• In every world, there is at least one r-predecessor of a for which the com-
bined values of the X- and the Y -counter correspond to the value of the
global Z-counter in this world. For this, we use the following formula and
GCIs, for 0 ≤ i ≤ n and n+ 1 ≤ j ≤ 2n+ 1:

2∃x.r(x, a) ∧N(x)

N u Zi v Xi, N uXi v Zi, N u Zj v Yj−(n+1), N u Yj−(n+1) v Zj

Since the concept names Xi, Yi are rigid, this ensures that, in every world,
every possible combination of values of the X- and Y -counters is realized by
some r-predecessor of a. For a given such combination, the corresponding
individual represents the same value combination in every world.

• In the same way, we enforce the correct interpretation of the complements
of the local counters:

N u Zi v X i, N uX i v Zi, N u Zj v Y j−(n+1), N u Y j−(n+1) v Zj

• Every world gets exactly one (global) domino type that belongs to the
position given by the global Z-counter:

2
∨
d∈D

(
Gd(a) ∧

∧
d′∈D\{d}

¬∃x.Gd′(x)
)

To enforce the global domino types in the r-predecessors of a, we again need
the GCI

∃r.Gd v Gd

for every d ∈ D. The converse direction, i.e., that ¬Gd(a) implies that all
r-predecessors of a do not satisfy Gd, is covered already by the negated CQs
¬∃x.Gd′(x) in the above formula.
We do the same for the global domino type Gh

d and Gv
d for the right and

top neighbor positions, respectively (corresponding to the positions given
by Zh and Zv):

2
∨
d∈D

(
Gh
d(a) ∧

∧
d′∈D\{d}

¬∃x.Gh
d′(x)

)
∃r.Gh

d v Gh
d

2
∨
d∈D

(
Gv
d(a) ∧

∧
d′∈D\{d}

¬∃x.Gv
d′(x)

)
∃r.Gv

d v Gv
d
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• Given the global types of the neighbor positions, the horizontal and vertical
matching condition can be enforced easily:

2
( ∨

(d,d′)∈H

(
Gd(a) ∧Gh

d′(a)
)
∧

∨
(d,d′)∈V

(
Gd(a) ∧Gv

d′(a)
))

• To synchronize the domino types Gd, Gh
d , and Gv

d among the different worlds
(otherwise Gh

d would not need to be equal to the value of Gd at the world
whose Z-counter is equal to the current Zh-counter), we use the local (rigid)
domino types Ld. First, we ensure that the local type of the individual
representing the same position as the current world is the same as the
current global type. We use the following GCIs for all d ∈ D:

N uGd v Ld, N u Ld v Gd

Since the concept names Ld are rigid, this type is then associated with the
individual in every world. And because every world has exactly one global
domino type Gd (which is shared by all its individuals), every individual
also has exactly one local domino type: the one of the world representing
the same position.
To synchronize the domino types of the neighbors given by Gh

d and Gv
d, we

employ the auxiliary concept names Eh
i , Ev

i within the following GCIs, for
0 ≤ i ≤ n and n+ 1 ≤ j ≤ 2n+ 1:

Zh
i uXi v Eh

i , Z
h
i uX i v Eh

i , Z
h
j u Yj−(n+1) v Eh

j , Z
h
j u Y j−(n+1) v Eh

j ,

Zv
i uXi v Ev

i , Z
v

i uX i v Ev
i , Z

v
j u Yj−(n+1) v Ev

j , Z
v

j u Y j−(n+1) v Ev
j

In this way, the interpretation of Eh
1 u · · · u Eh

2n+1 must include all those
domain elements whose X- and Y -counters match the current Zh-counter.
This particularly includes the one individual that was created in the corre-
sponding world using the CQ ∃x.r(x, a)∧N(x)—at which the local domino
type equals the current global domino type. Thus, all that remains to do is
to ensure that the global domino type Gh

d matches the local domino type Ld
at all domain elements satisfying Eh

1 u · · · uEh
2n+1. Of course, similar argu-

ments apply for the vertical direction.

Eh
0 u . . . u Eh

2n+1 uGh
d v Ld, E

h
0 u . . . u Eh

2n+1 u Ld v Gh
d ,

Ev
0 u . . . u Ev

2n+1 uGv
d v Ld, E

v
0 u . . . u Ev

2n+1 u Ld v Gv
d

• It remains to represent the initial condition I = d0, . . . , dn−1. For this, we
use the following GCI for all i = 0, . . . , n− 1:

(Cx
Z = i) u Zn+1 u · · · u Z2n+1 v Gdi

,
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where, for any bj ∈ {0, 1}, 0 ≤ j ≤ n,(
Cx
Z =

∑
0≤j≤n

2j ∗ bj
)

:=
l

0≤j≤n
bj=0

Zj u
l

0≤j≤n
bj=1

Zj.

This conjunction identifies a particular x-position in the Z-counter. If the
y-component of the Z-counter is 0, additionally, then the corresponding
type of the initial condition is enforced.

This finishes the definition of the Boolean TCQ φD,I and the global TBox TD,I ,
which consist of the conjuncts and GCIs specified above. It is easy to see that
the size of φD,I and TD,I is polynomial in n. Moreover, φD,I is satisfiable w.r.t.
〈TD,I , ∅〉 iff D has a 2n+1-bounded solution respecting I.

4.2.2 The Upper Bound

Lemma 4.17. If NRR 6= ∅, then TCQ entailment in EL is in co-NExpTime
w.r.t. combined complexity.

Proof. As before, we analyze the satisfiability problem w.r.t. the conditions of
Lemma 3.2 and combined complexity.

• The set S, which is of exponential size, and the mapping ι, which is of linear
size, can thus be nondeterministically guessed in NExpTime.

• Further, by Lemma 3.3, the LTL-satisfiability test can be done in ExpTime.

• Lemma 3.4 states that, to decide the r-satisfiability of S, we can decide
the satisfiability of the conjunction of CQ literals χS,ι, which is of size
exponential in φ and polynomial in K, w.r.t. the TBox TS,ι, whose size is
linear in that of T and exponential in that of φ. By Lemma 3.5, this test can
be done by solving exponentially many (in the size of φ) tests in polynomial
time w.r.t. the input χS,ι and TS,ι, and hence in exponential time.

Altogether, this means that we can decide TCQ satisfiability in NExpTime, and
hence entailment in co-NExpTime.

5 Regarding Data Complexity

In this section, we show that, if rigid symbols are not considered at all, the
TCQ entailment problem is not harder than the problem of entailment of CQs
in EL; particularly, because we can enumerate all possible sets S, which are
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independent of the data, in constant time and do the check if a mapping ι exists
in a step-wise fashion, independently for each time point. Subsequently, we show
that assertions of rigid concept names on specific individuals (at arbitrary time
points) introduce nondeterminism w.r.t. the concepts satisfied by predecessors
(at possibly other time points) of these individuals, and prove co-NP-hardness,
for this case. Nevertheless, the matching co-NP upper bound can be achieved
also for the case with rigid role names.

5.1 The Case Without Rigid Names

We first regard the case where we do not consider rigid names at all.

Theorem 5.1. If NRC = NRR = ∅, then TCQ entailment in EL is P-complete
w.r.t. data complexity.

P-hardness follows from the fact that entailment of CQs in EL is already P-hard
with respect to data complexity [CDL+06]. The corresponding upper bound is
provided by the following lemma.

Lemma 5.2. If NRC = NRR = ∅, then TCQ entailment in EL is in P w.r.t. data
complexity

Proof. We again follow the basic approach of Lemma 3.2 for the satisfiability
problem.

• To check r-satisfiability of a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, it clearly
suffices to check satisfiability of the conjunctions χi, 1 ≤ i ≤ k, and
χι(i) ∧

∧
α∈Ai

α, 0 ≤ i ≤ n, w.r.t. T individually.7 This is because, with-
out rigid names, it is impossible to enforce any dependency between the
sets X ∈ S, and hence it suffices to define S as the set of all sets Xi for
which χi is satisfiable w.r.t. T . This can be computed in constant time
w.r.t. the size of the input ABoxes. However, it remains to show how to
obtain ι for the remaining satisfiability tests.

• To stay in P while obtaining the mapping ι, we clearly cannot guess one ι
or enumerate the exponential number of possible ι. Instead, we first check,
for each Xj ∈ S and input ABox Ai, whether χj is satisfiable w.r.t. 〈T ,Ai〉.
We collect all indices j that pass this test into the set ι′(i). In this way,
we obtain all possible worlds for each of the input ABoxes. Each of the
conjunctions χj is of constant size and the number of conjunctions (|S|) is

7We can assume that all of these models have the same domain since their domains can be
assumed to be countably infinite by the Löwenheim-Skolem theorem, and that all individual
names are interpreted by the same domain elements in all models.
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constant. By Lemma 3.5, these tests can thus be done in polynomial time
in the size of the input ABoxes. Furthermore, each ι′(i) is of constant size.
Correspondingly, we have to change the condition “wi = Xι(i)” in Lemma 3.3
to “wi = Xj for some j ∈ ι′(i)”. The result remains valid since one can easily
modify the automaton used in the proof of that result in [BBL15] to check
whether the first n+ 1 encountered worlds fall into the pre-specified sets of
(constantly many) worlds ι′(i), instead of equality with a single pre-specified
world ι(i).

If both of the above polynomial tests succeed, then we can simply choose one ι
among the many possible identified by ι′ in order to satisfy the conditions of
Lemma 3.2. Conversely, the existence of some S and ι imply that we have
ι(i) ∈ ι′(i) for every i, 0 ≤ i ≤ n, and thus the above checks succeed. This
proves that our deterministic definitions of the maximal possible S and ι′ suffice
to satisfy Lemma 3.2, which means that we can decide TCQ satisfiability (and
entailment) in P.

5.2 The Case With Rigid Names

As outlined previously, the use of rigid symbols in the ABoxes presents a source
of nondeterminism causing NP-hardness. For our following proof of the lower
bound, it is especially important that EL allows for qualified existential restric-
tions.

Theorem 5.3. If NRC = NRR 6= ∅, then TCQ entailment in EL is co-NP-
complete w.r.t. data complexity.

In the following, we first prove the required lower bound and then describe how
a corresponding upper bound can be obtained.

5.2.1 The Lower Bound

Lemma 5.4. If NRC 6= ∅, then TCQ entailment in EL is co-NP-hard w.r.t. data
complexity.

Proof. We show NP-hardness of the satisfiability problem. The proof is by reduc-
tion of the 3-SAT problem, which is known to be NP-complete [Kar72]. Consider
a propositional 3-CNF formula

ψ =
∧

0≤i<`
li,1 ∨ li,2 ∨ li,3,
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with the literals li,j, and let x1, . . . , xm be all the propositional variables occurring
in ψ. We denote by Lit the set of all literals over these variables. For a literal l,
we denote by ¬l its complement literal.

We now construct a TCQ φ and a TKB Kψ = 〈T , (Aψt )0≤t<4`〉 such that ψ is
satisfiable iff φ is satisfiable w.r.t. Kψ. Our definitions of φ and T will not depend
on ψ and the combined size of the ABoxes Aψt will be linear in the size of ψ, and
hence we obtain the desired result.

We use four ABoxes to represent each clause: one to identify the start of a new
clause, and the following three for the literals. Then, we enforce through φ that
every model of these ABoxes has to satisfy one of the clause’s literals. By using
a single rigid concept, we can additionally enforce that every variable has to
be interpreted either always true or always false, yielding a model of ψ. More
formally, we use the following symbols:

• individual names al for all literals l ∈ Lit;

• an individual name c representing the ‘current’ clause;

• a rigid concept name A that describes the truth values of all literals;

• a flexible concept name C to mark the current time point t as the start of
the encoding of clause t

4 ;

• a flexible concept name T to identify which literal of a clause is satisfied;

• a role name r to link each al to a¬l to ensure that the truth assignment is
consistent;

• a role name s to relate a clause with its literals.

The TQ φ and TBox T can now be defined independent of the concrete input
problem:

φ := 2
((
C(c)→

(
# T (c) ∨# # T (c) ∨# # #T (c)

))
∧ ¬∃x, y.r(x, y) ∧ A(x) ∧ A(y)

)
, and

T := {∃s.T v A}.

Thus, whenever C(c) holds, one of the next three time points, of which each
is pointing to one of the three literals of the current clause, must satisfy T (c).
The TQ φ additionally ensures that individuals linked by r cannot both satisfy
the rigid concept name A at the same time. The TBox is used to transfer the
information about the choice of literal l to the truth value (represented by A)
of the individual name al. Note that our reduction requires several features: a
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ax1 ax3 A a¬x4 A

a¬x1 a¬x3 ax4
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r r r

Figure 1: The content of the ABoxes encoding (x1 ∨ x3 ∨ ¬x4) ∧ . . . ; names in
gray describe a possible extension to a model of φ w.r.t. Kψ.

quantified existential restriction within a GCI, a rigid concept, and the Boolean
negation operator together with the temporal operators in the TCQ.

The clauses of ψ are encoded in the ABoxes Aψt , 0 ≤ t < 4`, defined as follows
for all 0 ≤ i < ` and 1 ≤ j ≤ 3 (see also Figure 1):

Aψ4i := {C(c)}
Aψ4i+j := {r(ali,j

, a¬li,j
), s(ali,j

, c)}

We now show that there is an assignment v : {x1, . . . , xm} → {0, 1} that satisfies ψ
iff φ is satisfiable w.r.t. Kψ.

(⇒) Let v be such an assignment. We define the model I = (It)t≥0 of φ w.r.t. Kψ
with domain ∆ := {c, ax1 , . . . , axm , a¬x1 , . . . , a¬xm}, where all individual names
occuring in the ABoxes are interpreted as themselves:

AIt := {al | l ∈ Lit, v(l) = 1};
T It := {c | 0 ≤ i < `, 1 ≤ j ≤ 3, t = 4i+ j, v(li,j) = 1};
CIt := {e | t < 4`, C(e) ∈ Aψt };
rIt := {(e, e′) | t < 4`, r(e, e′) ∈ Aψt };
sIt := {(e, e′) | t < 4`, s(e, e′) ∈ Aψt }.

We obviously have It |= Aψt , for all 0 ≤ t < 4`. Consider now the GCI ∃s.T v A.
By the definition of the ABoxes Aψt , the left-hand side concept can only be sat-
isfied by an individual of the form al. If al ∈ (∃s.T )It , then we have l = li,j for
t = i + 4j and c ∈ T It . By the definition of T It , this yields v(l) = 1. But then
we also have al ∈ AIt , which shows that I is a model of Kψ.
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Since v satisfies each clause of ψ, it is clear that I satisfies the implication

C(c)→
(

# T (c) ∨# # T (c) ∨# # #T (c)
)

at every time point by its definition, especially w.r.t. T . Moreover, whenever
(d, e) ∈ rIt , we must have d = al and e = a¬l for some l ∈ Lit, and thus by the
definition of AIt we cannot have both d ∈ AIt and e ∈ AIt . This shows that I
also satisfies φ.

(⇐) Let I = (It)t≥0 be a model of φ w.r.t. Kψ that interprets all individual names
as themselves. We define v(xk) := 1 if axk

∈ AI0 , and v(xk) := 0 otherwise.

Consider now any clause li,1∨ li,2∨ li,3 of ψ. We have C(c) ∈ A4i, and thus by the
definition of φ there must be an index j, 1 ≤ j ≤ 3, such that c ∈ T I4i+j . By the
definition of A4i+j, we also have (ali,j

, c) ∈ sI4i+j , and thus ali,j
∈ AI4i+j = AI0

because of the GCI ∃s.T v A.

If li,j is a variable, then by the definition of v we immediately get v(li,j) = 1,
which shows that the clause is satisfied by v. Otherwise, we have li,j = ¬xk for
some k, 1 ≤ k ≤ m. By the definition of Aψ4i+j, we know that (axk

, a¬xk
) ∈ rI4i+j .

Since I satisfies φ and a¬xk
∈ AI0 , it cannot be the case that axk

∈ AI0 . This
means that v(xk) = 0, and thus we again have v(li,j) = 1.

5.2.2 The Upper Bound

Lemma 5.5. If NRR 6= ∅, then TCQ entailment in EL is in co-NP w.r.t. data
complexity.

Proof. We analyze the satisfiability problem w.r.t. the conditions from Lemma 3.2
and data complexity.

• In this case, the set S is of constant size and the mapping ι is of linear size.
They can thus be guessed nondeterministically in polynomial time.

• Further, by Lemma 3.3, the corresponding LTL-satisfiability test of φp
S can

be done in P.

• For testing the r-satisfiability of S w.r.t. data complexity, by Lemma 3.4
we only have to check the satisfiability of χS,ι w.r.t. TS,ι. The conjuncts
of χS,ι induced by the input ABoxes Ai can be regarded as an ABox that
is essentially of the same size as the sequence (Ai)0≤i≤n, and the remaining
conjunction is of linear size. However, the individual size of the remaining
conjuncts is independent of the input ABoxes. The size of TS,ι is also linear
in n. By Lemma 3.5, the above satisfiability test can thus be done in
polynomial time.
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This means that we can decide the satisfiability problem in NP, and thus entail-
ment in co-NP w.r.t. data complexity.

6 Conclusions

In this report, we focused on temporalized OBDA to support the interpretation
of sensor data in a context-aware system by recognizing complex situations. In
particular, we investigated the combined and data complexity of TCQ entailment
w.r.t. knowledge bases in the DL EL.

Our results are summarized in Table 1.1. It turns out that the data complexity,
which is of most interest for our scenario, only stays tractable if rigid symbols
are not allowed. In this case, it may be possible to adapt the so-called combined
approach of [KLT+11], which proposes a procedure for CQ answering w.r.t. an EL-
knowledge base where the assertional data can be accessed through a traditional
database system. The PSpace result for combined complexity is interesting
in that it does not increase the complexity given by the satisfiability problem
of propositional LTL—even if rigid concept names are considered. In addition,
Table 1.1 shows that this contrasts the complexity of the very similar satisfiability
problem in EL-LTL.

In future work, we want to further investigate TCQs w.r.t. knowledge bases formu-
lated in OWL2EL,8 a profile of the current version of the web ontology language
OWL2 that is based on a maximally tractable extension of EL [BBL08]. The com-
bined complexity of CQ answering increases from NP to PSpace when extending
EL to OWL2EL [SMKR14], while the data complexity stays in P [ORŠ11], and
thus it is possible that the complexity of TCQ entailment remains the same.
Further, the paper [SMKR14] also provides a construction of canonical models
for such KBs, which are critical for our PSpace upper bound w.r.t. combined
complexity.

Moreover, we plan to consider TCQs in the context of the DL-Lite family of
lightweight DLs. Since the features provided by EL are critical for both of our
proofs of the lower bounds, it would be interesting to learn more about full TCQs9

w.r.t. such DLs—in particular, about the data complexity in case rigid symbols
are considered.

Last but not least, a practical application of TCQs would give insight into spe-
cialized use cases and maybe enable the development of optimized answering
procedures.

8http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
9Recall that several subsets of TCQs have already been considered in literature.
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