
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Temporal Query Answering in DL-Lite with
Negation

Stefan Borgwardt Veronika Thost

LTCS-Report 15-16

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Abstract

Ontology-based query answering augments classical query answering in
databases by adopting the open-world assumption and by including do-
main knowledge provided by an ontology. We investigate temporal query
answering w.r.t. ontologies formulated in DL-Lite, a family of description
logics that captures the conceptual features of relational databases and was
tailored for efficient query answering. We consider a recently proposed tem-
poral query language that combines conjunctive queries with the operators
of propositional linear temporal logic (LTL). In particular, we consider
negation in the ontology and query language, and study both data and
combined complexity of query entailment.

Contents

1 Introduction 4

2 Preliminaries 7

2.1 DL-Lite Description Logics . 7

2.2 Temporal Conjunctive Queries . 9

2.3 On Complexity . 12

3 Atemporal Canonical Models and Conjunctive Queries Revisited 13

3.1 Canonical Models for Horn CIs 14

3.2 Atemporal Queries . 16

4 On Upper Bounds 18

4.1 A General Approach for Solving Satisfiability 18

4.2 On Checking r-satisfiablility . 19

4.2.1 Consequences, Witnesses, and Witness Queries 19

4.2.2 R-Complete Tuples . 22

4.2.3 If S is r-satisfiable w.r.t. ι and O, then there is an r-
complete tuple w.r.t. S and ι. 24

4.2.4 If there is an r-complete tuple w.r.t. S and ι, then S is
r-satisfiable w.r.t. ι and O. 29

5 Regarding Combined Complexity 40

6 Regarding Data Complexity 44

6.1 A FO Rewriting for r-satisfiability 44

6.2 An Alternating Logarithmic Time Turing Machine 63

7 Beyond the horn Fragment 70

7.1 Lower Bounds . 70

7.2 Upper Bounds . 80

7.2.1 Regarding Data Complexity 81

2

7.2.2 Regarding Combined Complexity 83

8 Conclusions 85

3

1 Introduction

Ontologies play a central role in various applications: by linking data from het-
erogeneous sources to the concepts and relations described in an ontology, the
integration and automated processing of the data can be considerably enhanced.
In particular, queries formulated in the abstract vocabulary of the ontology can
then be answered over all the linked datasets. Well-known medical domain on-
tologies like GALEN1, for example, may capture the facts that the varicella zoster
virus (VZV) is a virus, that chickenpox is a VZV infection, and that a negative
allergy test implies that no allergies are present, by so-called concept inclusions:
VZV v Virus,Chickenpox v VZVInfection,NegAllergyTest v ¬∃AllergyTo. Here,
Virus is a concept name that represents the set of all viruses, and AllergyTo is a
role name, i.e., a binary relation, which connects patients to allergies; ∃AllergyTo
refers to the domain of this relation. A possible data source storing patient data
(e.g., allergy test results and findings) could look as follows:

PID Name
1 Ann
2 Bob
3 Chris

PID AllergyTest Date
1 neg 16.01.2011
2 pos 06.01.1970
3 neg 01.06.2015

PID Finding Date
1 Chickenpox 13.08.2007
2 VZV-Infection 22.01.2010
3 VZV-Infection 01.11.2011

The data is connected to the ontology by mappings [PLC+08], which in our ex-
ample may link the tuple (1,Chickenpox, 16.01.2011) to the facts HasFinding(1, x)
and Chickenpox(x).

Ontology-based query answering (OBQA) over the above knowledge can, for ex-
ample, assist in finding appropriate participants for a clinical study, by formulat-
ing the eligibility criteria as queries over the—usually linked and heterogeneous—
patient data. The following are examples of in- and exclusion conditions for a
recently proposed clinical trial:2

• The patient should have been previously infected with VZV or previously
vaccinated with VZV vaccine.

• The patient should not be allergic to VZV vaccine.

Considering the first condition, OBQA would augment standard query answering
(e.g., in SQL) w.r.t. the above ontology and data in that not only Bob and Chris
but also Ann would be considered as an appropriate candidate. However, in
standard OBQA, the queries neither allow for negation nor can refer to several

1http://www.co-ode.org/ontologies/galen
2https://clinicaltrials.gov/ct2/show/NCT01953900

4

http://www.co-ode.org/ontologies/galen
https://clinicaltrials.gov/ct2/show/NCT01953900

points in time, both of which would be needed to faithfully represent the data
and the stated criteria. For this reason, we study temporal OBQA.

In particular, we focus on temporal conjunctive queries (TCQs), which were origi-
nally proposed by [BBL13, BBL15c]. TCQs allow to combine conjunctive queries
(CQs) via the Boolean operators and the temporal operators of propositional lin-
ear temporal logic LTL [Pnu77]. For example, the above criteria can be specified
with the following TCQ φ(x), to obtain all eligible patients x:(

3−
(
∃y.HasFinding(x, y) ∧ VZVInfection(y)

)
∨

3−
(
∃y.VaccinatedWith(x, y) ∧ VZVVaccine(y)

))
∧ ¬

(
∃y.AllergyTo(x, y) ∧ VZVVaccine(y)

)
We here use the temporal operator ‘some time in the past’ (3−) and consider the
symbols AllergyTo and VZVVaccine to be rigid, which means that their interpre-
tation does not change over time; e.g., we thus assume someone having an allergy
to VZV vaccine to have this allergy for his whole life.

The semantics of TCQs is based on temporal knowledge bases (TKBs), which, in
addition to the domain ontology (which is assumed to hold globally, i.e., at every
point in time), contain finite sequences of fact bases. These fact bases represent
the data associated to specific points in time—from the past until the current
time point n (‘now’). The problem we focus on is the evaluation of a TCQ w.r.t.
such a temporal knowledge base, at the current time point.

In our setting, the information within the ontology and the fact bases does not
explicitly refer to the temporal dimension, but is written in a classical (atempo-
ral) description logic (DL); only the query is temporalized. In contrast, so-called
temporal DLs [LWZ08, AKL+07, AKRZ14, AKK+14, GJS14, GBJS15, ABM+14]
extend classical DLs by temporal operators, which then occur within the ontol-
ogy. However, as it is shown in [LWZ08, AKL+07, AKRZ14, GJS14], most of
these logics yield high reasoning complexities, even if the underlying atemporal
DL allows for tractable reasoning. For that reason, lower complexities are only
obtained by either considerably restricting the set of temporal operators or the
DL.

A less expressive variant of TCQs called ALC-LTL, which combines ALC axioms
via LTL operators, has been introduced in [BGL12]. In [BBL13, BBL15c], the
problem of answering TCQs over ontologies in the rather expressive DLs ALC
and SHQ has been investigated (albeit without allowing transitive roles in the
queries). However, reasoning in these DLs is not tractable anymore, and appli-
cations often need to process large quantities of data fast. Several lightweight
logics, including DL-Lite, have been considered in [BLT15], but without nega-
tion in the TCQs; in contrast, we allow negation to occur in the queries as well
as in the ontology language (DL-Litekrom/DL-Litebool). [AKL+07] also consider
temporal variants of DL-Lite, but use less expressive formulas, similar to those

5

Data Complexity Combined Complexity
(i) (ii) (iii) (i) (ii) (iii)

DL-Lite[|H]
[core|horn] ALogTime ALogTime ALogTime PSpace PSpace PSpace

EL [BT15c] P co-NP co-NP PSpace PSpace co-NExpTime
ALC-SHQ [BBL15c] co-NP co-NP ≤ExpTime ExpTime co-NExpTime 2-ExpTime

DL-Lite[krom|bool] co-NP co-NP ≤ExpTime ExpTime co-NExpTime 2-ExpTime

DL-LiteH[krom|bool] co-NP co-NP ≤ExpTime 2-ExpTime 2-ExpTime 2-ExpTime

Table 1.1: Our results on the complexity of TCQ entailment compared to related
work. All complexities except those marked with ≤ are tight.

of ALC-LTL. In [BT15c], TCQs are studied in the context of the lightweight
DL EL, but it is shown that reasoning is quite hard if rigid symbols are consid-
ered. This motivates our study of TCQs in DLs of the DL-Lite family, which
was tailored for (atemporal) query answering and allows for very efficient reason-
ing [CDL+07, GHJR+15]. Of particular interest in this setting is the question if
temporal queries can be rewritten into first-order queries over a database, which
can be expressed, e.g., as SQL queries, and executed using standard database
systems; as it is possible in the atemporal case.

In this paper, we investigate the complexity of the TCQ entailment problem
over temporal knowledge bases in several members of the DL-Lite family. In
order of expressivity, we look at DL-Litecore/DL-Litehorn, their variants allowing
role inclusions, and their counterparts DL-Litekrom/DL-Litebool featuring disjunc-
tions on the right-hand side of concept inclusions, which can be used to express
negated concepts. We regard both combined and data complexity and, as usual,
distinguish three different settings regarding the rigid symbols:3 (i) no symbols
are allowed to be rigid, (ii) only rigid concept names are allowed, and (iii) both
concepts and roles can be rigid.

Table 1.1 summarizes our results and shows that they are ambivalent. On the one
hand, for expressive members of the DL-Lite family, we obtain at least the same
complexities as for SHQ. For logics below DL-LiteHhorn, however, we have results
that are considerably better than those for EL; above all, rigid roles can often
be added without affecting the complexity. Unfortunately, our ALogTime lower
bound for the data complexity of TCQ entailment in DL-Litecore shows that it is
not possible to find a (pure) first-order rewriting of TCQs, in this setting; note
that the graph of the parity function is in ALogTime and parity is not first-order
definable [AB09]. The PSpace and co-NP lower bounds directly follow from
the complexity of satisfiability in propositional LTL [SC85] and CQ entailment
in DL-Litekrom [CDGL+05], respectively.

3Note that rigid concepts can be simulated by rigid roles [BGL12], even in DL-Litecore.

6

2 Preliminaries

We first introduce several description logics of the DL-Lite family and then define
TCQs over temporal ontologies formulated in these logics, as it was done for ALC
in [BBL15c].

2.1 DL-Lite Description Logics

The various description logics of the so-called DL-Lite family extend the base
formalism DL-Litecore by different concept constructors and/or kinds of expres-
sions. We focus on several of the logics presented in [ACKZ09], which consider
(different subsets of) the Boolean operators as concept constructors and so-called
role hierarchies, abbreviated by the letter H. We begin by recalling the syntax
in the next definition.

Definition 2.1 (Syntax of DL-Lite Logics). Let NC, NR, and NI, respectively, be
non-empty, pairwise disjoint sets of concept names, role names, and individual
names. In the DL-Lite logics, (basic) roles R and basic concepts B are built from
role names P ∈ NR and concept names A ∈ NC according to the following syntax
rules:

R ::= P | P− B ::= A | ∃R

where ·− denotes the inverse role operator. N−R denotes the set of all roles. We
consider the following axioms: a concept inclusion (CI) is of the form

B1 u . . . uBm v Bm+1 t . . . tBm+n, (∗)

where B1, . . . , Bm+n are basic concepts; a role inclusion (RI) is of the form

R1 v R2,

where R1, R2 ∈ N−R ; and an assertion is of the form

B(a) or P (a, b),

where B is a basic concept, P ∈ NR, and a, b ∈ NI.

For c ∈ {core, horn, krom, bool}, we denote by DL-Litec the logic that restricts
concept inclusions of the form (∗) as follows:

• m,n are arbitrary if c = bool;

• m+ n ≤ 2 if c = krom;

• n ≤ 1 if c = horn; and

7

• m+ n ≤ 2 and n ≤ 1 if c = core.

If role inclusions are allowed in addition, this is indicated by a superscript H,
and we obtain the four DLs denoted by DL-LiteHc .

Regarding a specific DL L, an ontology written in L is a finite set of concept and
(if allowed in L) role inclusions; and an ABox is a finite set of assertions. To-
gether, an ontology O and an ABox A, where the latter may contain only concept
and role names that also occur in O, form a knowledge base (KB) K = 〈O,A〉.

In our constructions, we also sometimes consider negated assertions of the form
¬B(a) or ¬P (a, b). As usual, the empty conjunction (u) is denoted by ⊥ and
the empty disjunction (t) by >. We may write B1 u · · · u Bm v ¬B as abbre-
viation for B1 u · · · u Bm u B v ⊥, and

d
B for the conjunction B1 u · · · u Bm

if B = {B1, . . . , Bm}. We further use the abbreviations P−(a, b) := P (b, a) and
(P−)− := P , for P ∈ NR and a, b ∈ NI.

Furthermore, we denote by NI(K) the set of individual names that occur in the
knowledge base K, and by NC(O) (N−R (O)) the set of concept names (roles) that
occur in the ontology O. We use the notation BC(O) for the set of all basic
concepts that can be built from NC(O) and N−R (O), and BC¬(O) for the set
BC(O) extended by negation.

We define the semantics as usual, in a model-theoretic way.

Definition 2.2 (Semantics of DL-Lite Logics). An interpretation I = (∆I , ·I)
consists of a non-empty set ∆I (called domain), and an interpretation function
·I that assigns to every A ∈ NC a set AI ⊆ ∆I, to every P ∈ NR a binary relation
P I ⊆ ∆I ×∆I, and to every a ∈ NI an element aI ∈ ∆I.

This function is extended to all roles and concepts as follows:

(P−)I := {(y, x) | (x, y) ∈ RI}; and
(∃R)I := {x | there is an y ∈ ∆I such that (x, y) ∈ RI}.

As usual, ⊥ is interpreted as ∅ and > by ∆I. The interpretation I satisfies (or
is a model of)

• a CI B1u· · ·uBm v Bm+1t· · ·tBm+n if BI1 ∩· · ·∩BIm ⊆ BIm+1∪· · ·∪BIm+n;

• an RI R1 v R2 if RI1 ⊆ RI2 ;

• a (negated) assertion (¬)B(a) if aI ∈ BI (aI 6∈ BI);

• a (negated) assertion (¬)R(a, b) if (aI , bI) ∈ RI ((aI , bI) /∈ RI);

• a knowledge base if it satisfies all axioms contained in it.

8

We write I |= α if I satisfies the axiom α, I |= O if I satisfies all CIs and RIs
in the ontology O, I |= A if I satisfies all assertions in the ABox A, and I |= K
if I is a model of the knowledge base K. Further, a knowledge base K is said to
be consistent if it has a model, and K entails an axiom α (written K |= α) if all
models of K also satisfy α.

Throughout the report, we assume that all interpretations I satisfy the unique
name assumption (UNA), i.e., for all a, b ∈ NI with a 6= b, we have aI 6= bI .

2.2 Temporal Conjunctive Queries

This report focuses on a temporal query language proposed in [BBL13], but we
consider here knowledge bases formulated in DL-Lite instead ofALC. The queries
are formulas of propositional LTL, where the propositions are replaced by CQs,
and are then answered over temporal knowledge bases, according to a semantics
that is suitably lifted from propositional worlds to interpretations.

In the following, we assume (as in [BGL12, BBL15c]) that a subset of the concept
and role names is designated as being rigid (as opposed to flexible). The intuition
is that the interpretation of the rigid names is not allowed to change over time.
In particular, the individual names are implicitly assumed to be rigid (i.e., an
individual always has the same name). We denote by NRC ⊆ NC the rigid concept
names, and by NRR ⊆ NR the rigid role names.

Definition 2.3 (Temporal Knowledge Base). A temporal knowledge base (TKB)
K = 〈O, (Ai)0≤i≤n〉 consists of an ontology O and a finite sequence of ABoxes Ai,
where the latter only contain concept and role names that also occur in O.

Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (∆, ·Ii) over a
non-empty domain ∆ that is fixed (constant domain assumption). Then I is a
model of K (written I |= K) if

• for all i ≥ 0, we have Ii |= O;

• for all i, 0 ≤ i ≤ n, we have Ii |= Ai; and

• I respects rigid names, i.e., sIi = sIj for all symbols s ∈ NI ∪ NRC ∪ NRR
and i, j ≥ 0.

We use the notation NRC(O), for the set of all rigid concept names that occur
in O, BC¬R(O) for the restriction of BC¬(O) to rigid concepts, and likewise for
BCR(O). We further denote by NI(K) the set of all individual names occurring in
the TKB K.

As mentioned above, our query language combines conjunctive queries via LTL
operators.

9

Definition 2.4 (Syntax of TCQs). Let NV be a set of variables. A conjunctive
query (CQ) is of the form φ = ∃x1, . . . , xm.ψ, where x1, . . . , xm ∈ NV and ψ is a
(possibly empty) finite conjunction of atoms of the form

• A(t) (concept atom), for A ∈ NC and t ∈ NI ∪ NV, or

• R(t1, t2) (role atom), for R ∈ NR and t1, t2 ∈ NI ∪ NV.

The empty conjunction is denoted by true, and we write α ∈ φ if the atom α occurs
in φ. Temporal conjunctive queries (TCQs) are built from CQs as follows:

• each CQ is a TCQ; and

• if φ1 and φ2 are TCQs, then the following are also TCQs:

– ¬φ1 (negation), φ1 ∧ φ2 (conjunction),
– #φ1 (next), #−φ1 (previous),
– φ1 Uφ2 (until), and φ1 Sφ2(since).

We denote the set of individuals occurring in a TCQ φ by NI(φ), the set of
variables occurring in φ by NV(φ), the set of free variables of φ by NFV(φ). A
TCQ φ with NFV(φ) = ∅ is called a Boolean TCQ. A CQ-literal is either a CQ or
a negated CQ, and a union of CQs (UCQ) is a disjunction of CQs. As for role
assertions, we may also use an expression of the form R−(t1, t2) to denote the role
atom R(t2, t1).

As usual, we use the following abbreviations: false, for ¬true, φ1∨φ2 (disjunction),
for ¬(¬φ1 ∧ φ2), 3φ1 (eventually) for true Uφ1, 2φ1 (always) for ¬3¬φ1, and
analogously for the past: 3−φ1 for true Sφ1, and 2−φ1 for ¬3−¬φ1.

We start by defining the semantics of CQs and TCQs for Boolean queries. As
usual, it is given through the notion of homomorphisms [CM77].

Definition 2.5 (Semantics of TCQs). Let I = (∆I , ·I) be an interpretation and
ψ be a Boolean CQ. A mapping π : NV(ψ) ∪ NI(ψ) → ∆I is a homomorphism of
ψ into I if

• π(a) = aI, for all a ∈ NI(ψ);

• π(t) ∈ AI, for all concept atoms A(t) in ψ; and

• (π(t1), π(t2)) ∈ RI, for all role atoms R(t1, t2) in ψ.

We say that I is a model of ψ (written I |= ψ) if there is such a homomorphism.

10

Let now φ be a Boolean TCQ and I = (Ii)i≥0 be an infinite sequence of interpre-
tations. We define the satisfaction relation I, i |= φ, where i ≥ 0, by induction
on the structure of φ:

I, i |= ∃x1, . . . , xm.ψ iff Ii |= ∃x1, . . . , xm.ψ
I, i |= ¬φ1 iff I, i 6|= φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= #φ1 iff I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= φ1 Uφ2 iff there is some k ≥ i such that I, k |= φ2

and I, j |= φ1, for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is some k, 0 ≤ k ≤ i, such that I, k |= φ2

and I, j |= φ1, for all j, k < j ≤ i.

Given a TKB K = 〈O, (Ai)0≤i≤n〉, I is called a model of φ w.r.t. K if I |= K and
I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K. Furthermore,
φ is entailed by K (written K |= φ) if every model of K is also a model of φ.

Especially note that, as mentioned in the introduction, models of TCQs satisfy
them at the current time point n.

We will often deal with conjunctions of CQ-literals φ. Since φ contains no tem-
poral operators, the satisfaction of φ by an infinite sequence of interpretations
I = (Ii)i≥0 at time point i only depends on the interpretation Ii. For simplicity,
we then often write Ii |= φ instead of I, i |= φ. For the same reason, we use
this notation also for UCQs. In this context, it is sufficient to deal with classical
knowledge bases K = 〈O,A〉, which can be seen as TKBs with only one ABox.

We now define the semantics of non-Boolean TCQs.
Definition 2.6 (Certain Answer). Let φ be a TCQ and K = 〈O, (Ai)0≤i≤n〉,
be a TKB. The mapping a : NFV(φ) → NI(K) is a certain answer to φ w.r.t. K
if K |= a(φ), where a(φ) denotes the Boolean TCQ that is obtained from φ by
replacing the free variables according to a.

As usual, the problem of computing all certain answers to a TCQ reduces to
exponentially many entailment problems. We also assume that TCQs use only
individual names that occur in the ABoxes, and only concept and role names that
occur in the ontology; this is clearly without loss of generality.

Most of our upper bounds are based on the approach described in [BGL12,
BBL15c]. We now introduce definitions that are important in this construction.

The propositional abstraction φp of a TCQ φ is built by replacing each CQ occur-
ring in φ by a propositional variable such that there is a 1–1 relationship between
the CQs α1, . . . , αm occurring in φ and the propositional variables p1, . . . , pm
occurring in φp. The formula φp obtained in this way is a propositional LTL-
formula [Pnu77].

11

Definition 2.7 (LTL). Let {p1, . . . , pm} be a finite set of propositional vari-
ables. An LTL-formula φ is built inductively from these variables using the con-
structors negation (¬φ1), conjunction (φ1 ∧ φ2), next (#φ1), previous (#−φ1),
until (φ1 Uφ2), and since (φ1 Sφ2). An LTL-structure is an infinite sequence
J = (wi)i≥0 of worlds wi ⊆ {p1, . . . , pm}. The propositional variable pj is satis-
fied by J at i ≥ 0 (written J, i |= pj) if pj ∈ wi. The satisfaction of a complex
propositional LTL-formula by an LTL-structure is defined as in Definition 2.5.

For an LTL-formula φ, we use Sub(φ) to denote the set of subformulas of φ. Note
that the above definition extends the usual definition of LTL, which only considers
the temporal operators # and U [Pnu77]. For this reason, this extended logic is
often referred to as Past-LTL. An important result for this logic, the so-called
separation theorem [Gab87], is given in the following proposition.

Proposition 2.8 ([Gab87]). Every LTL-formula φ is equivalent to an LTL-
formula in which no future operators occur in the scope of past operators and
vice versa.

Note that [Gab87] actually considers a slightly different temporal logic, using
strict interpretations of S and U, and no other temporal operators. However, it is
well-known that then #− and # can be simulated. Conversely, it is easy to show
that the strict versions of S and U can be expressed in our setting. Thus, the
above result holds also for the temporal operators we consider here. Note that
the size of the resulting “separated” LTL-formula may be non-elementary in the
size of the original formula (i.e., the number of stacked exponents is determined
by the number of alternations between past operators and future operators).

We call a propositional LTL formula a future formula if it contains no past oper-
ators and a past formula if it contains no future operators. Given a propositional
LTL formula f , separated according to Proposition 2.8, we call a subformula g
of f a top-level past (future) formula if it is of the form #−g1, ¬(#−g1), g1 S g2,
or ¬(g1 S g2) (#g1, ¬(#g1), g1 U g2, or ¬(g1 U g2)) and occurs in f at least once in
the scope of no other temporal operator.

2.3 On Complexity

In this report, we study the complexity of TCQ entailment via the satisfiability
problem, which has the same complexity as the complement of the entailment
problem [BBL15c]. We consider two kinds of complexity measures: combined
complexity and data complexity. For the combined complexity, all parts of the
input, meaning the TCQ φ and the entire temporal knowledge base K, are taken
into account. In contrast, for the data complexity, the TCQ φ and the ontology
O are assumed to be constant, and thus the complexity is measured only w.r.t.
the data, the sequence of ABoxes.

12

Satisfiability UCQ Answering
Logic Combined Complexity Combined Complexity Data Complexity

[ACKZ09] [BAC10, BMP13, BMP14] [ACKZ09]

DL-Lite[|H]
core NLogSpace NP in AC0

DL-Lite[|H]
horn P NP in AC0

DL-Litekrom NLogSpace in ExpTime co-NP
DL-LiteHkrom NLogSpace ? co-NP
DL-Litebool NP ExpTime-hard co-NP
DL-LiteHbool NP 2-ExpTime co-NP

Table 2.9: Known results for the atemporal setting

Table 2.9 summarizes known complexity results for atemporal problems in the
DL-Lite family, which are important for our work. We consider some complexity
classes from the world of circuits:

AC0 ⊆ NC1 ⊆ AC1,

which relate to the machine classes

LogTime ⊆ ALogTime ⊆ NLogTime ⊆ LogSpace ⊆ NLogSpace ⊆ P

such that AC0 ⊆ LogTime, ALogTime = DLogTime-uniform NC1, and
NLogSpace ⊆ AC1 ⊆ P. Note that the class AC0 is of special interest for
query answering in DL-Lite. This is because problems whose data complexity is
in AC0 can be solved by encoding them as first order (FO) queries over finite
structures. Such problems are therefore also called first order rewritable.

Recall that we assumed all concept and role names in the ABox to also occur in
the ontology. If this was not the case, we could simply add trivial axioms like
A v A or ∃R v ∃R to O in order to satisfy this requirement. Although this
formally increases the size of O, these axioms do not affect the semantics of O,
and can thus be ignored in all reasoning problems involving O. Hence, complexity
results without this assumption remain valid in our setting.

3 Atemporal Canonical Models and Conjunc-
tive Queries Revisited

In this section, we recall and extend known definitions and results, which we use
in our proofs later in the report.

13

3.1 Canonical Models for Horn CIs

We consider DL-LiteHhorn and subsets of this logic and specify the notion of canoni-
cal interpretation for a knowledge base. This interpretation can be used for decid-
ing consistency of the knowledge base and for answering CQs, because it contains
those (prototypical) elements whose presence is enforced by the knowledge base.
Then, it suffices to check whether the canonical interpretation is a model of a
given knowledge base and if it satisfies a CQ, respectively. We use a construc-
tion based on the so-called chase [AHV95], similar to that proposed in [CDL+07]
and [BAC10]; the latter extend the original definition of [CDL+07] to the logic
DL-LiteHhorn, and we further extend it. In particular, our canonical interpreta-
tion contains (unnamed) prototypical R-successors, R ∈ N−R , for all elements the
knowledge base requires to satisfy ∃R; in contrast, [CDL+07, BAC10] only con-
sider such prototypical successors if the knowledge base (i.e., the corresponding
ABox) does not already identify a named individual to be such a successor. Un-
like us, [CDL+07, BAC10] do also not consider arbitrary basic concept assertions,
but only concept names.

We use the notation caR1...R` , for a ∈ NI and R1, . . . , R` ∈ N−R , which is a domain
element that acts as a prototypical R`-successor of a, if ` = 1, and of caR1...R`−1 ,
otherwise. For simplicity, we below assume that if R1 v R2 is contained in an
ontology O, then we also have ∃R1 v ∃R2 ∈ O and ∃R−1 v ∃R−2 ∈ O; and that
O contains all trivial axioms of the form B v B for B ∈ BC(O).

Definition 3.1 (Canonical interpretation). Let K = 〈O,A〉 be a DL-LiteHhorn-
knowledge base. We start defining the following sets, for all A ∈ NC, P ∈ NR,

A0 :={a | A(a) ∈ A} and
P 0 :={(a, b) | P (a, b) ∈ A} ∪

{(a, caP) | ∃P (a) ∈ A} ∪
{(caP− , a) | ∃P−(a) ∈ A}.

Further, we define corresponding sets, for all i > 0, by applying the below rules.
We denote with (e, e′) ∈ (P−)i the fact that (e′, e) ∈ P i. Similarly, e ∈ (∃R)i
denotes that there is an e′ such that (e, e′) ∈ Ri.

• If R1 v R2 ∈ O and (e, e′) ∈ Ri
1, then we add (e, e′) to Ri+1

2 .

• If
d
B v B ∈ O and e ∈ (B′)i, for all B′ ∈ B, then

– we add e to Bi+1 if B ∈ NC;
otherwise, we have B = ∃R, R ∈ N−R , and,

– if e ∈ NI(K), we add (e, ceR) to Ri+1;
– else if e = c%, we add (e, c%R) to Ri+1.

14

We collect the newly introduced individuals of the form c% in the set ∆IOu , and
define the canonical interpretation IK for K as follows, for all a ∈ NI(A), A ∈ NC,
and P ∈ NR:

∆IO := NI(A) ∪∆IOu ,

aIO := a,

AIO :=
∞⋃
i=0

Ai, and

P IO :=
∞⋃
i=0

P i.

Note that the above assumptions about additional axioms in O ensure that,
whenever a ∈ (∃R)i, then a has an R-successor of the form caR.

The rules given in the above definition correspond to the three rules proposed in
[BAC10]. Further, the two above mentioned differences, regarding basic concept
assertions and the additional successor individuals we consider, do not have spe-
cial effects on reasoning. This is why we below sometimes refer to the results of
[BAC10] without providing detailed proofs.

If K is inconsistent, then it is obvious that IK cannot be a model of K. The
converse of this statement is a little harder to show.

The proof proposed by [CDL+07, BAC10] is three-fold. First, it is shown that IK
is a model of all positive inclusions (PIs) in O, which are CIs whose right-hand
side is not ⊥. All other CIs are called negative inclusions. In order to check
satisfiability of DL-LiteHhorn-KBs, negative inclusions must be considered. That
is, if a negative inclusion in the ontology is violated by assertions of the ABox,
then the knowledge base is inconsistent and hence unsatisfiable. Furthermore, an
interaction of positive and negative inclusions may cause inconsistency. For these
reasons, all negative inclusions implied by the ontology have to be considered and
the so-called closure of the negative inclusions contained in O is regarded. The
second step then consists of showing that K is consistent iff the assertions of the
ABox do not contradict this closure. Third and last, it is shown that the latter is
the case iff IK is a model of K. The following proposition is a direct consequence
of the above observations.

Proposition 3.2 ([BAC10, Lemma 3, Thm. 4]). Let K = 〈O,A〉 be a consistent
DL-LiteHhorn-knowledge base, possibly including negated assertions. Then IK |= K.

The next proposition describes which basic concepts the elements of ∆IK satisfy,
in dependence of the ABox.

Proposition 3.3. Let K = 〈O,A〉 be a consistent DL-LiteHhorn-knowledge base,
e ∈ ∆IK, i be the minimal number for which there is a symbol S such that e occurs

15

in Si,

B := {A ∈ NC(O) | e ∈ Ai} ∪ {∃R | R ∈ N−R (O), (e, e′) ∈ Ri}

be the set of corresponding basic concepts, and B ∈ BC(O). Then, we have
e ∈ BIK iff O |=

d
B v B.

Proof. For (⇐), we know that e ∈ (B′)IK for all B′ ∈ B due to the definition
of IK. Hence, Proposition 3.2 yields the claim.

For (⇒), let j be the minimal index for which e ∈ Bj, which means that j ≥ i. We
show the claim by induction on j. If j = i, then B ∈ B, and hence O |=

d
B v B

trivially holds.

If j > i, assume that the claim holds for all B′ with e ∈ (B′)j−1. We consider the
rule application which caused e to be contained in Bj.

• If it was caused by R1 v R2 ∈ O, then B = ∃R(−)
2 and e ∈ (∃R(−)

1)j−1. By
the induction hypothesis, O |=

d
B v ∃R(−)

1 v ∃R(−)
2 .

• If it was caused by a CI
d
B′ v B ∈ O, then we know that e ∈ (B′)j−1 for

all B′ ∈ B′. By the induction hypothesis, O |=
d
B v

d
B′ v B.

The next proposition describes the basic concepts the new domain elements in
∆IKu satisfy in a straightforward way and hence shows that an element of the
form c%R ∈ ∆IOu can indeed serve as a prototypical R-successor. The proposition
directly follows from Definition 3.1 and Proposition 3.3.

Proposition 3.4. Let K = 〈O,A〉 be a consistent DL-LiteHhorn-knowledge base.
Then, for all elements c%R ∈ ∆IKu and all B ∈ BC(O), we have c%R ∈ BIK iff
O |= ∃R− v B.

We conclude the section referring to a result which is rather important for us
since we focus on query answering.

Proposition 3.5 ([BAC10, Thm. 9]). For every UCQ ψ and every consistent
DL-LiteHhorn-knowledge base K = 〈O,A〉, possibly including negated assertions,
we have K |= ψ iff IK |= ψ.

3.2 Atemporal Queries

In addition to the introductory definitions we define properties that specify CQs
further.

For simplicity, we assume that all Boolean CQs we encounter are connected, mean-
ing that all variables and individual names are related via chains of roles [RG10].

16

Definition 3.6 (Connected). A Boolean CQ ψ is called connected if, for all
t, t′ ∈ NI(ψ) ∪ NV(ψ), there is a sequence t1, . . . , t` ∈ NI(ψ) ∪ NV(ψ) such that
t = t1 and t′ = t` and for all i,1 ≤ i ≤ `, there is a r ∈ NR such that either
r(ti, ti+1) ∈ ψ or r(ti+1, ti) ∈ ψ. A collection of Boolean CQs ψ1, . . . , ψm is a
partition of ψ if the atoms occurring in ψ1, . . . , ψm are exactly the atoms of ψ, the
sets NI(ψi) ∪ NV(ψi), 1 ≤ i ≤ m, are pairwise disjoint, and each ψi is connected.

It follows from a result in [Tes01], that we can assume Boolean TCQs to only
contain connected CQs, without loss of generality. Furthermore note that, if a
Boolean TCQ φ contains a CQ ψ that is not connected, then we can replace
ψ by the conjunction ψ1 ∧ · · · ∧ ψ`, where ψ1, . . . , ψ` is a partition of ψ. This
conjunction is of linear size in the size of ψ and the resulting TCQ has exactly
the same models as φ since every homomorphism of ψ into an interpretation I
can be uniquely represented by a collection of homomorphisms of ψ1, . . . , ψ` into
I.

We next specify what we consider as tree-shaped CQs. Because of the inverse
roles, the graphs described by the atoms of our CQs are not directed. For that
reason, we consider structures similar to the tree witnesses defined in [KLT+10].
Definition 3.7 (Tree-shaped). Let ψ be a CQ with NI(ψ) = ∅ and x ∈ NV(ψ),
and O an ontology. A tree witness for x in ψ (w.r.t. O) is a function of the form
f : NV(ψ)→ (N−R × 2N−R)∗ such that

• f(x) = ε;

• for all % · (R, C) ∈ range(f) and S ∈ C, we have O |= R v S; and

• for all S(y, y′) ∈ ψ, we have either

– f(y′) = f(y) · (R, C) with O |= S ′ v S for some S ′ ∈ C; or
– f(y) = f(y′) · (R, C) with O |= S ′ v S− for some S ′ ∈ C.

If a tree witness exists, then we call ψ tree-shaped.

Given a tree-shaped CQ ψ and a tree witness f for t in ψ, we denote by Con(ψ, f)
the set of all sets B ⊆ BC(O) such that

• for each A(y) ∈ ψ with f(y) = ε, we have O |=
d
B v A;

• for each (R, C) ∈ range(f), we have O |=
d
B v ∃R;

• for each A(y) ∈ ψ with f(y) = % · (R, C), we have O |= ∃R− v A; and

• for all % · (R1, C1) · (R2, C2) ∈ range(f), we have O |= ∃R−1 v ∃R2.

Although the last two conditions in the definition of Con(ψ, f) do not refer to B,
they are needed to ensure that B induces the whole query. Hence, the set Con(ψ, f)
is empty if they are not fulfilled for any tree witness f.

17

4 On Upper Bounds

In this section, we describe a general approach to solve the satisfiability problem
(and thus the entailment problem), which has been proposed in [BBL15c, BGL12].
We further extend this approach such that it suits the complexity results we want
to show in the context of DL-Lite. This procedure is then used in later sections
to obtain several upper bounds.

4.1 A General Approach for Solving Satisfiability

In a nutshell, the satisfiability problem of a TCQ w.r.t. a TKB is reduced to two
separate satisfiability problems—one in LTL and one in DL-Lite. We describe
this approach, in the following. To this end, let K = 〈O, (Ai)0≤i≤n〉 be a TKB
and φ be a Boolean TCQ. For the LTL part, we now consider the propositional
abstraction φp of φ, which contains the propositional variables p1, . . . , pm in place
of the CQs α1, . . . , αm occurring in φ. Let them be such that αi was replaced by
pi, for 1 ≤ i ≤ m. Furthermore, we consider a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm},
which specifies the worlds that are allowed to occur in an LTL-structure satisfy-
ing φp, and a mapping ι : {0, . . . , n} → {1, . . . , k} that fixes the worlds belonging
to the first n+ 1 time points, which need to be consistent with the ABoxes.

Definition 4.1 (t-satisfiability). The LTL-formula φp is t-satisfiable w.r.t. S
and ι if there exists an LTL-structure J = (wi)i≥0 such that

• J, n |= φ̂,

• wi ∈ S for all i ≥ 0, and

• wi = Xι(i) for all i, 0 ≤ i ≤ n.

However, it is not sufficient to guess S and ι and to then check the above con-
dition. We must also ensure that S can indeed be induced by some sequence
of interpretations that is a model of K. The following definition introduces a
condition that needs to be satisfied for this to hold. That is, it covers the part of
satisfiability regarding DL-Lite.

Definition 4.2 (r-satisfiability). The set S is called r-satisfiable w.r.t. ι and K
if there are interpretations J1, . . . ,Jk, I0, . . . , In such that

• the interpretations share the same domain and respect rigid names4;

• the interpretations are models of O;
4This is defined analogously to the case of sequences of interpretations (cf. Definition 2.3).

18

• for all i, 1 ≤ i ≤ k, Ji is a model of χi := ∧
pj∈Xi αj ∧

∧
pj∈Xi ¬αj, where

Xi := {p1, . . . , pm} \Xi; and

• for all i, 0 ≤ i ≤ n, Ii is a model of Ai and χι(i).

Note that, through the existence of the interpretations Ji, 1 ≤ i ≤ k, it is
ensured that the conjunction χi of the CQ-literals specified by Xi is consistent.
A set S containing a set Xi for which this does not hold cannot be induced by
any sequence of interpretations that are models of O. Moreover, the ABoxes are
considered through the interpretations Ii, 0 ≤ i ≤ n, which represent the first
n+ 1 interpretations in such a sequence.

These two checks together suffice to determine the satisfiability of φ w.r.t. K.
Lemma 4.3 ([BBL15c, Lemma 4.7]). The TCQ φ has a model w.r.t. the TKB K
iff there are a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} →
{1, . . . , k} such that

• φp is t-satisfiable w.r.t. S and ι, and

• S is r-satisfiable w.r.t. ι and K.

The original proof in [BBL15c] considers only the DL SHQ, but is actually
independent of the logic under consideration, and hence also applies in our setting.

The remaining parts of this report focus on the question how the three problems
of (i) obtaining S and ι, (ii) solving the LTL satisfiability test, and (iii) solving
the r-satisfiability test(s), can be solved.

At this point, we do not follow the approach of [BBL15c] further, but propose
another similar to that of [BT15c, BT15b], which later allows us to obtain the
especially low complexity results for DL-LiteHhorn. In particular, the rest of this
section refers to problem (iii). Further details regarding the solution of problems
(i) and (ii) are given in the subsequent sections.

4.2 On Checking r-satisfiablility

In this section, we describe how to guess a polynomial amount of additional
information such that the r-satisfiability test for S can be split into independent
satisfiability tests for the individual time points (see Definition 4.8). To describe
this, we need the notions of consequences and witnesses.

4.2.1 Consequences, Witnesses, and Witness Queries

Definition 4.4 (Consequences). For a CQ α, let α′ denote the CQ obtained
by instantiating all variables x in α with fresh individual names ax. The set of

19

consequences of α is defined as

CO(α) := {C(a) | C ∈ BC¬R(O), a ∈ NI(α′), O |=
l

BC−(a, α′) v C} ∪

{R(a, b) | R ∈ N−RR(O), S(a, b) ∈ α′, O |= S v R},

where

BC−(a, α′) := {A ∈ NC | A(a) ∈ α′} ∪ {∃R | R ∈ N−R , R(a, b) ∈ α′}.

We collect all the new individual names ax in the set Naux
I .

The consequences of a CQ describe those structures that, if the CQ is satisfied at
one time point, have to exist at all other time points, because of the agreement
on the rigid names. However, by using such assertions, we cannot capture the
shared domain, in the sense that we cannot enforce the structures to be instanti-
ated by the same individuals, at all time points. Nevertheless, in the context of
DL-LiteHhorn, we cannot express meaningful information regarding role successors,
either. Hence, we later show that, if information from different time points is
relevant at other time points, it suffices to know about the existence of such rigid
structures. In particular, at any time point, we cannot enforce (e.g., by requiring
certain CQs to be satisfied) the satisfaction of certain rigid concepts or roles in
addition to a specific structure if we do not consider named individuals. Further
note that the set of consequences may also contain negative assertions.

In the following, we introduce sets B = {B1, . . . , B`} ⊆ BCR(O) that can be
considered witnesses for the satisfaction of certain concepts or the existence of
certain elements in a canonical model. In an abuse of notation, we may write
B(x) for the conjunction B1(x) ∧ · · · ∧ B`(x), and B(x) ⊆ ψ to express that the
conjuncts of B(x) are part of the CQ ψ. Note that the definition of CQs (cf.
Definition 2.4) does not allow basic concepts of the form ∃R(x), R ∈ N−R , to occur
in CQs. However, we can obviously replace such atoms by atoms of the form
R(x, y) if R ∈ NR and R(y, x) otherwise, if we extend the set of existentially
quantified variables of ψ with a fresh variable y, correspondingly.

Definition 4.5 (Witness). Let O be an ontology. A set B ⊆ BCR(O) is a witness
of a basic concept B ∈ BC(O) w.r.t. O if there are R1, . . . , R` ∈ NR, ` ≥ 1, such
that O |=

d
B v ∃R1, O |= ∃R−i v ∃Ri+1, 1 ≤ i ≤ `− 1, and O |= ∃R−` v B.

Let further I be the canonical interpretation for 〈O,A〉, where A is an arbi-
trary ABox. Then, B is a witness of an element c%R0...R` ∈ ∆Iu w.r.t. 〈O,A〉 if
O |=

d
B v ∃R0 and c% ∈ (

d
B)I or % ∈ NI(A) ∩ (

d
B)I.

The set of all witnesses of a basic concept or unnamed element α w.r.t. O is
denoted by WO(α).

Intuitively, the witnesses for concepts w.r.t. some O specify alternatives for rigid
basic concepts, whose instantiation leads to the instantiation of the considered

20

concept in models of O. Furthermore, regarding some canonical interpretation
I, the witnesses for elements c% ∈ ∆Iu , describe rigid basic concepts whose in-
stantiation by (not necessarily direct) role predecessors in I causes the existence
of c%.

We now lift this notion to tree-shaped CQs, which can be witnessed by rigid CQs
as follows.

Definition 4.6 (Tree witness query). Let f be a tree witness for a CQ α w.r.t. O
and B ∈ Con(α, f). We denote by B|R the set B∩BCR(O). Let further ψ be a CQ
over the variables of the form y% for % ∈ range(f).

We call % ∈ range(f) rigidly witnessed in ψ (w.r.t. B and f) if

• % = %1 · (R, C) and %1 is rigidly witnessed in ψ;

• % = (R, C) and there is a set B∃R ⊆ BCR(O) such that O |=
d
B∃R v ∃R

and B∃R(yε) ⊆ ψ; or

• % = %1 · (R1, C1) · (R2, C2) and there is a set B∃R2 ⊆ BCR(O) such that
O |=

d
B∃R2 v ∃R2 and B∃R2(y%1·(R1,C1)) ⊆ ψ.

The CQ ψ is a tree witness query for α (w.r.t. O, B and f) if it is minimal (w.r.t.
set inclusion regarding the set of atoms) among all CQs satisfying the following
conditions:

• B|R(yε) ⊆ ψ;

• for each A(y) ∈ α with f(y) = ε, we have (i) A ∈ NRC and A(yε) ∈ ψ or (ii)
O |=

d
B|R v A;

• for each A(y) ∈ α with f(y) = % · (R, C), we have (i) f(y) is rigidly wit-
nessed in ψ or (ii) there is a set BA ⊆ BCR(O) with O |=

d
BA v A and

BA(yf(y)) ⊆ ψ;

• for each % · (R, C) ∈ range(f), we have (i) % · (R, C) is rigidly witnessed in ψ,
or (ii) C ⊆ NRR and S(y%, y%·(R,C)) ∈ ψ for all S ∈ C.

An important property of tree witness queries is that they contain only rigid
concept and role names. We now slightly extend this notion to witness queries,
while preserving the above property.

Definition 4.7 (Witness query). Let i ∈ {0, . . . , n + k}. A witness query ψ for
a tree-shaped CQ α (w.r.t. O) is a CQ such that either

• ψ is a tree witness query for α w.r.t. O;

• there are R ∈ N−R (O), B ⊆ BCR(O), and a tree witness f for α w.r.t. O such
that B is a witness of ∃R w.r.t. O, {∃R} ∈ Con(α, f), and ψ = ∃x.B(x).

21

4.2.2 R-Complete Tuples

Using the notions of consequences and witness queries, we can now describe our
approach to solve the r-satisfiability problem.

Let now φ be a TCQ and K = 〈O, (Ai)0≤i≤n〉 be a TKB formulated in DL-LiteHhorn.
We further assume that a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping
ι : {0, . . . , n} → {1, . . . , k} are given. We later describe how to actually obtain S
and ι to show our upper bounds.

We denote by Qφ the set of CQs occurring in φ, and assume without loss of
generality that they use disjoint variables.5 For ease of presentation, we denote
by Qi the set {αj | pj ∈ Xi}, and by AQi the ABox obtained from Qi by in-
stantiating all variables x in the CQs αj ∈ Qi with the corresponding individual
names ax from Naux

I . For ease of presentation, for all i, 1 ≤ i ≤ k, we define the
set An+i := ∅ and extend ι such that ι(n+ i) := i.

In the following, we consider tuples of the form (AR, QR, Q
¬
R, RF), where

• AR is an ABox type forK, that is, a set of rigid (negated) assertions (¬)α for-
mulated over NI(K), BCR(O), and N−RR(O), with the property that α ∈ AR
iff ¬α /∈ AR.

• QR, Q
¬
R ⊆ Qφ.

• RF ⊆ {∃S(b) | S ∈ NR(O) \ NRR, b ∈ NI(K)}.

Given such a tuple, we define the atemporal KBs

KiR := 〈O,AR ∪ AQR ∪ AQι(i) ∪ ARF ∪ Ai〉

for all i, 0 ≤ i ≤ n+ k, where AQR := ⋃
α∈QR CO(α) and ARF := ⋃

∃S(b)∈RF A∃S(b) is
defined as follows: for every domain element cb% of the canonical model I〈O,{∃S(b)}〉
such that |%| ≤ max{|NV(ψ)| | ψ ∈ Qφ}, we introduce a new individual name ab%
and add the following assertions to A∃S(b), for every ab%R of this form:

• For every B ∈ BCR(O) with O |= ∃R− v B, we add the concept assertion
B(ab%R).

• For every R′ ∈ NRR(O) with O |= R v R′, we add the role assertion
R′(ab%, ab%R), where we set ab := b.

We collect all the individual names ab% into the set Ntree
I . The purpose of the

ABoxes A∃S(b) is to formalize all rigid consequences of a (flexible) S-successor
of b, which have to be present at all time points. We need to consider these

5If this was not the case, we could simply rename them.

22

consequences only up to a depth that ensures that all matches of CQs depending
on this flexible S-successor can be fully characterized.

This construction is needed in the case that CQs from Qφ contain role atoms
involving roles that have rigid subroles, which in turn have flexible subroles.
Unfortunately, the resulting ABox ARF is of exponential size. We later show in
Section 5 that this does not affect the combined complexity of PSpace; however,
for our data complexity results we have to disallow such roles to occur in queries.
Formally, a role S is called r-simple (w.r.t. O) if there are no roles R,R′ such
that R is flexible, R′ is rigid, and O |= R v R′ v S. We extend this notion to
queries by requiring that all role atoms in r-simple TCQs involve only r-simple
roles. Note that if we disallow role hierarchies or rigid roles, then all roles are
necessarily r-simple.

We can now formalize the properties that the tuple (AR, QR, Q
¬
R, RF) has to fulfill

in order to characterize the r-satisfiability of S w.r.t. ι and O.

Definition 4.8 (r-complete). A tuple (AR, QR, Q
¬
R, RF) as above is r-complete

(w.r.t. S and ι) if the following hold:

(R1) For all i ∈ {0, . . . , n+ k}, KiR is consistent.

(R2) For all i ∈ {0, . . . , n+ k} and pj ∈ Xι(i), we have KiR 6|= αj.

(R3) If there is an X ∈ S such that pj ∈ X, then αj ∈ QR.

(R4) If there is an X ∈ S such that pj ∈ X, then αj ∈ Q¬R.

(R5) For all i ∈ {0, . . . , n + k}, all tree-shaped CQs α ∈ Q¬R, and all witness
queries ψ for α w.r.t. O, we have KiR 6|= ψ.

(R6) If φ is not r-simple, then for all S ∈ NR(O) \ NRR and b ∈ NI(K) ∪ Naux
I ,

we have ∃S(b) ∈ RF iff there is an index i ∈ {0, . . . , n + k} such that
〈O,AR ∪ AQR ∪ AQι(i) ∪ Ai〉 |= ∃S(b).

If φ is r-simple, then RF does not need to satisfy any condition, and hence we can
assume that it is empty, in which case ARF is also empty. The ABoxes AQR , AQx ,
and ARF may share some individual names from Naux

I , whereas different ABoxes
AQx and AQy do not share any individual names from Naux

I since we assume the
CQs to use disjoint variables.

The idea is to fix the interpretation of the rigid names on all named individu-
als (AR) and specify two sets of CQs that, respectively, describe relations which
always exist by specifying the CQs that are satisfied at least once (QR), and CQs
that are allowed to occur negatively in S (Q¬R). In particular, note thatQR andQ¬R
may overlap. The first two conditions ensure that, for all ABoxes Ai, 0 ≤ i ≤ n,
and worlds Xi−n, n + 1 ≤ i ≤ n + k, to be considered, we have that exactly the

23

queries specified by Xι(i) can be satisfied w.r.t. O (together with the assertions
from KiR). Based on QR, the third condition ensures that rigid relations that need
to exist in the interpretation induced by some world X ∈ S always exist. The
fourth condition checks that only the queries from Q¬R can occur negatively in
any X ∈ S. The fifth condition ensures that there is a model of KiR that does not
satisfy any of the witness queries of the CQs in Q¬R. Finally, the sixth condition
ensures that only such rigid consequences of ∃S(b) are included in ARF that are
implied already by one of the KiR without ARF .

In the remainder of this section we show that the existence of an r-complete tuple
w.r.t. S fully characterizes the r-satisfiability of S.

Lemma 4.9. S is r-satisfiable w.r.t. ι and O iff there is an r-complete tuple
w.r.t. S and ι.

The proof of this lemma is split over the following two subsections.

4.2.3 If S is r-satisfiable w.r.t. ι and O, then there is an r-complete
tuple w.r.t. S and ι.

We first show that the satisfaction of a witness query for a CQ α ∈ Qφ implies
the satisfaction of α.

Lemma 4.10. Let α ∈ Qφ, ψ be a witness query for α, and I be a model of O.
Then, I |= ψ implies I |= α.

Proof. Let π be the homomorphism of ψ into I, and consider first the case that
ψ is a tree witness query w.r.t. some tree witness f and B ∈ Con(α, f). We define
a homomorphism π′ of α into I using an auxiliary mapping π′ : range(f) → ∆I ,
for which we then set π′(y) := π′(f(y)) for all y ∈ NV(ψ). We start by defining
π′(%) := π(y%) for all % ∈ range(f) that are not rigidly witnessed in ψ. Observe
that if % is rigidly witnessed in ψ, then the variable y% does not occur in ψ;
furthermore, % = ε is never rigidly witnessed and hence at least yε must occur
in ψ.

We define π′ on the remaining elements % ∈ range(f) by induction on the structure
of f. We first consider the case that % is directly rigidly witnessed, i.e., no prefix
of % is rigidly witnessed.

• If % = (R, C), then there must be a B∃R ⊆ BCR(O) with O |=
d
B∃R v ∃R

and B∃R(yε) ⊆ ψ. Since π is a homomorphism of ψ into I and I |= O, we
get π′(ε) = π(yε) ∈ (

d
B∃R)I ⊆ (∃R)I . Hence, there must exist an element

e ∈ ∆I with (π′(ε), e) ∈ RI . We set π′(R, C) := e.

24

• If % = %1 · (R1, C1) · (R2, C2), then there is a set B∃R2 ⊆ BCR(O) such that
O |=

d
B∃R2 v ∃R2 and B∃R2(y%1·(R1,C1)) ⊆ ψ. As above, we can define π′(%)

to be the R-successor of π′(%1 · (R1, C1)) that must exist in I because of the
above conditions.

For the induction step, let % = %1 · (R1, C1) · (R2, C2) be such that %1 · (R1, C1) is
rigidly witnessed and π′(%·(R1, C1)) has already been defined. By the construction
above, we know that π′(% · (R1, C1)) ∈ (∃R−1)I . By the last condition of Con(α, f),
there must be an R2-successor of π′(% · (R1, C1)) in I, which we can choose as
π′(%).

Consider now any concept atom A(y) ∈ α.

• If f(y) = ε, then we know that either (i) A ∈ NRC and A(yε) ∈ ψ, or (ii)
O |=

d
B|R |= A. In both cases, it follows that π′(y) = π(yε) ∈ AI .

• If f(y) = % · (R, C), then either (i) f(y) is rigidly witnessed in ψ′, or (ii)
there is a set BA ⊆ BCR(O) with O |=

d
BA v A and BA(yf(y)) ⊆ ψ. In

the second case, we get π′(y) = π(yf(y)) ∈ AI as above. In the first case,
the above construction of π′ implies that π′(y) ∈ (∃R−)I . By the third
condition of Con(α, f), we conclude that π′(y) ∈ AI .

For a role atom S(y, y′) ∈ α, by Definition 3.7 we have to distinguish two cases.

• If f(y) = %, f(y′) = % · (R, C), and O |= S ′ v S for some S ′ ∈ C,
then by Definition 4.7 either (i) f(y′) is rigidly witnessed in ψ, or (ii)
S ′(yf(y), yf(y′)) ∈ ψ. In the first case, we know from the definition of π′
that (π′(y), π′(y′)) ∈ RI , and hence also (π′(y), π′(y′)) ∈ (S ′)I ⊆ SI by
the second condition of Definition 3.7. In case (ii), we directly obtain
(π′(y), π′(y′)) = (π(yf(y)), π(yf(y′))) ∈ (S ′)I ⊆ SI .

• The other case follows dual arguments, exchanging f(y) and f(y′), and re-
placing S by S−.

This shows that π′ is a homomorphism of α into I.

Consider now the second case of Definition 4.7, i.e., there are R ∈ N−R (O),
B ⊆ BCR(O), and a tree witness f for α such that B is a witness of ∃R w.r.t. O,
{∃R} ∈ Con(α, f), and ψ = ∃x.B(x). From the first and the last property and
the fact that I |= ψ, we know that I contains an element e that satisfies ∃R. We
define π′ in analogy to the first case above, and begin by setting π′(ε) := e. We
can define the remainder of the homomorphism by induction on range(f) as in
the case for the indirectly rigidly witnessed elements above, by treating ε as if it
was rigidly witnessed. Only in the first step, instead of π′(ε) being an instance of
some ∃R−1 in I, we know that it satisfies ∃R, and hence we obtain the required
role successors by the second condition of Con(α, f).

25

Since all elements can be treated as rigidly witnessed, the remaining proof is a
special case of the arguments above, except in the case of a concept atom A(y) ∈ α
with f(y) = ε. But then we know that π′(y) ∈ (∃R)I , and hence π′(y) ∈ AI by
the first condition of Con(α, f).

We can now use this lemma to prove the first direction of Lemma 4.9, namely
that, if S is r-satisfiable w.r.t. ι and O, then there is an r-complete tuple w.r.t. S
and ι.

For this purpose, let J1, . . . ,Jk, I0, . . . , In be the interpretations over the domain
∆ that exist according to the r-satisfiability of S (cf. Definition 4.2). We as-
sume w.l.o.g. that ∆ contains NI and that all individual names are interpreted as
themselves in all of these interpretations. We first define the tuple (AR, QR, Q

¬
R)

as follows:

AR := {B(a) | a ∈ NI(K), B ∈ BCR(O), aJ1 ∈ BJ1} ∪
{¬B(a) | a ∈ NI(K), B ∈ BCR(O), aJ1 /∈ BJ1} ∪
{R(a, b) | a, b ∈ NI(K), R ∈ NRR(O), (a, b) ∈ RJ1} ∪
{¬R(a, b) | a, b ∈ NI(K), R ∈ NRR(O), (a, b) 6∈ RJ1};

QR := {αj ∈ Qφ | X ∈ S, pj ∈ X}; and
Q¬R := {αj ∈ Qφ | X ∈ S, pj 6∈ X}.

Obviously, AR is an ABox type forO, QR satisfies Condition (R3), andQ¬R satisfies
Condition (R4).

Our goal is to modify the given interpretations into models of the knowledge
bases KiR, but need to ensure that the individuals of the form ax are always
interpreted by the same elements of the common domain. For this purpose, we
consider the canonical models IKα , α ∈ QR, for the KBs Kα := 〈O,Aα〉, where Aα
is obtained by instantiating all variables x in α by the corresponding individual
names ax ∈ Naux

I . The goal is to add, to each Ii (Ji) with pj ∈ Xι(i) (pj ∈ Xi),
the whole interpretation Iαj , which includes a homomorphic image of αj that
involves the same domain elements (from NI(K) ∪ Naux

I) in each interpretation.
Note that Kα is consistent since α ∈ QR, and hence there must be one Ii (Ji)
that satisfies α and thus is a model of Kα.6

For those interpretations Ii (Ji) that do not satisfy α, we nevertheless know that
they satisfy its rigid consequences CO(α) since all these interpretations respect
the rigid names and α is satisfied by at least one of them. Hence, we can also add
the rigid consequences of IKα to every interpretation without losing the property
that they satisfy O (and potentially Ai). For this purpose, we consider similar

6If two variables are mapped by the homomorphism to the same domain element, we obtain
a model respecting the UNA by creating a copy of this element that satisfies exactly the same
concept names and participates in the same role connections as the original element.

26

interpretations IR
Kα , which are inductively defined as in Definition 3.1, but starting

instead with the following interpretation for all symbols X ∈ NC ∪ NR:

X0 :=

XIKα if X ∈ NRC ∪ NRR,

∅ otherwise.

This means that they must behave exactly as IKα on the rigid names, but the
interpretation of the flexible names contains only those tuples that are implied by
the rigid information. Each IR

Kα is a model of O and CO(α) (see Proposition 3.2).
Note that the domains of IR

Kα and IKα coincide since all elements c% that would
be created by the iteration in Definition 3.1 for IR

Kα have already been created
by the one for IKα , and hence are already contained in the initial interpretation
above.

The crucial properties of the above introduced interpretations are the following:

• IKαj can be homomorphically embedded into each Ii (Ji) for which we have
pj ∈ Xι(i) (pj ∈ Xi) since there must be a homomorphism of αj into Ii (Ji)
and this entails the existence of domain elements that must satisfy at least
the symbols satisfied by the elements of IKαj .

• IR
Kαj

can be homomorphically embedded into each Ii (Ji), because there
must be some Jx, 1 ≤ x ≤ k, that satisfies αj and hence its rigid conse-
quences (i.e., those of IKαj) are satisfied in all of these interpretations.

These facts imply that it is safe to add these new interpretations to Ii (Ji), as
they already contain elements that behave in exactly the same way.

We now modify the interpretations Ii (Ji) into models I ′i (J ′i) of KiR (Kn+i
R), with

the exception of ARF , as follows:

• The common domain ∆ is extended by the union of the domains of IKα ,
α ∈ QR (which are also the domains of IR

Kα). Note that these domains may
overlap in NI.

• The individual names from Naux
I are interpreted as themselves.

• For each j, 1 ≤ j ≤ m, and Ii (Ji) with pj ∈ Xι(i) (pj ∈ Xi), we interpret
all symbols on the domain of IKαj exactly as in IKαj . Note that there are no
role connections between the old and the new domains except between NI(K)
and Naux

I .

• If pj ∈ Xι(i) (pj ∈ Xi), we interpret all symbols as in IR
Kαj

.

We then have the following:

27

• All interpretations I ′i (J ′i) satisfy O and AR since the new domain elements
do not exhibit new behavior that was not already present in Ii (Ji) and the
interpretation of basic concepts on the elements of NI does not change.

• Each I ′i still satisfies Ai because of the same reason.

• Each interpretation is a model of AQR since that ABox consists exactly of
the ABoxes CO(α), α ∈ QR, which are satisfied by the new domain elements
because of IR

Kα , which is contained in IKα .

• Each I ′i (J ′i) satisfies AQι(i) (AQi) since they consist exactly of the ABoxes
Aαj with pj ∈ Xι(i) (pj ∈ Xi), which are satisfied by IKαj .

• For each Ii (Ji) and pj ∈ Xι(i) (pj ∈ Xi), we know that I ′i 6|= αj (J ′i 6|= αj)
since any homomorphism of αj into I ′i (J ′i) would allow us to find one into
Ii (Ji) as well, which contradicts the assumption that Ii |= χι(i) (Ji |= χi).
Hence, we know that I ′i |= χι(i) (J ′i |= χi).

• All interpretations I ′0, . . . , I ′n and J ′1, . . . ,J ′k respect the rigid names.

If φ is not r-simple, then we also have to define RF and extend the above inter-
pretations to models of ARF :

RF := {∃S(b) | S ∈ NR(O) \ NRR, b ∈ NI(K) ∪ Naux
I ,

i ∈ {0, . . . , n+ k}, 〈O,AR ∪ AQR ∪ AQι(i) ∪ Ai〉 |= ∃S(b)}.

Since the interpretations I ′i (J ′i) are models of these knowledge bases, for each
∃S(b) ∈ RF we know that one of these models satisfies the assertion. Hence, the
rigid consequences described in ARF must already be satisfied by some domain
elements in the common domain (in all of these interpretations). We can define
the interpretation of the elements ab% ∈ Ntree

I accordingly, but again may have to
copy elements if the UNA would be violated otherwise. Note that Condition (R6)
is obviously satisfied by our definition of RF. These modified interpretations I ′i
(J ′i) prove now that Condition (R1) is also satisfied.

Regarding Condition (R2), assume that there are an index i, 0 ≤ i ≤ n (or
n + 1 ≤ i ≤ n + k), and pj ∈ Xι(i) such that KiR |= αj, and thus I ′i |= αj
(J ′i−n |= αj). But this contradicts the fact that I ′i |= χι(i) (J ′i−n |= χi−n).

The proof of Condition (R5) is also by contradiction. We assume that there are i,
0 ≤ i ≤ n (n+ 1 ≤ i ≤ n+ k), a tree-shaped CQ αj ∈ Q¬R, and a witness query ψ
for αj w.r.t. KiR such that KiR |= ψ, and thus I ′i |= ψ (J ′i−n |= ψ). However,
αj ∈ Q¬R yields that there is an Xx ∈ S, 1 ≤ x ≤ k, such that pj 6∈ Xx, and
thus J ′x 6|= αj. By Lemma 4.10, we know that J ′x 6|= ψ. But this contradicts the
facts that ψ contains only rigid names and J ′x and I ′i (J ′i−n) respect the rigid
names.

This concludes the proof of the first direction of Lemma 4.9.

28

4.2.4 If there is an r-complete tuple w.r.t. S and ι, then S is r-
satisfiable w.r.t. ι and O.

The proof of the converse direction is more involved. We assume an r-complete
tuple (AR, QR, Q

¬
R, RF) to be given. Further, if φ is r-simple, then we can assume

RF, and hence ARF and Ntree
I , to be empty.

For each i, 0 ≤ i ≤ n+ k, we consider the canonical interpretation Ii := IKiR . To
distinguish the elements contained in Naux

I , we write aix for the element ax ∈ Naux
I

in the domain of Ii, and define the set ∆Iia to contain exactly those elements.
Likewise, we write aib% for the element ab% ∈ Ntree

I that occurs in Ii, and define
∆Iit as above. We further write ∆Iiu for the set containing the unnamed domain
elements unique to the canonical interpretation Ii, and similarly write ci%R for
every element c%R ∈ ∆Iiu . For any e ∈ NI(K) ∪ Naux

I ∪ Ntree
I , we may denote by ei

the corresponding element in NI(K) ∪∆Iia ∪∆Iit , i.e., we consider ai := a for any
a ∈ NI(K). Thus, the domain of each Ii is composed of the pairwise disjoint
components NI(K), ∆Iia , ∆Iit , and ∆Iiu . We state this fact for future reference.

Fact 4.11. For all i, j, j′ ∈ {0, . . . , n + k}, the sets NI(K), ∆Iia , ∆Ijt , and ∆Ij′u
are pairwise disjoint.

We now construct the interpretations J0, . . . ,Jn+k required for the r-satisfiability
of S (where J0, . . . ,Jn represent I0, . . . , In of Definition 4.2 and Jn+1, . . . ,Jn+k
represent J1, . . . ,Jk). To this end, we join the domains of the interpretations Ii
and ensure that they interpret all rigid names in the same way. We first construct
the common domain

∆ := NI(K) ∪
n+k⋃
i=0

(∆Iia ∪∆Iit ∪∆Iiu)

and then define the interpretations Ji, 0 ≤ i ≤ n+ k, as follows:

• For all a ∈ NI(K), we set aJi := a.

• For all rigid concept names A, we define AJi := ⋃n+k
j=0 A

Ij .

• For all flexible concept names A, we define

AJi := AIi ∪
n+k⋃
j=0

⋃
B⊆BCR(O),
O|=

d
BvA

(
l
B)Ij ∪

n+k⋃
j=0
{cj%R ∈ ∆Iju | O |= ∃R− v A,WO(cj%R) 6= ∅}.

• For all rigid role names R, we define RJi := ⋃n+k
j=0 R

Ij .

29

• For all flexible role names R, we define

RJi := RIi ∪
n+k⋃
j=0

⋃
S∈N−RR(O)
O|=SvR

SIj ∪

n+k⋃
j=0
{(e1, e2) ∈ RIj | ∃e ∈ {e1, e2},WO(e) 6= ∅}.

In this way, we have constructed interpretations J0, . . . ,Jn+k that have the same
domain and respect rigid names.

It remains to show that the interpretations satisfy the other requirements for the
r-satisfiability of S. To this end, we first provide auxiliary lemmas and begin
showing a basic connection between the interpretations Ji and Ii concerning the
interpretation of role names.

Lemma 4.12. For all i ∈ {0, . . . , n+ k}, role names R ∈ NR, and d, e ∈ ∆Ii, we
have (d, e) ∈ RJi iff (d, e) ∈ RIi.

Proof. The “if”-direction follows directly from the definition of RJi . We consider
the “only if”-direction.

If R is flexible, assume that either (i) (d, e) ∈ SIj for some rigid subrole S of R
or (ii) (d, e) ∈ RIj , j 6= i, and either d or e has a witness w.r.t. O. By Fact 4.11,
in both cases we must have d, e ∈ NI(K). Hence, case (ii) is impossible since
named domain elements cannot have witnesses (see Definition 4.5). In case (i),
we must have S(d, e) ∈ AR since AR is an ABox type and Ij |= AR, and hence
(d, e) ∈ SIi ⊆ RIi since Ii |= AR and Ii |= O.

If R is rigid, assume again that d, e ∈ NI(K) and (d, e) ∈ RIj , for some j 6= i.
Since AR is an ABox type and Ij |= AR, we must have R(d, e) ∈ AR. Since also
Ii |= AR, we get (d, e) ∈ RIi .

There is a similar connection between the interpretations of concepts in Ji and
Ij.

Lemma 4.13. For all basic concepts B ∈ BC(O) and i, j ∈ {0, . . . , n + k}, the
following hold:

a) for all a ∈ NI(K), we have a ∈ BJi iff a ∈ BIi;

b) if B is rigid, then, for every e ∈ ∆Ija ∪ ∆Ijt ∪ ∆Iju , we have e ∈ BJi iff
e ∈ BIj ;

c) if B is flexible, then, for every e ∈ ∆Ija ∪∆Ijt ∪∆Iju , we have e ∈ BJi iff

30

• i = j and e ∈ BIi, or
• there is a B ⊆ BCR(O) with e ∈ (

d
B)Ij and O |=

d
B v B, or

• e ∈ BIj ∩∆Iju and WO(e) 6= ∅.

Proof. For a), consider first the case that B is rigid. Then, a ∈ BIi clearly implies
a ∈ BJi since sIi ⊆ sJi , for s ∈ NRC ∪ NRR. On the other hand, if a ∈ BJi , then
by the definition of Ji, we must have a ∈ BIj , for at least one Ij, 0 ≤ j ≤ n+ k.
Since Ii and Ij are both models of the ABox type AR, we also have a ∈ BIi .

Consider now any flexible basic concept B. By the definition of Ji on the flexible
names, we have a ∈ BJi iff either (i) a ∈ BIi , or (ii) a ∈ (

d
B)Ij , for some j,

0 ≤ j ≤ n + k, and B ⊆ BCR(O) with O |=
d
B v B. To see the latter w.r.t. a

flexible concept of the form B = ∃R, note that the definition of RJi implies one
of the following cases (assuming that case (i) does not apply):

• a belongs to (∃S)Ij , where S is a rigid subrole of R. Hence, we can choose
B := {∃S} since also ∃S v ∃R.

• There is an R-successor of a in Ji of the form cjaR2 for some R2 ∈ N−R (O)
with O |= R2 v R. By Definition 4.5, WO(a) is not defined, and hence
there must exist a witness B ⊆ BCR(O) such that O |=

d
B v ∃R2 v ∃R.

But (ii) implies (i) since a ∈ (
d
B)Ij yields B′(a) ∈ AR, for all B′ ∈ B, which

together with Ii |= AR and Ii |= O leads to a ∈ BIi .

The claim in b) follows directly from Fact 4.11 and the definition of Ji.

For c), we first consider the case that B ∈ NC(O) is a flexible concept name.
Then, the equivalence with one of the three cases is covered by the definition
of Ji and, for the last case, also by Proposition 3.4. We now consider B to be
of the form ∃R for a flexible role R ∈ N−R (O). In case i = j, the claim can be
restricted to the first of the three items since the other two are subsumed by it (for
the second item, this holds because Ii |= O). Hence, the claim directly follows
from Fact 4.11 and the definition of Ji (i.e., the interpretation of the elements in
∆Iia ∪∆Iit ∪∆Iiu is not influenced by any Ij, j 6= i). We consider the case i 6= j.

• Let e be of the form dj for some d ∈ Naux
I ∪ Ntree

I , i.e., e ∈ ∆Ija ∪ ∆Ijt . We
only have to regard the second item. (⇒) The definition of RJi yields that
either (i) e ∈ (∃S)Ji and O |= S v R for a rigid role S or (ii) there is
an R-successor e′ of e in Ij and either e or e′ has a witness w.r.t. O. In
case (i), we can choose B := {∃S}. In case (ii), since WO is not defined for
elements of NI(K)∪∆Ija ∪∆Ijt , we know that e′ is of the form cjdR2 for some
R2 ∈ N−R (O) andWO(cjdR2) 6= ∅. By Definition 3.1, we obtain O |= R2 v R.
By the definition of WO, there is a B ⊆ BCR(O) with e ∈ (

d
B)Ij and

31

O |=
d
B v ∃R2 v ∃R. (⇐) We have e ∈ (∃R)Ij , and hence cjdR ∈ ∆Iju and

(e, cjdR) ∈ RIj , by Definition 3.1. Furthermore, B is a witness of cjdR, and
thus we have (e, cjdR) ∈ RJi by the definition of Ji.

• Let e ∈ ∆Iju . (⇒) We know that (i) e ∈ (∃S)Ij and O |= S v R for a
rigid role S (hence we can again choose B := {∃S}), or (ii) (e, d) ∈ RIj

for some d ∈ ∆Ij (and hence also e ∈ (∃R)Ij), and either WO(e) or WO(d)
is non-empty. Thus, if WO(d) is undefined or empty, then the third item
holds. Otherwise, we know that d ∈ ∆Iju andWO(d) 6= ∅, by Definition 4.5.
By Definition 3.1, we then have either (i) e = cj% and d = cj%R; or (ii) d = cj%
and e = cj%R− .
For (i), Definition 4.5 yields that eitherWO(e) is also non-empty (the third
item), or there is a B ⊆ BCR(O) such that e ∈ (

d
B)Ij and O |=

d
B v ∃R

(the second item).
For (ii), we immediately have that the witness of d is also a witness of e,
again by Definition 4.5.
(⇐) Let e = cj%. If there is a set B ∈ BCR(O) with e ∈ (

d
B)Ij and

O |=
d
B v ∃R, then by Definition 3.1, the element cj%R ∈ ∆Iju exists and

(e, cj%R) ∈ RIj . Furthermore, B is a witness of cj%R, and hence (e, cj%R) ∈ RJi ,
i.e., e ∈ (∃R)Ji , by the definition of Ji.
If e ∈ (∃R)Ij , then we also have (e, cj%R) ∈ RIj , by Definition 3.1. Moreover,
WO(e) 6= ∅ yields e ∈ (∃R)Ji , as in the previous case.

We finally show that Ji is in fact as intended.

Lemma 4.14. Each Ji, 0 ≤ i ≤ n+ k, is a model of (O,Ai).

Proof. For any assertion α ∈ Ai, we have Ii |= α, and thus Lemmas 4.12
and 4.13a) yield Ji |= α.

Consider a CI B1 u · · · uBm v B ∈ O, where B1, . . . , Bm are basic concepts and
B is either a basic concept or ⊥. Let d ∈ BJi1 ∩ · · · ∩ BJim . If d ∈ NI(K), we get
d ∈ BIi1 ∩ · · · ∩BIim by Lemma 4.13a). Since Ii |= O, this implies that d ∈ BIi . If
B = ⊥, this is impossible. Otherwise, we get d ∈ BJi , again by Lemma 4.13a).

Consider now the case that d ∈ ∆Ija ∪∆Ijt ∪∆Iju . If i = j, then Lemma 4.13b) and
Lemma 4.13c) yield the same conclusion as above since the latter collapses to the
first item. Assume now that i 6= j. By Lemma 4.13, for every B`, 1 ≤ ` ≤ m, we
have that (i) there is a B` ⊆ BCR(O) with d ∈ (

d
B`)Ij and O |=

d
B` v B` (in

case B` is rigid, we can set B` := {B`}); or (ii) d ∈ BIj` ∩ ∆Iju and WO(d) 6= ∅.
Since Ij |= O, in either case, we know that d ∈ B

Ij
` , and hence d ∈ BIj . If

B = ⊥, this is again impossible. If B is rigid, then Lemma 4.13b) yields d ∈ BJi ,
as required. If B is flexible and case (ii) applies for at least one B`, then the

32

third item of Lemma 4.13c) yields the claim. Otherwise, it is easy to see that for
B := ⋃m

`=1 B` we have d ∈ (
d
B)Ij and O |= B v B1 u · · · u Bm v B. Hence, the

second item of Lemma 4.13c) applies, and we also get d ∈ BJi .

We now consider role inclusions of the form R1 v R2 and assume that (d, e) ∈ RJi1 .
By the definition of Ji, we must have (d, e) ∈ RIj1 for some j ∈ {0, . . . , n + k}.
Since Ij |= O, we get (d, e) ∈ RIj2 . If R2 is rigid, we immediately get (d, e) ∈ RJi2 .
If R2 is flexible, assume that (d, e) /∈ RJi2 . But then we must have i 6= j, R2
cannot have a rigid subrole S with (d, e) ∈ SIj , and neither d nor e can have a
witness w.r.t.O. This implies that also R1 cannot be rigid and cannot have a rigid
subrole S with (d, e) ∈ SIj (since this would also be a rigid subrole of R2). Hence,
the definition of Ji yields that (d, e) /∈ RIj1 , which contradicts our assumption.

We now provide the final missing piece to show r-satisfiability of S.

Lemma 4.15. Each Ji, 1 ≤ i ≤ n+ k, is a model of χi.

Proof. Consider first any CQ α that occurs positively in the conjunction χi.
Since Ii |= AQi and AQi contains an instantiation of α, we know that there is
a homomorphism π of α into Ii that maps all variables to elements in ∆Iia . By
Lemmas 4.12 and 4.13, we know that π is also a homomorphism of α into Ji.

We now consider a CQ α that occurs negatively in χi, and assume to the contrary
that there is a homomorphism π of α into Ji. By Condition (R2), we know that
KiR 6|= α, and thus Ii |= ¬α, by Proposition 3.5. Furthermore, by (R4) we know
that α ∈ Q¬R.

We distinguish two cases.

(I) Let first π be such that it maps no terms into NI(K)∪⋃n+k
j=0 ∆Ija ∪∆Ijt . This

in particular implies that NI(α) = ∅ since α does not contain any names from Naux
I

or Ntree
I . Because α is connected and by the interpretation of roles in Ji, which is

based on the canonical interpretations (cf. Definition 3.1), and Fact 4.11, we have
range(π) ⊆ ∆Ij , for a fix j. Given that Ii |= ¬α, we directly get a contradiction
if j = i, by Lemmas 4.12 and 4.13, and in the following assume that j 6= i.

By considering how the elements in ∆Iju are connected by roles within Ij, it is
easy to see that there must be a variable x ∈ NV(α), for which π(x) = cj%R is such
that the length of %R is minimal among all elements of range(π). Furthermore,
all other π(y) for y ∈ NV(α) must then be of the form cj%R%′ for some %′ ∈ (N−R)∗.

We now define a witness query based on a tree witness f for x in α. We start
with a mapping f ′ : range(π) → (N−R × 2N−R)∗ and then set f(y) := f ′(π(y)) for
all y ∈ NV(α). We first define f ′(cj%R) := ε, and proceed by induction on the
structure of ∆j

u. Let c
j
%R%′R′ be such that f ′(cj%R%′) has already been defined. Then

33

f ′(cj%R%′R′) := f ′(cj%R%′) ·(R′, C), where C is constructed as follows: for all role atoms
S(y, y′) ∈ α such that π(y) = cj%R%′ and π(y′) = cj%R%′R′ , do the following:

• if there is a S ′ ∈ N−RR(O) with O |= S ′ v S and (π(y), π(y′)) ∈ (S ′)Ji , then
add S ′ to C;

• otherwise, add S to C (since π is a homomorphism of α into Ji, we know
that (π(y), π(y′)) ∈ SJi).

It follows from Definition 3.1 that in these cases we must have O |= R′ v S ′ or
O |= R′ v S, respectively, i.e., f is indeed a tree witness for x in α.

To construct a witness query ψ for α, the next step is to find a set B ∈ Con(α, f).
We first verify the last two properties of Definition 3.7, which do not depend on the
particular choice of B. First, let A(y) be an atom of α with f(y) = %′ ·(S, C), which
implies that π(y) = cj%R%′|1S ∈ A

Ji , where %′|1 is the projection of the sequence %′

on its first component. By Lemma 4.13, we know that cj%R%′|1S ∈ A
Ij , and hence

O |= ∃S− v A by Proposition 3.4. Second, consider %′·(S1, C1)·(S2, C2) ∈ range(f).
We know that (cj%R%′|1S1

, cj%R%′|1S1S2
) ∈ SIj2 , and hence cj%R%′|1S1

∈ (∃S2)Ij . Again
by Proposition 3.4, we obtain O |= ∃S−1 v ∃S2.

To construct B ∈ Con(α, f), we now consider all atoms of the form A(y) or
S(y, z) in α such that π(y) = cj%R, i.e., f(y) = ε. For each concept atom A(y),
we set BA(y) := A and observe that cj%R ∈ BJiA(y) since π is a homomorphism
of α into Ji. For the role atoms S(y, z), we must similarly have π(z) = cj%RS2 ,
(π(y), π(z)) ∈ SJi , fx(z) = (S2, C), and S ′ ∈ C for some S2, S

′ ∈ N−R (O) with
O |= S2 v S ′ v S, where we know that if S ′ 6= S, then S ′ is rigid. We set
BS(y,z) := ∃S2 and consider two cases.

• If S ′ is rigid and S2 is flexible, we define BS(y,z) := {∃S2}. Notice that
O |=

d
BS(y,z) v BS(y,z) and cj%R ∈ (

d
BS(y,z))Ij by Proposition 3.4.

• If S ′ is flexible, then we know that S ′ = S and S2 is also flexible, and
there can be no rigid role between S2 and S. Hence, we obtain from the
definition of Ji that either π(y) or π(z) must have a witness w.r.t. O, and
hence (π(y), π(z)) ∈ SJi2 .

• If S2 is rigid, then we immediately get (π(y), π(z)) ∈ SIj2 ⊆ SJi2 .

To summarize, in the cases for which Bβ is not (yet) defined, we know that
π(y) = cj%R ∈ B

Ji
β . From Lemma 4.13, we obtain that then either (i) there is a

Bβ ⊆ BCR(O) with cj%R ∈ (
d
Bβ)Ij and O |=

d
Bβ v Bβ, or (ii) cj%R ∈ B

Ij
β and

WO(cj%R) 6= ∅.

34

• If WO(cj%R) 6= ∅, by Definitions 4.5 and 3.1 and Proposition 3.3, there
must be a set B ⊆ BCR(O) that is a witness of ∃R− w.r.t. O, and fur-
thermore an element cj%′ ∈ ∆j

u that satisfies
d
B in Ij. It remains to

show that {∃R−} ∈ Con(α, f). But for all A(y) ∈ α with fx(y) = ε, we
have O |= ∃R− v A by Proposition 3.4, because cj%R ∈ B

Ij
A(y) = AIj

(this follows in both cases (i) and (ii) above). Likewise, for an element
(R′, C) ∈ (N−R × 2N−R) ∩ range(fx), we know that cj%RR′ ∈ ∆j

u, and hence
cj%R ∈ (∃R′)Ij and O |= ∃R− v ∃R′ by Proposition 3.4. Hence, we have
found a witness query ψ := ∃x.B(x) for α. Moreover, we have Ij |= ψ via
the homomorphism that maps x to cj%′ .

• If WO(cj%R) = ∅, then (i) must hold for all concepts Bβ above (except in
the cases where we have directly defined BS(y,z) := {∃S2}), and we define
B as the union of all Bβ. In particular, we obtain that cj%R ∈ (

d
B)Ij . To

show the two remaining conditions of Definition 3.7, we start again with
the concept atoms A(y) ∈ ψ with f(y) = ε. We know that

O |=
l
B v

l
BA(y) v BA(y) = A,

as required. Likewise, for any (S2, C) ∈ (N−R × 2N−R)∩ range(f) we know that
there must be a role atom S(y, z) such that f(z) = (S2, C) and O |= S ′ v S
for some S ′ ∈ C since α is connected. But then we get

O |=
l
B v

l
BS(y,z) v BS(y,z) = ∃S2,

as before.
It remains to construct a tree witness query ψ as in Definition 4.6. In this
construction, we maintain the invariant that Ij |= ψ via the homomor-
phism that maps all variables y%′ with %′ ∈ range(f) to cj%R%′|1 . We start by
including in ψ all atoms from B|R(yε), hence satisfying the first condition
of Definition 4.6 and our invariant since we know that cj%R ∈ (

d
B)Ij . The

second condition is immediately satisfied by the same arguments as above,
by observing that, for any A(y) ∈ α with f(y) = ε, the set BA(y) ⊆ B con-
tains only rigid basic concepts. Likewise, for all (S2, C) ∈ range(f) for which
there is a role atom S(y, z) with f(y) = ε for which case (i) above applies, we
know that BS(y,z) ⊆ B contains only rigid basic concepts whose conjunction
implies ∃S2. Hence, in this case (S2, C) is rigidly witnessed in ψ.
However, if (S2, C) ∈ range(f) is such that S2 is flexible and all role atoms
of the form S(y, z) for which f(y) = ε, O |= S ′ v S, and S ′ ∈ C are such
that S ′ is rigid, then B contains only ∃S2 and C consists of all these roles S ′.
If there is an alternative set B∃S2 ⊆ BCR(O) with O |=

d
B∃S2 v ∃S2 and

cj%R ∈ (
d
B∃S2)Ij , then we can add B∃S2(yε) to ψ. Otherwise, we know

that (S2, C) cannot be rigidly witnessed in ψ, and we have to add all atoms
S ′(yε, y(S2,C)) to ψ in order to fulfill the last condition for (S2, C). Since we

35

have O |= S2 v S ′ for all these S ′, the above atoms can be mapped into Ij
as required for our invariant. Since (S2, C) is not rigidly witnessed in ψ, we
further need to consider the atoms of α that are mapped below cj%RS2 . We
continue the construction of ψ by induction on the structure of f, until all
remaining paths are already rigidly witnessed in ψ or we have reached a
leaf of the tree described by f.
Assume hence that we have already defined ψ up to a variable of the
form y%′ , but that some %′ · (S2, C) ∈ range(f) is not rigidly witnessed.
We consider first all concept atoms A(y) ∈ α with f(y) = %′ · (S2, C).
Since cj%R%′|1S2

∈ AJi , by Lemma 4.13 we know that either (i’) there is
a set BA ⊆ BCR(O) with O |=

d
BA v A and cj%R%′|1S2

∈ (
d
BA)Ij , or

(ii’) cj%R%′|1S2
∈ AIj and WO(cj%R%′|1S2

) 6= ∅. In case (i’), we add the atoms
BA(y%′·(S2,C)) to ψ to satisfy the corresponding condition of Definition 4.6,
while maintaining our invariant. In case (ii’), there must be a prefix %′′R′ of
%R%′|1S2 and a set BR′ ⊆ BCR(O) such that O |=

d
BR′ v ∃R′ and either

cj%′′ ∈ (
d
BR′)Ij or %′′ ∈ NI(K) ∪ Naux

I and %′′ ∈ (
d
BR′)Ij . If %′′R′ is a prefix

of %R, then this contradicts the fact that WO(cj%R) = ∅. But if %R is a
prefix of %′′R′, we would have added BR′(y%′′′) to ψ earlier, where %′′′ is the
path in range(f) corresponding to %′′, and hence %′ · (S2, C) would be rigidly
witnessed in ψ. This shows that case (ii’) is impossible.
Consider now any successor %′ ·(S2, C) ·(S3, C ′) ∈ range(f) and all role atoms
S(y, z) ∈ α with f(y) = %′·(S2, C), f(z) = %′·(S2, C)·(S3, C ′), andO |= S ′ v S
for some S ′ ∈ C. If S3 is rigid or there is one such atom where S ′ is flexible
(and hence S ′ = S), then we obtain as above that cj%R%′|1S2

∈ (∃S3)Ji . By
Lemma 4.13 and the same arguments as above, we know that there is a
set B∃S3 ⊆ BCR(O) with O |=

d
B∃S3 v ∃S3 and cj%R%′|1S2

∈ (
d
B∃S3)Ij .

Hence, we can add the atoms B∃S3(y%′·(S2,C)) to ψ in order to ensure that
%′ · (S2, C) · (S3, C ′) is rigidly witnessed in ψ. If S3 is flexible and there is
no such atom and no set B∃S3 as above, then we again have to add all the
atoms S ′(y%′·(S2,C), y%′·(S2,C)·(S3,C′)) to ψ and continue the construction with
%′ · (S2, C) · (S3, C ′), which cannot be rigidly witnessed.
The construction of ψ terminates since f is finite, and when it does we
have added enough rigid atoms to ψ in order to satisfy Definition 4.6, and
furthermore know that Ij |= ψ.

In both cases, we have found a witness query ψ for α such that Ij |= ψ, and thus
we obtain a contradiction from (R5) and Proposition 3.5 (recall that α ∈ Q¬R).

(II) In the remainder of the proof, let π be such that it maps at least one
term into ∆n := NI(K) ∪ ⋃n+k

j=0 ∆Ija ∪ ∆Ijt . In this case, we directly define a
homomorphism π′ of α into Ii in order to obtain a contradiction to the fact that
Ii |= ¬α. We start defining π′ for all terms t ∈ NV(α) ∪ NI(α) for which we have

36

π(t) ∈ ∆n: if π(t) = ej for e ∈ NI(K) ∪ Naux
I ∪ Ntree

I , then we set π′(t) := ei. We
first show that

for all B ∈ BC(O) and all t ∈ NV(α) ∪ NI(α) with π(t) ∈ ∆n,
we have π′(t) ∈ BIi whenever π(t) ∈ BJi . (1)

By Lemma 4.13, π(t) ∈ BJi implies that (i) π(t) ∈ BIi , or (ii) π(t) ∈ ∆Ija ∪∆Ijt
and there is a set B ⊆ BCR(O) such that π(t) ∈ (

d
B)Ij and O |=

d
B v B. In

case (i), we have π′(t) = π(t), and hence the claim holds. In case (ii), if i = j, the
claim follows as in case (i); otherwise, we further distinguish the following two
cases.

• If π(t) ∈ ∆Ija , then π(t) must be of the form ajx. Let β ∈ Qφ be the (unique)
CQ containing the variable x. By (R3), the existence of the element ajx
implies that β ∈ QR. Hence, the element of the form aix must also exist,
i.e., π′(t) = aix is well-defined. Since only AQR , AQι(j) , and ARF contain
assertions about ax, by Definition 3.1 and Proposition 3.3 we know that the
elements of B are implied by the conjunction of

– all elements of BC−(ax, β), and
– all rigid concepts ∃R for which there is ∃S(ax) ∈ RF with O |= S v R.

But for all concepts of the latter form, (R6) implies that ∃R(ax) is already
implied by some 〈O,AR ∪ AQR ∪ AQι(i′) ∪ Ai′〉, and hence must follow also
from

d
BC−(ax, β). This shows that O |=

d
BC−(ax, β) v

d
B, and hence

B′(ax) ∈ AQR for all B′ ∈ B. Since Ii |= AQR and Ii |= O, we obtain that
aix ∈ (

d
B)Ii ⊆ BIi , as required.

• If π(t) ∈ ∆Ijt , then π(t) is of the form ajb%. In this case, the element aib% also
exists since ARF is the same for all time points. By Proposition 3.3 and the
definition of ARF , π(t) ∈ BIj implies that B subsumes the conjunction of all
rigid basic concepts satisfied by cb% in some I〈O,{∃S(b)}〉 where ∃S(b) ∈ RF.
Another application of Proposition 3.3 yields that B is also satisfied by
π′(t) = aib% in Ii.

This concludes the proof of (1).

In particular, it follows that all concept atoms in α that are of the form A(t)
with π(t) ∈ ∆n are satisfied by π′ in Ii. We proceed by showing that this is
also the case for all role atoms in α involving only terms of the above form.
Let hence R(t, t′) ∈ α be such that π(t), π(t′) ∈ ∆n. If π(t) and π(t′) are both
contained in ∆Ii , the claim follows immediately from Lemma 4.12 and the fact
that π′(t) = π(t) and π′(t′) = π(t′). If this is not the case, then since in Ji there
are no role connections between elements of different sets ∆Ija ∪∆Ijt , π(t) and π(t′)
must both belong to some NI(K) ∪∆Ija ∪∆Ijt for a fixed j 6= i, and it remains to
consider the following cases:

37

• R is rigid and at least one of π(t) or π(t′) is contained in ∆Ija , but neither is
contained in ∆Ijt . Since (π(t), π(t′)) ∈ RJi , we know that (π(t), π(t′)) ∈ RIj .
By Definition 3.1, there must be an assertion S(τ(t), τ(t′)) ∈ AQR ∪ AQι(j)

such that O |= S v R, where τ(t) := e if π(t) = ej. By Definition 4.4, we
get R(τ(t), τ(t′)) ∈ AQR . Since Ii |= AQR , we conclude (π′(t), π′(t′)) ∈ RIi .

• R is rigid and at least one of π(t) or π(t′) is contained in ∆Ijt . We again
have (π(t), π(t′)) ∈ RIj . By Definition 3.1 and the definition of ARF , we
know that R(τ(t), τ(t′)) ∈ ARF . Since Ii |= ARF , we get (π′(t), π′(t′)) ∈ RIi .

• R is flexible. Since WO is not defined for elements of ∆n, there must be a
rigid role S such that (π(t), π(t′)) ∈ SIj and O |= S v R. As in the two
previous cases, it follows that (π′(t), π′(t′)) ∈ SIi . Since I |= O, we obtain
(π′(t), π′(t′)) ∈ RIi .

It remains to define π′ for the variables of α that are mapped by π into ⋃n+k
j=0 ∆Iju .

Consider any such variable that is mapped to cjeRR1...Rm for some individual name
e ∈ NI(K) ∪ Naux

I ∪ Ntree
I . Since α is connected, there must be a variable y with

π(y) = cjeR and an atom S(t, y) ∈ α such that O |= R v S and π(t) = ej. Recall
that for all such atoms we have π′(t) = ei. To determine the value of π′(y), we
consider all atoms of the above form. If i = j, then by Lemmas 4.12 and 4.13
all these atoms can be satisfied by setting π′(y) := π(y) = cieR. Otherwise, we
distinguish the following two cases.

• If WO(cjeR) 6= ∅, then it follows from (ej, cjeR) ∈ RIj that (ej, cjeR) ∈ RJi .
By (1), we infer that ei = π′(t) ∈ (∃R)Ii , and hence the element cieR also
exists and the pair (ei, cieR) satisfies all role atoms S(t, y) that are mapped
to (ej, cjeR) by π. Hence, we can set π′(y) := cieR for all such variables y.

• If WO(cjeR) = ∅, then by the definition of Ji we know that for all atoms
S(t, y) as above there is a rigid role S ′ such that O |= R v S ′ v S and
(ej, cjeR) ∈ (S ′)Ji . Note that R must be flexible since otherwise ∃R would
be a witness for cjeR. In particular, we know that φ is not r-simple. Further-
more, since (ej, cjeR) ∈ RIj , Definition 3.1 and Proposition 3.3 yield that
the assertion ∃R(e) is implied by the basic concepts obtained from the as-
sertions involving e in KiR. We now show by a case distinction on the form
of e that this is already the case if we ignore the assertions in ARF .

– If e ∈ NI(K), then the basic concepts obtained from the assertions
about e in ARF are of the form ∃R′ for rigid roles R′. Since AR is
an ABox type and Ij is a model of both AR and ARF , we must have
∃R′(e) ∈ AR, and hence the assertions about e in ARF are subsumed
by AR. Hence, ∃R(e) follows from KiR already without ARF .

38

– If e = ax ∈ Naux
I and β is the CQ in which x appears, then we know

that ∃R is implied by the conjunction of all elements of BC−(ax, β)
and all rigid concepts ∃R′ for which there is a ∃R′′(ax) ∈ RF with
O |= R′′ v R′. By (R6) and Proposition 3.3, all concepts of the
latter form are implied by

d
BC−(ax, β), and hence ∃R′(ax) must be

contained in AQR (see Definition 4.4). This shows again that ∃R(e)
follows from KiR without ARF .

– If e ∈ Ntree
I , then ∃R(e) must follow exclusively from ARF (and O).

Since ARF contains only rigid assertions, the corresponding rigid ba-
sic concepts thus constitute a witness for cjeR, which contradicts our
assumption.

We have thus shown the entailment required to apply (R6), and infer that
∃R(e) ∈ ARF . Since Ii |= ARF , this means that (ei, aieR) ∈ (S ′)Ii holds
for all rigid roles S ′ identified above. This shows tat (ei, aieR) satisfies all
role atoms S(t, y) that are mapped to (ej, cjeR) by π. We can thus define
π′(y) := aieR.

We have thus defined π′ for all variables that are directly connected to some term t
with π(t) ∈ ∆n. We proceed to define π′ by induction on the tree structure of the
homomorphism π into Ji below these variables. It is easy to see that we do not
have to change π on the variables y with π(y) ∈ ∆Iiu ; hence, in the following we
consider only the case that π(y) ∈ ∆Iju with j 6= i. In the construction of π′, we
maintain the invariant that whenever π(y) = cj%R, then either (i) WO(cj%R) = ∅
and π′(y) = ai%R or (ii) WO(cj%R) 6= ∅ and π′(y) is of the form ci%′R.

Hence, assume that π(y) = cj%R ∈ ∆Iju and π′(y) has already been defined. We
first show that all concept atoms A(y) ∈ α are satisfied by π′. Since cj%R ∈ AJi , we
know by Lemma 4.13 that either (i’) there is a B ⊆ BCR(O) with cj%R ∈ (

d
B)Ij

and O |=
d
B v A; or (ii’) cj%R ∈ AIj and WO(cj%R) 6= ∅. If case (ii) from

above applies, i.e., we have π′(y) = ci%′R, then two applications of Proposition 3.4
yield that O |= ∃R− v A and π′(y) = ci%′R ∈ AIi . If case (i) applies, then (i’)
must hold, and we know by Proposition 3.4 that O |= ∃R− v

d
B, and hence

π′(y) = ai%R ∈ (
d
B)Ii by the definition of ARF . Since Ii |= O, we conclude that

π′(y) ∈ AIi .

To continue the definition of π′, consider a fixed π′(y′) that has already been
defined based on π(y′) = cj%R, and a fixed cj%RS2 ∈ range(π). For all role atoms of
the form S(y, z) with π(y) = cj%R and π(z) = cj%RS2 , we must have O |= S2 v S.
We again make a case distinction based on WO(cj%RS2).

• IfWO(cj%RS2) 6= ∅, then we have (cj%R, c
j
%RS2) ∈ SJi2 since this pair is contained

in SIj2 , and furthermore O |= ∃R− v ∃S2. One of the following two cases
must apply:

39

– If WO(cj%R) 6= ∅, then we know that π′(y) = ci%′R. The element ci%′RS2

must exist and (ci%′R, ci%′RS2) satisfies all role atoms S(y, z) of the above
form in Ii. Hence, we can define π′(z) := ci%′RS2 for all such variables z
while maintaining the invariant (case (ii)).

– If WO(cj%R) = ∅, then there must be a set B ⊆ BCR(O) such that
O |=

d
B v ∃S2 and cj%R ∈ (

d
B)Ij , which implies O |= ∃R− v

d
B

by Proposition 3.4. Furthermore, π′(y) must be of the form ai%R, and
hence π′(y) ∈ (

d
B)Ii by the definition of ARF . Since Ii |= O, this

implies that π′(y) ∈ (∃S2)Ii . Hence, the element cia%RS2 must exist
and (ai%R, cia%RS2) satisfies all required role atoms in Ii, and we can set
π′(z) := cia%RS2 . This again satisfies case (ii) of our invariant.

• If WO(cj%RS2) = ∅, then we know that also WO(cj%R) = ∅, and hence case (i)
of our invariant applies, i.e., π′(y) = ai%R. By the definition of Ji, for every
role atom S(y, z) considered above there must be a rigid role S ′ such that
O |= S ′ v S and (cj%R, c

j
%RS2) ∈ (S ′)Ji , and hence in particular O |= S2 v S ′.

Furthermore, we know that the element ai%RS2 must exist since α is con-
nected and π maps the terms of α into at least one element of ∆n, and thus
the length of %RS2 cannot exceed the number of variables of α. Hence, by
the definition of ARF we know that (a%R, a%RS2) satisfies all above roles S ′
in Ii, and hence all relevant role atoms S(y, z). We set π′(z) := a%RS2 for
all such variables, and obtain again case (i) of our invariant.

This concludes the construction of π′ and shows that it is a homomorphism of α
into Ii, which contradicts our assumption that Ii |= ¬α.

This finishes also the proof of Lemma 4.9. In the following sections, we use this
characterization of r-satisfiability for obtaining different complexity bounds.

5 Regarding Combined Complexity

We now apply the procedure proposed in the previous section to show that—even
with rigid symbols and TCQs that are not r-simple—the combined complexity
of PSpace carries over from propositional LTL. For the latter, the satisfiability
problem is PSpace-complete [Pnu77].

Theorem 5.1. TCQ entailment in DL-LiteHhorn is in PSpace w.r.t. combined
complexity, even if NRR 6= ∅.

The key insight of the previous section is that we do not need to store the expo-
nentially large set S in order to check the conditions of Definition 4.8. It suffices
to guess a polynomial-sized tuple (AR, QR, Q

¬
R, RF) in advance, and then check, in

40

each step of an LTL-satisfiability test for φp, if there is a world Xi ⊆ {p1, . . . , pm}
that satisfies the requirements specified in Definition 4.8.

For this purpose, we use the polynomial-space-bounded Turing machines for LTL-
satisfiability constructed in [SC85]. Given the propositional LTL-formula φp, the
machine Mφp iteratively guesses complete sets of (negated) subformulas of φp

specifying which subformulas are satisfied at each point in time. Every such set
induces a unique world Xi ⊆ {p1, . . . , pm} containing the propositional variables
that are true.

In [SC85, Theorem 4.7], it is shown that if φp is satisfiable, then there must be a
periodic model of φp with a period that is exponential in the size of φp. Hence,
Mφp first guesses two polynomial-sized indices specifying the beginning and end
of the first period. Then it continuously increments a (polynomial-sized) counter
and in each step guesses a complete set of (negated) subformulas of φp. It then
checks Boolean consistency of this set and consistency with the set of the previous
time point according to the temporal operators. For example, if the previous set
contains the formula p1 U p2, then either it also contains p2 or it must contain p1
and the current set must contain p1 U p2. In this way, the satisfaction of the
U-formula is deferred to the next time point.

In each step, the oldest set is discarded and replaced by the next one. When the
counter reaches the beginning of the period, it stores the current set and contin-
ues until it reaches the end of the period. At that point, instead of guessing the
next set of subformulas, the set stored at the beginning of the period is used and
checked for consistency with the previous set as described above. Mφp addition-
ally has to ensure that all U-subformulas are satisfied within the period. Thus,
the Turing machine never has to remember more than three sets of polynomial
size.

Note that [SC85] do not directly regard past operators, which are considered by
us. However, we can certainly adapt the complete sets of subformulas guessed by
Mφp to also include the past operators. This does not affect the space require-
ments of the Turing machines; in particular, the period that has to be guessed
is still exponential in the size of φp. We now modify this procedure to prove the
desired PSpace upper bound.

Let K be a TKB and φ be a TCQ. We analyze the complexity of the satisfiability
problem by showing how S and ι satisfying the conditions of Lemma 4.3 can be
found. For proving r-satisfiability of S, it suffices to find a tuple (AR, QR, Q

¬
R, RF)

satisfying conditions (R1)–(R6), by Lemma 4.9. All these conditions are such
that it is not necessary to actually construct the whole set S—it is enough to
show that each world Xi we encounter when checking φp for satisfiability induces
a knowledge base KiR that satisfies all requirements.

We can thus run a modified version of the Turing machineMφp that first guesses
the sets AR, QR, Q¬R, and RF required by Definition 4.8, which can clearly be

41

done in polynomial space, and then proceeds as before, but additionally executes
the following checks for the world X induced by each guessed complete set of
propositional subformulas:

(R1) Check the knowledge base KR = 〈O,AR ∪ AQR ∪ AQX ∪ ARF ∪ Ai〉 for
consistency.
The ABox Ai is only relevant for the first n+ 1 time points, after which it
is empty,7 and AQX is formed by instantiating all CQs αj where pj ∈ X.
The number of sets CO(αj) to be computed for AQR is equal to the car-
dinality of QR, which depends linearly on the size of φ. Hence, according
to [ACKZ09], we need a number of P tests to compute each set CO(αj);
this number depends linearly on the size of αj (and hence that of φ) and
polynomially on the size of the ontology O.
Note that the exponentially large ABox ARF can be ignored for this con-
sistency test since once we have verified (R6), we know that for every
A∃S(b) ⊆ ARF there is at least one world X ′ at which the existence of the el-
ements described in A∃S(b) follows from the KB 〈O,AR∪AQR∪AQX′ ∪AX′〉,
where AX′ is the ABox from A0, . . . ,An associated to X ′ (or ∅ for any time
point after n). Hence, for the rigid R-successors of b enforced by A∃S(b) we
know that AR already contains ∃R(b), and it is safe to add the remaining
individuals from A∃S(b) to any model without causing a conflict with the
other ABoxes or the ontology.
This consistency test can thus be done in P in the (polynomial) size of KR
[ACKZ09] and thus needs only polynomial space.

(R2) Check, for each pj ∈ X, whether KR 6|= αj holds.
Using the non-deterministic version of the algorithm in [BAC10] (cf. the part
after Theorem 12), this can be done by rewriting αj using O, nondetermin-
istically choosing a CQ ψ from the resulting UCQ, and checking whether
the interpretation I obtained from the ABox AR ∪ AQR ∪ AQX ∪ ARF ∪ Ai
under the closed-world assumption satisfies ψ.
Since our ABox is of exponential size, but ψ is of size polynomial in the
size of αj and O, it suffices to guess a polynomial part of the forest-shaped
ABox ARF in order to check whether there exists a homomorphism of ψ
into I, which can clearly be done in polynomial space.

(R3) Check, for each pj ∈ X, whether αj ∈ QR.

(R4) Check, for each pj ∈ X, whether αj ∈ Q¬R.
7For this reason, we also have to ensure that the guessed cycle does not start during the first

n + 1 time points, as the result of [SC85] only applies when there are no external conditions on
the propositional models.

42

(R5) Check, for each tree-shaped α ∈ Q¬R and every witness query ψ of α w.r.t.O,
whether it holds that KR 6|= ψ.
Since each ψ contains at most as many variables as α and at most quadrat-
ically many atoms over these variables, this non-entailment test can obvi-
ously be done in polynomial space by the same arguments as above. It
remains to show how to enumerate all possible witness queries in PSpace.
The first step is to find all possible tree witnesses f for α. But since α
is connected and f mimics the structure of α, we can easily enumerate all
candidate mappings f : NV(α) → (N−R × 2N−R)∗ whose range consists only of
sequences of polynomial size. Furthermore, the conditions of Definition 3.7
can be checked in polynomial time [ACKZ09]. By the same argument, we
can enumerate all polynomial-sized sets B ⊆ BC(O) and check whether they
satisfy the conditions of Con(α, f).
Based on f and B, the construction of all possible tree witness queries can
also be done in polynomial time and space (see Definition 4.6).
Finally, for the second option of Definition 4.7 we can construct the follow-
ing graph over all roles of N−R (O): it contains an edge from R1 to R2 iff
O |= ∃R−1 v ∃R2. Again, this graph can be constructed by quadratically
many P-tests [ACKZ09]. It then suffices to test whether it is possible to
reach an R2 satisfying {R2} ∈ Con(α, f) from an R1 with O |=

d
B v ∃R1

for some B ⊆ BCR(O). All this is clearly possible within polynomial space.

(R6) Check, for each S ∈ NR(O) \ NRR and b ∈ NI(K) ∪ Naux
I , whether from

〈O,AR ∪ AQR ∪ AQX ∪ Ai〉 |= ∃S(b) it follows that ∃S(b) ∈ RF.
This can be done in polynomial space by the same arguments as above.
Note that the other direction of Condition (R6) cannot be checked locally.
Instead, it requires us to maintain for every ∃S(b) ∈ RF the additional
information whether we have already encountered a world where the above
test has succeeded. This is also possible in polynomial space, but may
require us to look for an LTL-structure with a longer period. However,
since this condition basically behaves like linearly many additional temporal
3-formulas that have to be checked, the maximal required period is still
exponential in the input and can be represented in polynomial space.

The set S required for Lemma 4.3 corresponds to the set of all worlds X en-
countered during a run of this modified Turing machine, while ι can be obtained
collecting the worlds guessed for the first n + 1 time points. Under these defini-
tions of S and ι, it is easy to see that the above checks are actually equivalent
to (R1)–(R6) from Definition 4.8. By Lemmas 4.3 and 4.9, the described Turing
machine accepts the input K and φ iff φ has a model w.r.t. K. Since we do not
have to store S explicitly and all checks can be done with a nondeterministic Tur-
ing machine using only polynomial space, according to [Sav70], TCQ entailment
can be decided in PSpace. This finishes the proof of Theorem 5.1.

43

6 Regarding Data Complexity

In this section, we show that the low data complexity of query answering in DL-
Lite does not increase dramatically in the temporal setting if we stay within—
for which it is in ALogTime. We establish the corresponding hardness for
DL-Litecore and thus prove that TCQ entailment is not FO-rewritable in any
DL of the DL-Lite family.

Theorem 6.1. TCQ entailment in DL-Litecore is ALogTime-hard w.r.t. data
complexity, even if NRC = ∅ and NRR = ∅.

Proof. There are regular languages that are NC1-complete w.r.t. constant-depth
reductions [BCST92, Theorem 7], and for any regular language there is an NFA
recognizing it. Furthermore, the complexity class of DLogTime-uniform NC1

equals that of ALogTime [MBIS90, Lemma 7.2].

We hence can establish ALogTime-hardness by considering an arbitrary NFA A
and reducing its word problem to TCQ entailment. Note that we adapt a con-
struction of [AKK+14, AKK+15]. We consider concept names Aa and Qq for
characters a of the input alphabet and states q, respectively, and define the TCQ

φ := 2−
(∧
q→aq′

(
Qq(a) ∧ Aa(a)

)
→ #Qq′(a)

)
→ Qq1(a),

where q1 is the accepting state of A. Given an input word w = a0 . . . an−1, we
define the sequence of ABoxes Aw = (Ai)0≤i<n such that A0 := {Qq0(a)} and
Ai := {Aai(a)}, for all 0 ≤ i < n, with q0 being the initial state of A. Thus, A
accepts w iff all models of 〈∅,Aw〉 that satisfy the antecedent of φ (which means
that they simulate all runs of A on w), also satisfy the consequent Qq1(a), which
is equivalent to the entailment 〈∅,Aw〉 |= φ.

In the remaining parts of this section, we show how the corresponding upper
bound can be obtained. As a first step, we show that r-satisfiability is FO-
rewritable. Based on that we subsequently present a procedure to solve the TCQ
entailment problem in ALogTime w.r.t. data complexity.

6.1 A FO Rewriting for r-satisfiability

In this section, we use the notion of r-completeness (cf. Definition 4.8) to construct
a set of first-order formulas which can be used to decide if a set S ⊆ 2{p1,...,pm}

is r-satisfiable w.r.t. a mapping ι and a TKB 〈O, (Ai)0≤i≤n〉; by evaluating the
formulas over the sequence (Ai)0≤i≤n, considered as one finite first-order struc-
ture DB.

44

We start specifying the two-sorted structure DB more formally, over the individual
domain NI(K) and temporal domain NT(K) := {−1, 0, . . . , n}. We define the
below relations, for all B ∈ BC(O) and R ∈ N−R (O):

BDB := {(a, i) | i ∈ {0, . . . , n}, B(a) ∈ Ai}
RDB := {(a, b, i) | i ∈ {0, . . . , n}, R(a, b) ∈ Ai}.

The semantics of the satisfaction relation |= defined in the usual way, i.e., we
have DB |= B(a, i) iff (a, i) ∈ BDB, and DB |= R(a, b, i) iff (a, b, i) ∈ RDB. The
temporal domain element −1 allows us to access the empty ABox via B(a,−1)
and R(a, b,−1).

Since the TBox and the query are fix, we can define several abbreviations, which
facilitate the definition of our rewriting. Subsequently, we show that the r-
satisfiability part is FO-rewritable, and later use this in the definition of an
ALogTime Turing machine for the TCQ entailment problem.

Recall that we need to find a set S and mapping ι for which both the r-satisfiability
and the LTL-satisfiability test succeed. To test the r-satisfiability, we rely on the
results obtained in [BAC10] for knowledge base consistency and (U)CQ entail-
ment. These decision problems are solved in [BAC10] by evaluating Boolean
UCQs (with inequalities)—called qunsat(O) and PerfectRef(ψ,O), respectively—
which are independent of the ABox A, over the FO-structure DB(A), which
represents a minimal model of A and is constructed independently of the ontol-
ogy or the query. In particular, DB(A) contains a relation for every concept
and role name, and exactly one tuple for every assertion in the ABox A (see our
definition of DB8).

We now adapt this construction for our purpose (i.e., to decide the problems
described in Definition 4.8) in that we not only consider the ABoxes Ai, but also
include AR, AQR , AQj , and ARF for deciding consistency and entailment of UCQs.

However, regarding data complexity, it would not be practical to consider the en-
tire set RF and ABox ARF as defined in Definition 4.8 within our rewriting—recall
that ARF may contain auxiliary elements tailored to individual elements in NI(K),
which then would need to be considered explicitly within the rewriting. There-
fore, we discern the assertions in RF more fine-granularly, according to the kind
of individual they address. More precisely, we consider the set RF to be the dis-
joint union of the three sets RF|aux, RF|φ, and RF|o (o for ‘other’), each containing
only assertions on the individuals of Naux

I , NI(φ), and NI(K) \ NI(φ), respectively.
The corresponding ABoxes ARF|aux etc. are then defined in correspondence to the
definition of ARF in Definition 4.8.

Further, note that the set RF|φ depends on the mapping ι. This is because it
covers the individuals that occur within φ, and hence the ABoxes Ai and AQXι(i)

8Note that we follow the approach of [CDGL+05] by introducing a relation for every basic
concept, and not just for the concept names.

45

influence its shape. However, since it only covers a fix number of individuals, the
size of this set, and the size of the corresponding ABox ARF|φ , is constant w.r.t.
data complexity.

We now define our ‘auxiliary’ ABoxes in dependence of two given sets of constant
size, S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and Bφ ⊆ {B(a) | B ∈ BC(O), a ∈ NI(φ)}.
Note that we already defined AQj , 1 ≤ j ≤ k, in Section 4; for convenience, we
sometimes write AQXj instead of AQj . In addition, we define the following sets:

QR[S] := {αj ∈ Qφ | X ∈ S, pj ∈ X},
Q¬R[S] := {αj ∈ Qφ | X ∈ S, pj 6∈ X}, and
AQR[S] :=

⋃
α∈QR[S]

CO(α).

The construction of the set AR[S,Bφ] is however more involved. This is because
we cannot assume a set Bo (i.e., in correspondence with Bφ but covering all other
elements of NI(K)) to be given. For that reason, we have to model the derivation
of all relevant (rigid) basic concept assertions that are entailed from the TKB in
our rewriting. This is specified below, where we assume BR|φ to denote the set of
all rigid assertions in Bφ, and correspondingly for BR|o.

B0
R|o := ∅,
Bj+1

R|o := {B(a) | B ∈ BCR(O), a ∈ NI(K) \ NI(φ),
∃i.0 ≤ i ≤ n, 〈O,BjR|o ∪ Ai〉 |= B(a)},

BR|o := B|BCR(O)|
R|o ,

RF|aux[S] := {∃S(ay) | S ∈ N−R (O) \ N−RR, ay ∈ Naux
I ,

∃X.X ∈ S, 〈O,AQX 〉 |= ∃S(ay)},
RF|φ[Bφ] := {∃S(a) ∈ Bφ | S ∈ N−R (O) \ N−RR},

RF|o := {∃S(a) | S ∈ N−R (O) \ N−RR, a ∈ NI(K) \ NI(φ),
∃i.0 ≤ i ≤ n, 〈O,BR|o ∪ Ai〉 |= ∃S(a)},

A+
R[S,Bφ] := BR|φ ∪ BR|o ∪ {∃R(a) | R(a, e) ∈ ARF|φ[Bφ] , a ∈ NI(φ)} ∪

{R(a, b) | R ∈ NRR(O), a, b ∈ NI(K), R(a, b) ∈ AQR[S] or
∃i.0 ≤ i ≤ n, 〈O,Ai〉 |= R(a, b)}

AR[S,Bφ] is then defined as the union of A+
R[S,Bφ] and all negative rigid role and

basic concept assertions ¬α over NI(K) for which we have α 6∈ A+
R[S,Bφ]. Note also

that the sets RF|aux[S] and RF|φ[Bφ] are constant.

The last component of A+
R[S,Bφ] is necessary to prove that all basic concept asser-

tions about individuals in NI(φ) that are entailed by ARF|φ[Bφ] are already entailed
by AR[S,Bφ] (see Condition (R6)).

We next provide an auxiliary Lemma.

46

Lemma 6.2. For all B ∈ BCR(O), R ∈ NRR(O) and a, b ∈ NI(K)\NI(φ), we have

• B(a) ∈ AR[S,Bφ] iff there is an i, 0 ≤ i ≤ n, with 〈O,AR[S,Bφ] ∪ Ai〉 |= B(a);
and

• R(a, b) ∈ AR[S,Bφ] iff there is i, 0 ≤ i ≤ n, with 〈O,AR[S,Bφ] ∪Ai〉 |= R(a, b).

Proof. The direction (⇒) is trivial.

We consider (⇐) and assume that 〈O,AR[S,Bφ] ∪ Ai〉 |= B(a) holds for some i,
0 ≤ i ≤ n. Observe that, if we have BjR|o = Bj+1

R|o at some point, then we have
BjR|o = Bj+lR|o , for all l ≥ 0. But then, there must be some j′, 0 ≤ j′ ≤ |BCR(O)|,
such that Bj

′

R|o = Bj
′+l

R|o , for all l ≥ 0. This is because every set Bj+1
R|o for which we

have Bj+1
R|o 6= B

j
R|o must contain at least one new assertion, there are only |BCR(O)|

relevant assertions per individual (in NI(K) \ NI(φ)), and, by Proposition 3.3, an
assertion on a specific individual does not depend on assertions on other individu-
als. We then get that 〈O,AR[S,Bφ]∪Ai〉 |= B(a) leads to 〈O,B|BCR(O)|

R|o ∪Ai〉 |= B(a).
This is because, by Proposition 3.3, only the assertions on the individual a (possi-
bly contained in a tuple of individuals) in AR[S,Bφ] are relevant for the entailment;
that is, in addition to the assertions in BR|o, we have to consider those entailed
by 〈O,Ai〉, for some 0 ≤ i ≤ n; but the basic concept assertions corresponding
to these role assertions have to be contained in B1

R|o and hence also in BR|o, by
definition. Hence B(a) ∈ B|BCR(O)|+1

R|o . By our above observations, we thus can
conclude that B(a) ∈ B|BCR(O)|

R|o and thus B(a) ∈ AR[S,Bφ], by the definition of
AR[S,Bφ].

We second assume 〈O,AR[S,Bφ] ∪ Ai〉 |= R(a, b). By Definition 3.1 and Propo-
sition 3.5, we must have some T ∈ N−R such that T (a, b) ∈ AR[S,Bφ] ∪ Ai and
O |= T v R. If T (a, b) ∈ Ai, we have that 〈O,Ai〉 |= R(a, b), and hence
R(a, b) ∈ AR[S,Bφ] by the definition of AR[S,Bφ]. Otherwise, there must be a j,
0 ≤ j ≤ n, such that 〈O,Aj〉 |= T (a, b), and hence also 〈O,Aj〉 |= R(a, b), which
shows that R(a, b) ∈ AR[S,Bφ] as above.

Given the above definitions and a mapping ι : {0, . . . , n} → {1, . . . , k}, we regard
the KBs

KiR[S,Bφ] = 〈O,AKiR[S,Bφ]
〉,

for all i, 0 ≤ i ≤ n+ k, for query answering, where

AKiR[S,Bφ]
:= AR[S,Bφ] ∪ AQR[S] ∪ AQι(i) ∪ ARF[S,Bφ] ∪ Ai

with Ai := ∅, n < i ≤ n+ k, and ARF[S,Bφ] := ARF|aux[S] ∪ARF|φ[Bφ] ∪ARF|o . Observe
that, to construct AR[S,Bφ] and RF|o, we already need to decide entailment w.r.t.
different KBs that contain our auxiliary ABoxes and where i, 0 ≤ i ≤ n, is

47

considered as a parameter. Therefore, we will define first custom versions of
PerfectRef before specifying the final rewriting, which is then based on AR[S,Bφ]
etc. First, we however propose an approach to deal with the data dependence of
the ABox ARF|o .

Dealing with RF|o

Since the rewriting must not depend on the contents of the database, we need
to take special care of ARF , particularly ARF|o . We now propose an approach for
dealing with that latter set.

Specifically, we consider prototypical elements of the form [S], a[S]S, a[S]S%, etc.,
S ∈ N−R (O), for those occurring in ARF|o (i.e., [S] is used instead of a concrete
individual name). We collect all these elements in the set Npro

I and, for each
S ∈ N−R (O) \NRR, define the ABox A∃S as the a prototypical version of an ABox
A∃S(b), b ∈ NI, which is obtained from A∃S(b) by replacing b by [S], which we
assume to be a fresh individual name, in all assertions in A∃S(b).

For a CQ ψ := ∃~x.ϕ, we then define the rewriting ψ† := ∃~x.ϕ ∧ ϕfilter, with

ϕfilter :=
∧

R∈N−R ,
R(t1,t2)∈ψ

¬pro(t1) ∧ pro(t2)→
∧

S∈N−R ,
S(t2,t3)∈ψ

(t1 = t3 ∨ pro(t3))

 ,

where we assume pro to be a unary predicate that identifies exactly the elements
of Npro

I . Furthermore, given ARF|o , the ABox A†RF|o
is defined as the union of⋃

∃S(a)∈ARF|o
A∃S and the set containing all assertions of the form pro(a), for all

a ∈ Npro
I occurring in the former set. The below lemma captures the intent of

this rewriting.

Lemma 6.3. Let ψ := ∃~x.ϕ be a CQ and A∪ARF|o be one of the ABoxes AKiR[S,Bφ]
,

0 ≤ i ≤ n+ k. Then, we have

DB(A ∪ARF|o) |= ψ iff DB(A ∪A†RF|o
) |= ψ†.

Proof. (⇒) Let π be a homomorphism of ψ into DB(A ∪ ARF|o). We define a
homomorphism π′ of ψ† into DB(A ∪ A†RF|o

). More precisely, π′ corresponds to
π but maps elements from Ntree

I that do not occur in A†RF|o
to the corresponding

prototypes, which must exist in the domain of DB(A ∪A†RF|o
), by the definition

of A†RF|o
.

Let now R(t1, t2), S(t2, t3) ∈ ψ,R, S ∈ N−R (O) be arbitrary, π′(t1) 6∈ Npro
I , and

π′(t2) ∈ Npro
I , such that the precondition of ϕfilter evaluates to true under π′. We

48

thus have π′(t1) = π(t1) and π(t2) ∈ Ntree
I , by our definition of π′. Recall that

A does not contain assertions on the element π(t2) of Ntree
I that we considered

for our replacement; hence, the definition of DB implies that R(π(t1), π(t2))
and S(π(t2), π(t3)) are contained in ARF|o . Together with π′(t1) 6∈ Npro

I and
π′(t1) = π(t1), this means π(t1) 6∈ Ntree

I , by our definition of π′. Since π(t1)
occurs in ARF|o , we hence have π(t1) ∈ NI(K) \ NI(φ). By the construction of
ARF|o and the two role atoms contained in it, we thus must have π(t3) = π(t1) or
π(t3) ∈ Ntree

I . This yields π′(t3) = π′(t1) or π′(t3) ∈ Npro
I , by our definition of π′.

Hence, π′ satisfies ϕfilter.

(⇐) Let π′ be a homomorphism of ψ† into DB(A ∪ A†RF|o
). We construct a ho-

momorphism π of ψ into DB(A ∪ARF|o).

If π′ does map to elements of Npro
I , but not to elements of NI(K) \ NI(φ), it may

only map to elements of Npro
I . This is because we assume ψ to be connected,

and role atoms containing terms mapped to elements of Npro
I can only be satisfied

by DB(A ∪ A†RF|o
) through assertions in A†RF|o

, which only contains individuals
of Npro

I and NI(K) \ NI(φ). Further, note that the elements of Npro
I in A†RF|o

are
connected in tree structures, and that, for each such structure, there is at least
one corresponding structure in ARF|o , by the definition of A†RF|o

. We hence can
define π to map to the corresponding tree elements, in one such structure which
corresponds to that π′ maps to.

We consider the remaining case where π′ maps to elements of both Npro
I and

NI(K) \ NI(φ). We first define π as π′ w.r.t. all elements other than those of Npro
I .

Note that A†RF|o
does not contain assertions which do not contain elements of Npro

I .
By the definition of DB, we thus have α ∈ A, for all atoms α ∈ ψ where π′(α)
does not contain elements of Npro

I . We now assume t1 to be a term in ψ that is
mapped to an element of NI(K)\NI(φ) and occurs in a role atom R(t1, t2) together
with a term t2 mapped to an element of Npro

I ; since we assume ψ to be connected,
such a role atom must exist. Then, the definition of DB; that of A, which does
not contain elements of Npro

I ; and that of A†RF|o
, based on that of ARF|o , together

yield that π′(t2) ∈ Npro
I is of the form π′(t2) = a[S]S, S ∈ N−R . We now define

π(t2) = aπ′(t1)S. Note that, by the fact that the filter conjunct is satisfied, we
have that all role atoms in which t2 occurs only contain terms t3 that are either
mapped to π′(t1) or to some element of Npro

I . The former kind of role atoms is
hence satisfied by this definition of π already, given the construction of A†RF|o

from
ARF|o . For the other kind of atoms, we set π(t3) = aπ′(t1)S%, for π′(t3) = a[S]S%.
The proof can be continued by induction on the structure of π′ below π′(t1), in
the same way as above, and it is easy to verify that this definition of π is as
required.

If we apply this lemma in the following, we always assume Ntree
I to only contain

the auxiliary elements used in ARF|aux[S] and ARF|φ[Bφ] (i.e., it contains neither those

49

from Npro
I , nor the original auxiliary elements of ARF|o).

First Variants of PerfectRef

As mentioned above, the original definition of PerfectRef captures the ontological
knowledge and targets an atemporal database as described in [CDL+07]. The
goal of this section is to propose first variants of PerfectRef that similarly include
the ontology, but target our time-stamped database DB and may also include
some of our auxiliary ABoxes for answering a given CQ ψ, which we assume to
contain only individual names from NI(φ).

As a first step, we construct the query pr(ψ,O)(i) by simply replacing all atoms
B(t1), R(t1, t2) in PerfectRef(ψ,O) by B(t1, i) and R(t1, t2, i), respectively, in the
given CQ ψ. The adapted query, when asked over DB, thus decides if ψ is entailed
by the atemporal KB 〈O,Ai〉. This can be easily seen by the original semantics
of the query (i.e., O is correctly included/rewritten) and the fact that we have
constructed DB such that DB |= B(a, i) iff DB(Ai) |= B(a), B ∈ BC(O), and
correspondingly for all relations R, R ∈ NR(O). We thus can state the following
proposition.

Proposition 6.4. 〈O,Ai〉 |= ψ iff DB |= pr(ψ,O)(i).

We second consider the sets BjR|o, 0 ≤ j ≤ `, where ` := |BCR(O)|, in addition to
the input ABoxes Ai, and define the first-order queries pr(ψ,O|BjR|o)(i). Specifically,
we set

pr(ψ,O|B0
R|o)(i) := pr(ψ,O)(i),

and pr(ψ,O|Bj+1
R|o)(i), 0 ≤ j < `, is obtained from PerfectRef(ψ,O) by replacing all

atoms B(t1), B ∈ BCR(O), by

B(t1, i) ∨
∧

a∈NI(φ)
(t1 6= a) ∧ ∃p.pr(B(t1),O|BjR|o)(p),

all flexible basic concept atoms B(t1), B 6∈ BCR(O), by B(t1, i), and all role atoms
R(t1, t2), R ∈ NR(O), by R(t1, t2, i). The adapted queries decide if a CQ ψ is
entailed by the atemporal KBs 〈O,BjR|o ∪Ai〉, which is captured by the following
proposition.

Proposition 6.5. For 0 ≤ j < `, 〈O,BjR|o ∪ Ai〉 |= ψ iff DB |= pr(ψ,O|BjR|o)(i).

Proof. The proof is by induction. In particular, the base case where j = 0 directly
follows from the definitions of B0

R|o and pr(ψ,O|B0
R|o), by Proposition 6.4. In what

follows, we assume j > 0.

50

Further, note that we construct the rewriting based on PerfectRef and thus have
〈O,BjR|o ∪ Ai〉 |= ψ iff DB(BjR|o ∪ Ai) |= PerfectRef(ψ,O) [BAC10].

For (⇒) and DB(BjR|o ∪ Ai) |= PerfectRef(ψ,O), we have a homomorphism π of
PerfectRef(ψ,O) into DB(BjR|o ∪ Ai) and a CQ ψ′ in the UCQ PerfectRef(ψ,O)
such that, for all atoms α in ψ′, π(α) ∈ BjR|o ∪ Ai, by the semantics and the
definition of DB. We subsequently show that, for all atoms α in ψ′, we have that
π is a homomorphism of the corresponding replacement into DB.9

If α is a role atom R(t1, t2) or flexible basic concept atom B(t1), then π(α) 6∈ BjR|o,
by the definition of BjR|o; hence, we have π(α) ∈ Ai, by the assumption and the
definition ofDB. Thus, we directly get that RDB contains the tuple (π(t1), π(t2), i)
or that, respectively, BDB contains the tuple (π(t1), i), by the definition of DB.
Thus, π is as required.

We consider α to be a rigid basic concept atom B(t1); hence, it is replaced during
the rewriting. If π(α) ∈ Ai, then we get that BDB contains the tuple (π(t1), i),
by the definition of DB, such that π is as required.

If π(α) ∈ BjR|o, then the definition of BjR|o yields that π(t1) 6∈ NI(φ) and that
there is a k, 0 ≤ k ≤ n, such that 〈O,Bj−1

R|o ∪ Ak〉 |= π(α). By the induction
hypothesis, we thus get DB |= pr(π(α),O|Bj−1

R|o)(k) from the latter, which together
with the former yields that π is as required.

For (⇐), we can argument correspondingly, by considering a given homomor-
phism π and a satisfied disjunct of pr(ψ,O|BjR|o)(i), which itself is a conjunction
(i.e., a conjunction that originally had been a CQ obtained from PerfectRef,
where the atoms were replaced during the rewriting). We consider an arbitrary
conjunct therein and show that π is also a homomorphism of that conjunct into
DB(BjR|o ∪ Ai). If it (α) replaces a role atom R(t1, t2) or flexible basic concept
atom B(t1), then it is of the form R(t1, t2, i) or, respectively, B(t1, i). By the
assumption that DB |= π(α) and the definition of DB, we then directly get that
R(π(t1), π(t2)) ∈ Ai or, respectively, B(π(t1)) ∈ Ai. Hence, π is as required w.r.t.
the original atom.

We next consider the disjunction representing a replacement of a rigid basic
concept atom B(t1). If the first disjunct B(t1, i) is satisfied, we can argument
as in the previous case. Otherwise, we have DB |= ∃p.pr(B(π(t1)),O|Bj−1

R|o)(p) and
π(t1) 6∈ NI(φ), which yields 〈O,Bj−1

R|o ∪Ap〉 |= B(π(t1)), by the induction hypoth-
esis. Then, we have B(π(t1)) ∈ BjR|o, by the definition of the latter, and again
obtain that π is as required.

9We assume the notion of homomorphism to be extended to the replacements, which may
be nested disjunctions of rewritings and equality assertions, in the obvious way.

51

Lastly, we consider the ABox AR[S,Bφ] in addition to the input ABoxes and
define the queries pr(ψ,O|AR[S,Bφ])(i). We again start with PerfectRef(ψ,O) and
then replace all flexible atoms B(t1), R(t1, t2) in PerfectRef(ψ,O) by B(t1, i) and
R(t1, t2, i), respectively. All rigid atoms B(t1), R(t1, t2) are, respectively, replaced
by the following:

 ∨
B(a)∈BR|φ

(t1 = a)
 ∨ pr(B(t1),O|BR|o)(i) ∨

∨

B=∃R,a∈NI(K),
R(a,e)∈ARF|φ[Bφ]

(t1 = a)

 and

∃p.pr(R(t1,t2),O)(p) ∨

 ∨
R(a,b)∈AQR[S]

(t1 = a) ∧ (t2 = b)

 .
Given the definition of AR[S,Bφ] it can be readily checked that the adapted query
decides if ψ is entailed by the KB 〈O,AR[S,Bφ] ∪ Ai〉. This is captured by the
following proposition.

Proposition 6.6. 〈O,AR[S,Bφ] ∪ Ai〉 |= ψ iff DB |= pr(ψ,O|AR[S,Bφ])(i).

Proof. First, note that we construct the rewriting based on PerfectRef and have
〈O,AR[S,Bφ]∪Ai〉 |= ψ iff DB(AR[S,Bφ]∪Ai) |= PerfectRef(ψ,O), by the definition
of PerfectRef.

For (⇒), we assume 〈O,AR[S,Bφ] ∪ Ai〉 |= ψ and hence have a disjunct ψ′ in the
UCQ PerfectRef(ψ,O) and a homomorphism π of ψ′ into DB(AR[S,Bφ] ∪Ai), i.e.,
for all atoms α in ψ′, π(α) ∈ AR[S,Bφ] ∪ Ai. If the atom is flexible, then we get
π(α) ∈ Ai. But then, π also fits our rewriting for that case, which addresses the
corresponding relation in DB. We consider the case that the atom is rigid. If
π(α) ∈ Ai, then by Propositions 6.4 and 6.5 we know that DB |= pr(π(α),O|BR|o)(i)
or DB |= pr(π(α),O)(i), depending on the kind of atom, and hence our rewriting is
as required for this case. If π(α) ∈ AR[S,Bφ], then it can be readily checked that
the rewriting covers all parts referenced in the definition of AR[S,Bφ], again using
Propositions 6.4 and 6.5.

For (⇐), we can argument correspondingly, by considering a given homomor-
phism π and a satisfied disjunct in the UCQ pr(ψ,O|AR[S,Bφ])(i), which itself is a
conjunction (i.e., a CQ obtained from PerfectRef where the atoms are replaced
according to our above construction). We consider an arbitrary such replace-
ment for an atom α, which must be a disjunction, by the definition of the re-
placements; and at least one disjunct must be satisfied under π. If this disjunct
refers to an assertion of BR|φ,ARF|φ[Bφ] , or AQR[S] , then our construction yields that
π(α) ∈ AR[S,Bφ], by the definition of AR[S,Bφ]. If the disjunct refers to the rewrit-
ing pr(α,O), then Proposition 6.4 yields that π(α) ∈ AR[S,Bφ]. If the disjunct refers

52

to the rewriting pr(α,O|BR|o), then α is a rigid basic concept atom B(t) and Propo-
sition 6.5 yields that 〈O,BR|o ∪ Ai〉 |= B(π(t)). Since BR|o ⊆ AR[S,Bφ], we also
have 〈O,AR[S,Bφ] ∪Ai〉 |= B(π(t)). Then, Lemma 6.2 leads to B(π(t)) ∈ AR[S,Bφ].
Thus, π is also a homomorphism of PerfectRef(ψ,O) into DB(AR[S,Bφ] ∪Ai).

The Final Rewriting

We finally come to the rewriting we target. Our goal is to rewrite a given CQ ψ
in a way that the answers to the rewriting of ψ over the ABoxes Ai, 0 ≤ i ≤ n,
captured by DB, actually represent the answers to ψ w.r.t. the KB 〈O,A†KiR[S,Bφ]

〉,
with

A†KiR[S,Bφ]
:= AR[S,Bφ] ∪ AQR[S] ∪ AQι(i) ∪ ARF|aux[S] ∪ ARF|φ[Bφ] ∪ A

†
RF|o
∪ Ai.

That is, we want to adopt the approach proposed by Lemma 6.3. In particular, it
allows us to again adapt the original UCQs qunsat(O) and PerfectRef(ψ,O), consid-
ering all the above ABoxes. Note that, whereas AR[S,Bφ],AQR[S] ,ARF|aux[S] ,ARF|φ[Bφ] ,

andA†RF|o
are of constant size, AQι(i) andAi depend on the considered time point i.

We now start from the queries q†unsat(O) and PerfectRef(ψ,O)†, where ·† repre-
sents a function that applies the rewriting ·† to every CQ in the given UCQ.
We then adapt these queries to finally propose the rewritings prunsat(O|S,X,Bφ)(i)
and pr(ψ,O|S,X,Bφ)(i), given arbitrary (constant) sets S ⊆ 2{p1,...,pm}, X ∈ S, and
Bφ ⊆ {B(a) | B ∈ BC(O), a ∈ NI(φ)}.10

Let thus such sets S, X, and Bφ be given. Note that, while the database adressed
by the original UCQs qunsat(O) and PerfectRef(ψ,O) contains only the individuals
occurring in the input ABoxes, we need to consider auxiliary elements from Naux

I ,
Ntree

I , and Npro
I . Hence, we especially have to take care of the quantifiers in qunsat(O)

and PerfectRef(ψ,O), which quantify only over the individuals in the original
database. To this end, we consider each disjunct

q = ∃x1, . . . , x`.ϕ(x1, . . . , x`) ∧ ϕfilter(x1, . . . , x`)

contained in the original queries (i.e., because of the filter condition included by
·†, we do not have UCQs anymore), where ϕ(x1, . . . , x`) is a conjunction of atoms.
We then duplicate q several times such that we have 2` versions q0, . . . , q2`−1 of
it, and then augment the quantification of variables to consider also the elements
in Naux

I ∪ Ntree
I ∪ Npro

I , which however are of constant size, in an appropriate way.
Finally, we replace q by the disjunction q0 ∨ · · · ∨ q2`−1.

10Note that we here use the subscript part | S, X,Bφ to describe the dependence on the given
parameters, whereas we used the additionally included ABoxes, above. For brevity, we do not
use AR[S,Bφ] ∪ AQR[S] ∪ AQι(i) ∪ ARF|aux[S] ∪ ARF|φ[Bφ] ∪ A

†
RF|o

, here.

53

Formally, we consider each quantified variable xj in every qk where

k = b0 ∗ 20 + . . .+ bj ∗ 2j + . . .+ b`−1 ∗ 2`−1,

and drop the quantification if bj = 0. We then define

qk := ∃′x1. . . .∃′x`.repS,X,Bφ|ϕ∧ϕfilter
(i),

where ∃′xj stands for ∃xj if bj = 1, and for ∨aj∈Naux
I ∪Ntree

I ∪Npro
I

if bj = 0. For any
b ∈ {0, 1}, we denote by Qb(k) the set {xj | 0 ≤ j ≤ ` − 1, bj = b}. The
formula repS,X,Bφ|ϕ∧ϕfilter

(i) is constructed by replacing each atom α in ϕ ∧ ϕfilter
by repS,X,Bφ|α(i), which we define depending on the form of α:

• For all B ∈ BC(O), t ∈ NI(q) ∪ NV(q):

repS,X,Bφ|B(t)(i) :=

if t ∈ Q0(k), t = xj,
true if aj ∈ Naux

I ,
B(aj) ∈ AQR[S] ∪ AQX ,

true if aj ∈ Ntree
I ,

B(aj) ∈ ARF|aux[S] ∪ ARF|φ[Bφ] ,

∃x.

 ∧
a∈NI(φ)

(x 6= a)
 ∧ ∃p.pr(∃y.S(x,y),O|AR[S,Bφ])(p) if aj = a[S]S% ∈ Npro

I ,

〈∅,A∃S〉 |= B(aj),
false otherwise;

if t ∈ Q1(k) ∪ NI(q), ∨
B(a)∈AQX ,
a∈NI(φ)

(t = a)
 ∨ B(t, i) if B 6∈ BCR(O),

 ∨
B(a)∈AQR[S] ,

a∈NI(φ)

(t = a)
 ∨ pr(B(t),O|AR[S,Bφ])(i) otherwise;

54

• For all R ∈ N−R (O), t1, t2 ∈ NI(q) ∪ NV(q):

repS,X,Bφ|R(t1,t2)(i) :=

if t1, t2 ∈ Q0(k), t1 = xj1 , t2 = xj2 ,
if aj1 , aj2 6∈ Npro

I ,
true if R(aj1 , aj2) ∈

AQR[S] ∪ AQX ∪ ARF|aux[S] ,

true if R(aj1 , aj2) ∈ ARF|φ[Bφ] ,

false otherwise;

∃x.

 ∧
a∈NI(φ)

(x 6= a)
 ∧ ∃p.pr(∃y.S(x,y),O|AR[S,Bφ])(p) if aj1 = a[S]% ∈ Npro

I ,

R(aj1 , aj2) ∈ A∃S,
false otherwise;

if t1 ∈ Q0(k), t2 ∈ NI(q), t1 = xj,
true if R(aj, t2) ∈ AQR[S] ∪ AQX ,
true if R(aj, t2) ∈ ARF|φ[Bφ] ,

false otherwise;

if t1 ∈ Q0(k), t2 ∈ Q1(k), t1 = xj,∨
R(aj ,b)∈AQR[S]∪AQX ,

b∈NI(φ)

(t2 = b) if aj ∈ Naux
I ,

∨
R(aj ,b)∈ARF|φ[Bφ] ,

b∈NI(φ)

(t2 = b) if aj ∈ Ntree
I ,

∧
b∈NI(φ)

(t2 6= b) ∧ ∃p.pr(∃y.S(t2,y),O|AR[S,Bφ])(p) if aj = a[S]S ∈ Npro
I ,

R(aj, [S]) ∈ A∃S,
false otherwise;

if t1, t2 ∈ Q1(k) ∪ NI(q), ∨
R(a,b)∈AQX ,
a,b∈NI(φ)

(t1 = a) ∧ (t2 = b)
 ∨ R(t1, t2, i) if R 6∈ NRR,

 ∨
R(a,b)∈AQR[S] ,

a,b∈NI(φ)

(t1 = a) ∧ (t2 = b)
 ∨ pr(R(t1,t2),O|AR[S,Bφ])(i) otherwise;

• For all t ∈ NI(q) ∪ NV(q):

repS,X,Bφ|pro(t)(i) :=
{

true if t ∈ Q0(k), t = xj, aj ∈ Npro
I ,

false otherwise;

55

• For all t1, t2 ∈ NI(q) ∪ NV(q):

repS,X,Bφ|t1=t2(i) :=

t1 = t2 if t1, t2 ∈ Q1(k) ∪ NI(q),
true if t1, t2 ∈ Q0(k), t1 = xj1 , t2 = xj2 , aj1 = aj2 ,
false otherwise;

Note that all parts above referencing AQR[S] ,AQX ,ARF|aux[S] , and ARF|φ[Bφ] do not
depend on the input ABoxes in any way. The ‘replacement’ definitions basically
consider two different cases, depending on whether the atom contains a vari-
able which is now unquantified. If this is the case, corresponding assertions can
only occur within AQR[S] ∪ AQX ∪ ARF|aux[S] ∪ ARF|φ[Bφ] ∪ ARF|o ; otherwise, we also
take the input ABoxes and AR[S,Bφ] into account—by using the auxiliary query
pr(ψ,O|AR[S,Bφ]). Note that variables that are now unquantified but associated to
an element from Npro

I present an exception because we also consider the input
ABoxes then. This is because we need to ensure that prototypical elements as
considered actually occur in A†RF|o

.

Further, recall that for i = −1, the same definitions apply, but the underlying
ABox Ai is then empty.

The next lemma establishes the correctness of our translation of the original
UCQs over KiR[S,Bφ], into FO-formulas over DB.

Lemma 6.7. For every CQ ψ occurring in φ, and all S ⊆ 2{p1,...,pm}, X ∈ S,
Bφ ⊆

⋃
B∈BC(O),
a∈NI(φ)

{B(a)}, and i ∈ {−1, 0, . . . , n}, we have:

• DB(AKiR[S,Bφ]
) |= qunsat(O) iff DB |= prunsat(O|S,X,Bφ)(i).

• DB(AKiR[S,Bφ]
) |= PerfectRef(ψ,O) iff DB |= pr(ψ,O|S,X,Bφ)(i),

Proof. For (⇒), we assume DB(AKiR[S,Bφ]
) |= q′, where q′ is one of the two UCQs.

By Lemma 6.3 and the semantics of disjunction, we can equivalently consider the
ABox A†KiR[S,Bφ]

and assume DB(A†KiR[S,Bφ]
) |= (q′)†. We thus have a homomor-

phism π of some query

q† = ∃x1, . . . , x`.ϕ(x1, . . . , x`) ∧ ϕfilter(x1, . . . , x`)

contained in (q′)† into DB(A†KiR[S,Bφ]
), where ϕ(x1, . . . , x`) is a conjunction of

atoms. Further, we must have a query qk that is an adaptation of q† in our
translation of q† with

k = b0 ∗ 20 + . . .+ bj ∗ 2j + . . .+ b`−1 ∗ 2`−1,

where bj = 0 iff π(xj) ∈ Naux
I ∪ Ntree

I ∪ Npro
I , 0 ≤ j ≤ `− 1.

56

We now show that π is also a homomorphism of qk into DB if restricted to
NV(qk) ∪ NI(qk).11 For that, we first consider all conjuncts α of qk, and thus
the replacements repS,X,Bφ|α(i) that were introduced by our adaptation. By the
assumption, we have that DB(A†KiR[S,Bφ]

) |= π(α), where we π(α) denotes the as-
sertion obtained by replacing the variable(s) x in the atom α by π(x). We thus get
that π(α) ∈ A†KiR[S,Bφ]

, by the definition ofDB(A†KiR[S,Bφ]
). As mentioned above, the

definitions of the replacement formulas basically depend on whether the regarded
atom contains a variable xj, 0 ≤ j ≤ `− 1, such that π(xj) ∈ Naux

I ∪ Ntree
I ∪ Npro

I .
Let α now be an arbitrary atom containing a variable xj. First note that, if
α = pro(xj), the replacement is in accordance with the semantics of the predi-
cate pro (i.e., especially, pro must evaluate to false for any π(y) with y being a
quantified variable) such that π fits in this regard. Moreover, note that, after our
translation, ϕfilter is a conjunction of equality statements. We now consider the
other kinds of atoms α.

• We first assume π(xj) ∈ Naux
I ∪ NI(ARF|aux[S]). That is, we also regard ele-

ments from Ntree
I of the form aax%, where ax ∈ Naux

I . We hence must have
π(α) ∈ AQR[S]∪AQX ∪ARF|aux[S] , because the input ABoxes and AR[S,Bφ] only
regard elements of NI(K), and neither ARF|φ[Bφ] nor A

†
RF|o

contain elements
of this kind. For the case that π(xj) ∈ Ntree

I , we obtain π(α) ∈ ARF|aux[S] , by
similar arguments.
By the definition of repS,X,Bφ|α(i), we directly get that repS,X,Bφ|α(i) = true
if α does not contain a variable that is quantified within qk. To see this,
observe that π does not map to elements of Npro

I , ARF|aux[S] does not con-
tain basic concept assertions on elements of NI(K), nor does it contain role
assertions with named individuals (i.e., referring to those in NI(qk)).
The latter argument is also important for the case that α contains a vari-
able y that is quantified within qk; and hence we have π(y) ∈ NI(K).
We thus obtain π(α) ∈ AQR[S] ∪ AQX , for this case. In particular, α
must be of the form R(xj, y), R ∈ N−R . But π(α) = R(π(xj), π(y)) and
R(π(xj), π(y)) ∈ AQR[S] ∪ AQX then yield that repS,X,Bφ|α(i) contains the
disjunct (y = π(y)), for which π is obviously as required.

• We now assume π(xj) ∈ Ntree
I ∩ NI(ARF|φ[Bφ]). That is, we regard elements

from Ntree
I of the form ab%, where b ∈ NI(φ)—the elements from Ntree

I that re-
main to be considered. We hence must have π(α) ∈ ARF|φ[Bφ] , by arguments
similar to those in the previous item, and also the part remaining can be
shown correspondingly.

• If π(xj) ∈ Npro
I , then we obviously have π(α) ∈ A†RF|o

. Let aj be of the form

11Note that we did not define the notion of homomorphism w.r.t. disjunction (∨) and
(in)equality predicates in Section 2.2. But the corresponding extension should be obvious.

57

a[S]%. Then, π(α) must come from A∃S, and the latter must be part of A†RF|o
,

by the definition of ·†. The latter also yields that we have an individual
a ∈ NI(K) \NI(φ) such that A∃S(a) ⊆ ARF|o . We thus have some p such that
〈O,BR|o ∪ Ap〉 |= ∃S(a), by the definition of RF|o, which, in turn, yields
that the replacement is satisfied by the definition of pr(∃y.S(x,y),O|AR[S,Bφ])(p),
which contains the disjunct pr(∃y.S(x,y),O|BR|o)(p), and Proposition 6.5.

It thus remains to consider the case where α contains a variable y that is
quantified within qk and hence π(y) ∈ NI(K). Then, α must be of the form
R(xj, y), R ∈ N−R , and A†RF|o

must contain the assertion R(aj, π(y)). But
we then have also R(aj, [S]) ∈ A∃S (and % = S), S ∈ N−R . Moreover, it
can be readily checked that the formula which is then proposed as replace-
ment evaluates to true because we have that π(y) 6∈ NI(φ), using the same
arguments as in the previous case.

• We consider the case where the variable(s) in α are not mapped to our
auxiliary elements of Naux

I ∪ Ntree
I ∪ Npro

I (i.e., they are mapped to elements
of NI(K)) and first assume α to be a flexible atom. We then must have
π(α) ∈ AQX ∪ Ai. If π(α) ∈ AQX , we can argue similarly to the first
case. The other case, π(α) ∈ Ai, is also covered by the definition. Here,
the definition of DB based on Ai yields that π is as required (e.g., for
α = R(xl, a), a ∈ NI(K), we have DB |= R(π(xl), a, i) iff R(π(xl), a) ∈ Ai).
If α is rigid, then we have π(α) ∈ AR[S,Bφ] ∪ AQR ∪ AQX ∪ Ai. Since the
atom is rigid, we have that if π(α) ∈ AQX , then π(α) ∈ AQR ; and the latter
ABox is addressed directly in the replacement. The other cases are covered
by pr(α,O|AR[S,Bφ])(i), according to Proposition 6.6.

Given that π thus is a homomorphism of all our replacements into DB, we obtain
DB |= qk, which leads to DB |= q′′, our translation of the queries for which this
was to be shown.

We only sketch the proof for the direction (⇐) since it works similarly; it also does
not differ for the two items. By the semantics and the definition of the rewritings,
we have an adaptation qk in the given rewriting q′′ that is an adaptation of a
query q† in (q′)† and satisfied in DB. We thus have a homomorphism π of qk
into DB (i.e., w.r.t. the individual names and (existentially quantified) variables
in qk) and show that we can extend it adequately to cover the terms occurring
in q†. By our construction, qk is a disjunction; hence, by the semantics, we
have that one of these disjuncts is satisfied. We regard the individual names aj
from Naux

I ∪ Ntree
I ∪ Npro

I associated to the variables xj in q† and to that disjunct.
In particular, we extend π such that π(xj) = aj for all these variables, and
subsequently show that this definition satisfies our purpose. We now consider
an arbitrary conjunct representing the replacement for an atom B(t) in q† in the
disjunct under consideration (ignoring the conjunct of the form ϕfilter for now).

58

If π(t) ∈ Naux
I ∪ Ntree

I , then it can be readily checked that π is as required w.r.t.
B(t), by the definition of DB and the semantics. If π(t) ∈ Npro

I , we additionally
need to take Proposition 6.6 and Lemma 6.2 into account. The definition of DB
together with Proposition 6.6 lastly confirm the case where π(t) ∈ NI(K). The
proof is correspondingly for role atoms.

We lastly consider ϕfilter, which itself is a conjunction of implications. By our
extension of π in accordance with the individual names associated to the disjunct
under consideration, the definition of the predicate pro, and that of the replace-
ment of the corresponding atoms, we have that each atom occurring in ϕfilter is
satisfied under the extended π iff it evaluates to true in the rewritten form in DB.
Hence, π is as required.

Rewriting r-satisfiability

Based on the previous observations, we now can define the following FO-formulas,
for all S ⊆ 2{p1,...,pm}, X ∈ S, and Bφ ⊆ {B(a) | B ∈ BC(O), a ∈ NI(φ)} (cf.
Definition 4.8):

• f(R1)(i) := ¬prunsat(O|S,X,Bφ)(i);

• f(R2)(i) := ∧
p`∈X ¬pr(α`,O|S,X,Bφ)(i);

• f(R5)(i) := ∧
α∈Q¬R ,

ψ witness query
for α w.r.t. O

¬pr(ψ,O|S,X,Bφ)(i);

Lastly, we define the abbreviation

rsatS,X(i) := f(R1)(i) ∧ f(R2)(i) ∧ f(R5)(i),

which represents our (yet partial) rewriting of r-satisfiability. We next provide a
lemma capturing this intention.

Lemma 6.8. Let S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, ι : {0, . . . , n} → {1, . . . , k}, and
Bφ ⊆ {B(a) | B ∈ BC(O), a ∈ NI(φ)} be arbitrary. The tuple

(AR[S,Bφ], QR[S], Q
¬
R[S], RF[S,Bφ]),

is r-complete w.r.t. S and ι iff

• for all i, 0 ≤ i ≤ n, we have DB |= rsatS,Xι(i),Bφ(i);

• for all X ∈ S, we have DB |= rsatS,X(−1); and

• for all S ∈ N−R (O) \ N−RR and a ∈ NI(φ), we have ∃S(a) ∈ Bφ iff there is an
i, 0 ≤ i ≤ n, such that DB |= pr(∃S(a),O|S,Xι(i),Bφ)(i).

59

Proof. We consider Definition 4.8. Given its definition, it can be easily seen
that AR[S,Bφ] is an ABox type; and by the definitions of QR[S] and Q¬R[S], we
obviously have that (R3) and (R4) are satisfied. Hence, it remains to consider
Conditions (R1), (R2), (R5), and (R6). Considering Lemma 6.7, it is however
easy to see that the formulas in rsatS,X(i) cover the first three of them adequately.
We regard (R6) and first observe that, w.r.t. the ABoxes of (R6), the individual
names considered by RF|o can only occur within AR[S,Bφ] ∪

⋃
0≤i≤nAi, and those

of RF|aux[S] in AQR[S] ∪
⋃
X∈S AQX .

• If we have ∃S(b) ∈ RF|o, then there is an index i, 0 ≤ i ≤ n, such that
〈O,BR|o∪Ai〉 |= ∃S(b). By the definition of AR[S,Bφ], we get BR|o ⊆ AR[S,Bφ],
and hence also 〈O,AR[S,Bφ] ∪ Ai〉 |= ∃S(b).
Conversely, if 〈O,AR[S,Bφ] ∪Ai〉 |= ∃S(b), then, by Proposition 3.3, this as-
sertion follows from rigid assertions in BR|o and several rigid role assertions
of the form R(b, a), R ∈ N−R (O), each of which follows from a single Aj
(and O). But then the corresponding rigid basic concept assertions ∃R(b)
must also be in BR|o, by our construction, and hence ∃S(b) follows exclu-
sively from BR|o (and O). But then it is contained in RF|o, by the definition
of this set.

• For every ∃S(ay) ∈ RF|aux[S] for some ay ∈ Naux
I , we directly get from the

definition of RF|aux[S] that there must be anX ∈ S with 〈O,AQX 〉 |= ∃S(ay).
On the other hand, if 〈O,AQR[S] ∪ AQX 〉 |= ∃S(ay) for some X ∈ S, then
by Proposition 3.3 it can only follow from assertions involving ay. But
for ay there is a unique query α ∈ Qφ that contains y, and the fact that
ay ∈ Naux

I implies that αj ∈ QR[S]. Hence, there must be some X ′ ∈ S
with pj ∈ X ′, and in particular AQX′ implies all assertions about ay in
AQR[S] . This shows that ∃S(ay) already follows from AQX′ (and O), and
hence ∃S(ay) ∈ RF|aux[S].

• For RF|φ[Bφ], the definition together with the condition in the last item and
Lemma 6.7 yields ∃S(a) ∈ RF|φ[Bφ] iff there is an i, 0 ≤ i ≤ n, such that
〈O,AR[S,Bφ] ∪ AQR[S] ∪ AQι(i) ∪ Ai ∪ ARF|φ[Bφ]〉 |= ∃S(a) since RF|aux[S] and
RF|o cannot be involved here. However, note that all parts of ARF|φ[Bφ]

which are relevant to obtain such a conclusion (cf. Proposition 3.3) are
contained in AR[S,Bφ], by the definition of the latter and that of ARF|φ[Bφ] .
This means we get ∃S(a) ∈ RF|φ[Bφ] iff there is an i, 0 ≤ i ≤ n, such that
〈O,AR[S,Bφ] ∪ AQR[S] ∪ AQι(i) ∪ Ai〉 |= ∃S(a).

On the other hand, it is easy to see that (R6) together with the definition
of RF|φ[Bφ] implies that the last condition of the lemma is satisfied. Hence, this
condition is equivalent to (R6), which concludes the proof.

However, there is still one piece missing between Lemmas 6.8 and 4.9.

60

Lemma 6.9. Let S and ι be as above. Then there is an r-complete tuple w.r.t. S
and ι iff there is a set Bφ such that the tuple

(AR[S,Bφ], QR[S], Q
¬
R[S], RF[S,Bφ])

is r-complete w.r.t. S and ι.

Proof. The direction (⇐) is trivial.

We consider (⇒). Let (AR, QR, Q
¬
R, RF), be an r-complete tuple. We need to show

that there is a set Bφ such that (AR[S,Bφ], QR[S], Q
¬
R[S], RF[S,Bφ]) is r-complete as

well. We define

Bφ := {B(a) ∈ AR ∪RF | B ∈ BC(O), a ∈ NI(φ)}.

We subsequently show that this definition is as required. Our tuple obviously
satisfies Conditions (R3) and (R4), by construction. Further observe that, since
we constructed QR[S] and Q¬R[S] minimal w.r.t. Conditions (R3) and (R4), and the
given tuple also must respect them, we know that QR[S] ⊆ QR and Q¬R[S] ⊆ Q¬R,
and thus have AQR[S] ⊆ AQR .

For Condition (R6) and the sets RF|aux[S] and RF|o, we can apply the same argu-
ments as in the proof of Lemma 6.8. Since the given tuple satisfies (R6), we have
∃S(a) ∈ RF|φ[Bφ] iff there is i, 0 ≤ i ≤ n, with 〈O,AR∪AQR∪AQι(i)∪Ai〉 |= ∃S(a),
by our construction of RF|φ[Bφ]. Since Bφ contains all the rigid basic concepts on
elements of NI(φ) which are contained in AR, AR is an ABox type, AQR[S] ⊆ AQR ,
and the given tuple satisfies (R1) (i.e., the consistency established by (R1) ensures
that no other relevant basic concept assertions can be derived from assertions in
AR orAQR), Proposition 3.3 yields that ∃S(a) ∈ RF|φ[Bφ] iff there is an i, 0 ≤ i ≤ n,
such that 〈O,AR[S,Bφ] ∪ AQR[S] ∪ AQι(i) ∪ Ai〉 |= ∃S(a). Hence Condition (R6) is
also satisfied.

It thus remains to consider Conditions (R1), (R2), and (R5).

Let KiR be the consistent KB that exists for the given tuple by (R1), and start
with Condition (R1). By construction and the arguments above, we know that
AQR[S] ⊆ AQR and ARF|φ[Bφ] ⊆ ARF . For every ∃S(b) ∈ RF|aux[S], we know that it
follows already from some AQX with X ∈ S (and O), and hence by (R6) it must
be contained in RF. Similarly, if ∃S(b) ∈ RF|o, then it must follow from AR and
some Ai (since AR must contain all assertions in BR|o), and hence is contained
in RF. This means that ARF|φ[Bφ] ∪ ARF|o ∪ ARF|aux[S] ⊆ ARF .

By the construction of AR[S,Bφ], we further have that all positive assertions con-
tained in AR[S,Bφ] have to be positive in AR, because these assertions are implied
by some KB 〈O,AQR[S] ∪ ARF|φ[Bφ] ∪ Ai〉 and KiR is consistent, by assumption.
Hence, the only difference left between KiR and KiR[S,Bφ] (i.e., focusing on the as-
sertions in KiR[S,Bφ]; apart from additional assertions in KiR) might be based on

61

some negative rigid assertion(s) in AR[S,Bφ], which then must occur positively in
AR (i.e., because AR is an ABox type), and which leads to the inconsistency of
KiR[S,Bφ].

To show that this cannot be the case, we provide a model for KiR[S,Bφ]. Since the
given tuple satisfies (R1) and KiR must contain all positive assertions of KiR[S,Bφ],
we get that the KB [KiR[S,Bφ]]+, obtained by dropping the negative assertions
in KiR[S,Bφ], must be consistent, too. We now assume I to be the canonical
interpretation of that KB.

We start considering a negative role assertion ¬R(a, b) in AR[S,Bφ]. To show that
I 6|= R(a, b), we need to show that none of the ABoxes in [KiR[S,Bφ]]+ contains a
role assertion S(a, b) with O |= S v R. Consider first the case that S is rigid.
Since all rigid assertions that occur in AQι(i) are also contained in AQR[S] (∗), the
definitions of the ABoxes in ARF[S,Bφ] (which do not contain assertions with two
elements of NI(K)) and the definition of AR[S,Bφ] yield that all rigid role assertions
that only contain elements of NI(K) and occur in some of our ABoxes, AQι(i) or
AQR[S] , are positively contained in AR[S,Bφ], too. Because AR[S,Bφ] is an ABox type
(i.e., only one of S(a, b) or ¬S(a, b) is contained in it), this means that S(a, b)
cannot occur in one of the ABoxes. Assume now that S is flexible and S(a, b)
occurs in Ai or AQι(i) . By the definition of AR[S,Bφ] and Definition 4.4, we then
must have R(a, b) ∈ AR[S,Bφ] or R(a, b) ∈ QR[S]. But the latter also implies that
R(a, b) ∈ AR[S,Bφ], which contradicts our assumption.

Next, we assume ¬B(a) to be a negative rigid basic concept assertion in AR[S,Bφ].
Observe that we have ¬B(a) ∈ AR if a ∈ NI(φ), by the definitions of AR[S,Bφ]
and Bφ. Since AR is an ABox type and the given tuple satisfies (R1), we obtain
I ′ 6|= B(a), where I ′ is the canonical model of KiR, by Proposition 3.2. By our
above observation about the positive assertions in KiR[S,Bφ], this interpretation
must also satisfy [KiR[S,Bφ]]+. But we then must have I 6|= B(a), by Proposi-
tion 3.5.

We consider the case a 6∈ NI(φ). If I |= B(a), then there must be some positive
concept and role assertions about a in the ABoxes

AR[S,Bφ] ∪ ARF|o ∪ Ai, 0 ≤ i ≤ n,

that together imply B, by Proposition 3.3. However, by Lemma 6.2 and the defi-
nitions of RF|o and ARF|o we have that all relevant assertions within the latter are
contained in AR[S,Bφ]. But then, we only have to consider the ABox AR[S,Bφ]∪Ai,
for which we can again apply Lemma 6.2 to obtain α ∈ AR[S,Bφ]. This contradicts
our assumption that ¬α ∈ AR[S,Bφ], by the definition of AR[S,Bφ]. We thus can
conclude that the tuple (AR[S,Bφ], QR[S], Q

¬
R[S], RF[S,Bφ]) satisfies Condition (R1).

We consider the two conditions left. If one of them is contradicted, there must be a
homomorphism of one of the considered CQs into the canonical model of KiR[S,Bφ].

62

However, we already mentioned above that all positive assertions contained in
one of the ABoxes of KiR[S,Bφ] must also be contained in the ABox of KiR. By the
semantics, we thus obtain that any such homomorphism into the canonical model
of KiR[S,Bφ] would also be a homomorphism into the canonical model of KiR. This
contradicts the assumption that KiR satisfies Conditions (R1), (R2) and (R5), by
Proposition 3.5.

6.2 An Alternating Logarithmic Time Turing Machine

In this section, we finally provide an alternating Turing Machine (ATM) that
solves our problem in logarithmic time. However, before generally describing
this type of TM and our specific machine, we first introduce some notation and
establish auxiliary results that later facilitate our construction. In what follows,
we use the following notation:

• We assume φp to be separated according to Proposition 2.8 and denote by φb

its propositional Boolean abstraction, which is obtained from φp by replacing
all top-level future and past subformulas by propositional variables.

• We assume φb to contain the propositional variables q1, . . . , qo in place of
the top-level temporal subformulas f1, . . . , fo occurring in φp—such that fi
was replaced by qi, for 1 ≤ i ≤ o.

• P and F denote the sets of replaced top-level past and future subformulas
in φp, respectively, i.e., they form a partition of {f1, . . . , fo}.

• V denotes the set of all valuations v : {q1, . . . , qo} → {true, false} under
which φb evaluates to true.

• For each v ∈ V , we set

Pv := {fi ∈ P | v(qi) = true} ∪ {¬fi | fi ∈ P , v(qi) = false};

and Fv is defined analogously.

• For each S ⊆ 2{p1,...,pm}, the function fS : V → 2S is defined such that
X ∈ fS(v) iff there is an LTL-structure (wi)i≥0 with w0 = X and wi ∈ S,
i ≥ 1, that satisfies the propositional LTL formula ∧f∈Fv f.

For a valuation v ∈ V , the set fS(v) thus contains the worlds that may occur in
the beginning of some LTL-model (restricted to S) of the future subformulas Fv
induced by v. Note that these mappings are independent of the data and hence
can be computed in constant time. We can now split the LTL satisfiability test
as described below (cf. Lemma 4.3). Here, an LTL-structure over S is such that
it uses only worlds from S.

63

Lemma 6.10. Let S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and w0, . . . , wn ∈ S. The exis-
tence of an LTL-structure J over S starting with w0, . . . , wn such that J, n |= φp

is equivalent to the existence of a valuation v ∈ V such that

• wn ∈ fS(v), and

• (w0, . . . , wn, wn, . . .), n |=
∧
f∈Pv f .

Proof. Given such an LTL-structure J, the valuation v can be obtained by check-
ing which elements of {f1, . . . , fo} are satisfied at time point n, and the LTL-
structure needed for fS(v) is defined as the substructure of J starting at n. Fi-
nally, note that the satisfaction of the past formula ∧f∈Pv in the LTL-structure
(w0, . . . , wn, wn, . . .) at time point n does not depend on any time point after n.

Conversely, it is easy to see that J can be constructed by appending w0, . . . , wn
and the LTL-structure obtained from the fact that wn ∈ fS(v), since past and
future subformulas are not affected by the worlds after (before) time point n.

We now focus on the last condition of Lemma 6.10 and hence on the past sub-
formulas. We further consider the following:

• The set Cl(P) denotes the closure under negation of ⋃f∈P Sub(f).

• The set Y consists of all types for P , which are subsets Y of Cl(P) that
satisfy the following conditions:

– for every f ∈ Cl(P), we have f ∈ Y iff ¬f /∈ Y ; and
– for every f1 ∧ f2 ∈ Cl(P), we have f1 ∧ f2 ∈ Y iff {f1, f2} ⊆ Y .

• For each S ⊆ 2{p1,...,pm}, the mapping pS : Y → 2S is defined such that
X ∈ pS(Y) iff

– whenever pi ∈ Y , then pi ∈ X; and
– whenever ¬pi ∈ Y , then pi /∈ X.

• We call a pair (Y −1, Y) ∈ Y × Y t-compatible if the following hold:

– #−f1 ∈ Y iff f1 ∈ Y −1;
– f1 S f2 ∈ Y iff either (i) f2 ∈ Y , or (ii) f1 ∈ Y and f1 S f2 ∈ Y −1.

• A set Y ∈ Y is called initial if it does not contain formulas of the form
#−f , and for all f1 S f2 ∈ Y , we have f2 ∈ Y .

Lemma 6.11. Let S ⊆ 2{p1,...,pm}, v ∈ V, and w0, . . . , wn ∈ S. Then, we have
(w0, . . . , wn, wn, . . .), n |=

∧
f∈Pv f iff there is a mapping ι′ : {0, . . . , n} → Y such

that

64

• ι′(0) is initial and Pv ⊆ ι′(n);

• for all i, 0 ≤ i < n, the pair (ι′(i), ι′(i+ 1)) is t-compatible;

• for all i, 0 ≤ i ≤ n, we have wi ∈ pS(ι′(i)).

Proof. The mapping ι′ can be defined from w0, . . . , wn by considering exactly
which past subformulas are satisfied at each time point, which does not depend
on time points after n. Obviously, this mapping must be compatible with the
worlds wi (formalized by pS), and satisfy the remaining conditions because of the
temporal semantics.

Conversely, given ι′, it can be shown by induction on i that for all f ∈ Cl(P) we
have f ∈ ι′(i) iff (w0, . . . , wn, wn, . . .), i |= f . The condition on ι′(n) then yields
the claim.

We now briefly introduce LogTime-bounded ATMs and then apply the above
observations to construct an ATM as we need. As in [MBIS90], we assume (de-
terministic) LogTime TMs to dispose of the following:

• a read-only input tape with an input string of length l,

• a constant number of read/write work tapes, of which the TM can access
up to O(log l) cells, and

• a read/write input address tape, of which the TM can access up to log l
cells (to hold the address of one input cell).

We thus adopt the random access model of [CKS81], i.e., the symbols on the input
tape are accessed by writing the address of the symbol to be read (in binary) on
the address tape—instead of by sequentially reading the input. Note that such
a model is needed to be able to reach any position of the input string within
O(log l) time. According to [MBIS90, Lemma 7], a LogTime TM with input of
length l can

• add and subtract numbers of O(log l) bits and

• determine the logarithm of a binary number of O(log l) bits.

We define an alternating LogTime Turing Machine with universal and existential
states as an extension of a LogTime TM in the usual way (cf. [CKS81]).

We now construct an ATM M as required for our TCQ satisfiability test. Ini-
tially, the two constants sets S and Bφ are guessed (see Lemma 6.8). The idea of
the construction is to successively guess the mapping ι′ required for Lemma 6.11
as follows. Initially, only the two sets ι′(0) and ι′(n) are guessed such that

65

ι′(0) is initial and Pv ⊆ ι′(n). Note that Y is constant, and hence this can
be done in constant time. The computation proceeds by splitting the sequence
0, . . . , n in half, guessing a new pair (ι′(n+1

2), ι′(n+1
2 + 1))12 and checking it for

t-compatibility, and proceeding with two copies of the ATM who remember only
the pairs (ι′(0), ι′(n+1

2)) and (ι′(n+1
2 +1), ι′(n)), respectively. These copies are now

responsible for checking the conditions of Lemma 6.11 for the two subsequences
0, . . . , n+1

2 and n+1
2 +1, . . . , n, respectively. Theses sequences are successively split

in this manner until each copy knows two sets ι′(i), ι′(i + 1) for adjacent time
points i and i + 1, which are then also checked for t-compatibility. Note that in
this way we only guess each ι′(i) once, i.e., no conflicting guesses for the same
time point occur. It remains to check for each i, 0 ≤ i ≤ n, whether is a wi ∈ S
such that wi ∈ pS(ι′(i)), DB |= rsatS,wi(i), and DB 6|= pr(∃S(a),O|S,wi,Bφ)(i) for any
S ∈ N−R (O) \ N−RR and a ∈ NI(φ) with ∃S(a) /∈ Bφ (cf. Lemma 6.8). Additionally,
we must ensure that wn ∈ fS(v) (cf. Lemma 6.10). An special copy of the ATM
verifies that DB |= rsatS,X(−1) holds for all X ∈ S. For the remaining part of
Lemma 6.8, we need to guess, for each ∃S(a) ∈ Bφ of the form above, which time
point i satisfies pr(∃S(a),O|S,wi,Bφ)(i). This can be done by maintaining in each
branch of the computation the information which elements of Bφ it is respon-
sible for. If all these checks succeed, the guessed sets ι′(0), . . . , ι′(n) obviously
satisfy Lemma 6.11, and we can define ι(i) in such a way that Xι(i) = wi (where
S = {X1, . . . , Xk}), in order to satisfy Lemmas 4.3 and 6.8. The behavior of the
ATM is illustrated in Figure 1.

For the tests of the form DB |= rsatS,X(i) and DB |= pr(∃S(a),O|S,X,Bφ)(i), we employ
ATMsMrsatS,X andMpr(∃S(a),O|S,X,Bφ) , respectively, that run in logarithmic time.
Such machines exist since the former problem is in AC0 [CDGL+05, CDGL+09],
which is contained in ALogTime. These ATMs, which are used only at the end
of each computation path of our ATM M, receive as input the index i of the
current time point, and the constant sets S, Bφ, wi := X (which is guessed for
each i independently), and possibly a constant assertion ∃S(a).

Note that the number n can be retrieved from the input via an FO-query, which
is why we assume it to be given with the input (e.g., a database could provide
the number n in a view defined by the FO(<)-query ¬∃t.t > n). We hence can
assume n to be written on the input tape in binary, at the beginning of the tape,
separated from the other input by a special marker symbol. The rest of the
input consists simply of the database DB, in whatever format is required by the
machinesMrsatS,X andMpr(∃S(a),O|S,X,Bφ) . Recall that all other parts of the input,
in particular m and O, are constant, and hence can be encoded into the ATM
itself.

Next to the input and address tape, M has several work tapes to store the
following information:

12For ease of presentation, we will assume in the following that n + 1 is a power of 2. If this
is not the case, the ATM would have to handle non-uniform divisions of the sequence 0, . . . , n.

66

0000

0000

A0

0001

A1

...

...

1000

1000 1011

1100

1100

· · ·

1110

An−1

1111

An

0

1

2

3

log(n+ 1) = 4

`

Figure 1: A sketch of the computation of the ATM for n = 15. The number `
denotes the current level of the computation tree. The nodes are labeled with the
index i (in binary notation) that represents the computation path by designating
the left border of the currently considered subsequence of 0, . . . , n. The copy of
the ATM designated by the marked node (i = 1000, ` = 3) guesses a t-compatible
pair of sets from Y , which corresponds to (ι′(1011), ι′(1100)). The ATM then
splits into two copies for each subtree, each continuing with one of the guessed
indices.

1. the sets S ⊆ 2{p1,...,pm} and Bφ ⊆ {B(a) | B ∈ BC(O), a ∈ NI(φ)} consid-
ered by the ATM, and a subset B′φ ⊆ {∃S(a) ∈ Bφ | S ∈ N−R (O) \ N−RR};
temporarily, one additional such subset may be stored on this tape;

2. the currently considered level ` of the computation tree;

3. the currently considered branch of the tree, represented by the index i of
the left border of the considered subsequence of 0, . . . , n;

4. two sets Yl, Yr ∈ Y , which are associated with the left and right border, re-
spectively, of the currently considered subsequence of 0, . . . , n; temporarily,
two additional sets from Y are stored on this tape;

5. the valuation v ∈ V considered by the ATM; and

6. additional work tapes needed forMrsatS,X .

Thus, we have a constant number of read/write work tapes. Moreover, the total
length of tapes 1, 4, and 5 is constant, tape 2 requires O(log log(n+ 1)) bits, and
tape 3 requires log(n+ 1) bits.

M works as follows:

67

1. M guesses sets S ⊆ 2{p1,...,pm} and Bφ ⊆ {B(a) | B ∈ BC(O), a ∈ NI(φ)},
computes B′φ := {∃S(a) ∈ Bφ | S ∈ N−R (O) \ N−RR}, and stores all three sets
on tape 1. Then,M guesses a valuation v ∈ V and stores it on tape 5.

2. The `-counter on tape 2 is initialized to ` := log(n+ 1).

3. The index of the left border stored on tape 3 is initialized to i := 0.

4. M guesses two sets ι′(0) and ι′(n) from Y , checks whether ι′(0) is initial
and whether Pv ⊆ ι′(n), and stores the sets on tape 4.

5. M then continuously executes the below steps, while ` > 1:

(a) M decreases ` by 1. Hence, the sets ι′(i) and ι′(i + 2`+1 − 1) are
currently stored on tape 4.13

(b) M guesses two new sets ι′(i + 2` − 1) and ι′(i + 2`) and stores them
temporarily on tape 4.

(c) M checks whether the pair (ι′(i + 2` − 1), ι′(i + 2`)) is t-compatible.
This is a simple syntactic check on two sets of constant size.

(d) M guesses a partition of B′φ into B1
φ and B2

φ.
(e) M splits into two copies. The “left” copy continues the computation

with the sets ι′(i) and ι′(i + 2` − 1) on tape 4, the index i on tape 3,
and B′φ := B1

φ on tape 1. The “right” copy continues with ι′(i + 2`),
ι′(i + 2`+1 − 1), i + 2`, and B2

φ. Hence, they are responsible for the
subsequences i, . . . , i+ 2` − 1 and i+ 2`, . . . , i+ 2`+1 − 1, respectively.

6. When ` reaches 1, this counter is decreased one final time. Tape 4 now holds
the adjacent sets ι′(i) and ι′(i+ 1). M then checks whether (ι′(i), ι′(i+ 1))
is t-compatible. M again guesses a partition of Bφ into B(i)

φ and B(i+1)
φ .

7. Then,M again splits into two copies. The “left” copy now holds only the
single set ι′(i) on tape 4, i on tape 3, and B(i)

φ on tape 1.. The “right” copy
continues with ι′(i+ 1), i+ 1, and B(i+1)

φ .
Additionally, at i = 0 a special third copy is created where tape 4 is empty
and tape 3 contains −1.

8. In the copies with ` = 0 and i ∈ {0, . . . , n}, we know that ι′(i) is stored on
tape 4 and B(i)

φ is stored on tape 1. M now guesses a wi ∈ S and verifies
the following conditions:

• wi ∈ pS(ι′(i));
• if i = n, then wn ∈ fS(v);
• DB |= rsatS,wi(i) (usingMrsatS,wi with additional input i);

13In the first iteration, we have i = 0 and i + 2`+1 − 1 = 2log(n+1) − 1 = n.

68

• DB 6|= pr(∃S(a),O|S,wi,Bφ)(i) for all S ∈ N−R (O) \ N−RR and a ∈ NI(φ) with
∃S(a) /∈ Bφ (usingMpr(∃S(a),O|S,X,Bφ)); and

• DB |= pr(∃S(a),O|S,wi,Bφ)(i) for all ∃S(a) ∈ B(i)
φ .

9. In the remaining copy with ` = 0 and i = −1, M splits into one copy for
each X ∈ S, and checks whether DB |= rsatS,X(−1) (using MrsatS,X with
input −1).

If any of the described tests fail, the current copy ofM halts in a rejecting state,
which results in an unsuccessful run. Otherwise, each copy of M halts in an
accepting state, confirming the satisfiability of φ w.r.t. K.

Theorem 6.12. Entailment of r-simple TCQs in DL-LiteHhorn is in ALogTime
w.r.t. data complexity, even if NRR 6= ∅.

Proof. Let φ be an r-simple TCQ, K = 〈O, (Ai)0≤i≤n〉 be a TKB, and DB be
defined as above. Note that DB is simply a different representation of the
ABox sequence (Ai)0≤i≤n that is of the same size. The ATM M accepts the
input n and DB (in logarithmic time) iff there are S = {X1, . . . , Xk} ⊆ 2{p1,...,pm},
Bφ ⊆ {B(a) | B ∈ BC(O), a ∈ NI(φ)}, v ∈ V , ι′ : {0, . . . , n} → Y , and worlds
w0, . . . , wn ∈ S such that

• ι′(0) is initial and Pv ⊆ ι′(n);

• for each i, 0 ≤ i < n, the pair (ι′(i), ι′(i+ 1)) is t-compatible;

• for each i, 0 ≤ i ≤ n, we have wi ∈ pS(ι′(i));

• wn ∈ fS(v);

• for each i, 0 ≤ i ≤ n, we have DB |= rsatS,wi(i);

• for each S ∈ N−R (O) \ N−RR and a ∈ NI(φ), we have ∃S(a) ∈ Bφ iff there
exists an i, 0 ≤ i ≤ n, with DB |= pr(∃S(a),O|S,wi,Bφ)(i); and

• for each X ∈ S it holds that DB |= rsatS,X(−1).

By Lemmas 6.10 and 6.11, this is equivalent to the existence of S and wi as above
and an LTL-structure J such that

• J starts with w0, . . . , wn;

• J uses only worlds from S;

• J, n |= φp;

69

• for each i, 0 ≤ i ≤ n, we have DB |= rsatS,wi(i);

• for each S ∈ N−R (O) \ N−RR and a ∈ NI(φ), we have ∃S(a) ∈ Bφ iff there
exists an i, 0 ≤ i ≤ n, with DB |= pr(∃S(a),O|S,wi,Bφ)(i); and

• for each X ∈ S it holds that DB |= rsatS,X(−1).

Due to the condition that each wi is an element of S, the sequence w0, . . . , wn can
equivalently be expressed by a mapping ι : {0, . . . , n} → {1, . . . , k} with wi = Xι(i)
for all i, 0 ≤ i ≤ n.

Hence, by Lemmas 6.8 and 6.9, the above is equivalent to the existence of S and ι
and an r-complete tuple w.r.t. S and ι such that φp is t-satisfiable w.r.t. S and ι.
Finally, by Lemmas 4.3 and 4.9, we obtain the equivalence to the satisfiability
of φ w.r.t. K. The claim follows from the fact that the class ALogTime is closed
under complement (see [CKS81, Theorem 2.5]).

7 Beyond the horn Fragment

In this section, we show that for the krom and bool fragments of DL-Lite, the
above complexity results do not apply any more, even if role hierarchies are
omitted. In particular, TCQ entailment gets as hard as for very expressive DLs,
such as SHQ.

7.1 Lower Bounds

For data complexity, the co-NP lower bound follows from co-NP-hardness of
conjunctive query answering w.r.t. DL-Litekrom-knowledge bases. The latter is
a consequence of [CDL+07, Theorem 48 (1)], where the hardness is stated for
DL-Litecore extended by CIs that allow for ¬A, A ∈ NC, on the left-hand side.
In the remainder of this section, we hence focus on combined complexity and
investigate lower bounds of TCQ entailment in DL-Litekrom.

Our query formalism enables us to express several kinds of GCIs not expressible
in DL-Litekrom via appropriate negated CQs (cf. Table 7.1).14 We use (fresh)
symbols of the form A1 to denote the complements of given concept names A1,
which can be expressed by the CIs described in the following lemma.

Lemma 7.2. Let (C v D,φ) be one of the pairs of a GCI and a TCQ given in
Table 7.1 and I be a model of > v Ai t Ai and Ai u Ai v ⊥, for all concept
names Ai occurring in D. Then, we have I |= C v D iff I |= φ.

14We assume the reader to be familiar with the common semantics of these GCIs. A good
introduction is given in [BCM+03].

70

GCI TCQ
∃R.A1 v A2 ¬∃x, y.R(x, y) ∧ A1(y) ∧ A2(x)
A1 v ∀R.A2 ¬∃x, y.A1(x) ∧R(x, y) ∧ A2(y)
A1 u · · · u Am v Am+1 t · · · t Am+n ¬∃x.A1(x) ∧ · · · ∧ Am(x) ∧ Am+1(x) ∧ . . . Am+n(x)

Table 7.1: The rules of our transformation

Proof. Note that φ is of the form ¬ψ with ψ being a CQ. We now assume I 6|= ¬ψ
and thus get I |= ψ, and a corresponding homomorphism, by Definition 2.5.
Especially note that the atoms in the CQ ψ always refer to the concepts and roles
of the corresponding GCI C v D in the same way (i.e., C and ¬D are modeled
in the CQ). We thus have an element e in the domain of I such that e ∈ CI and
e 6∈ DI , by our assumption on the GCIs w.r.t. D in O and the semantics of the
∀ constructor. This directly yields CI 6⊆ DI and thus I 6|= C v D. The other
direction follows from similar arguments.

We thus can always use GCIs as described above in the ontology we construct
for proving hardness of TCQ entailment. More precisely, by the above lemma,
we have 〈O, (Ai)0≤i≤n〉 |= φ iff 〈O′, (Ai)0≤i≤n〉 |= ((22−ψ) → φ), where O′ is
obtained by removing all GCIs of the forms listed in Table 7.1 from O and adding
the necessary CIs to express the complements Ai, and ψ is the conjunction of the
negated CQs simulating the removed GCIs. With the same construction, φ is
satisfiable w.r.t. 〈O, (Ai)0≤i≤n〉 iff (22−ψ)∧φ is satisfiable w.r.t. 〈O′, (Ai)0≤i≤n〉.
This means that we can also use CIs of DL-Litebool in DL-Litekrom, which yields
the following corollary.

Corollary 7.3. TCQ entailment in DL-Litebool can be polynomially reduced to
TCQ entailment in DL-Litekrom.

This enables us to directly derive two rather strong lower bounds, even without
any rigid symbols. They follow from ExpTime-hardness of UCQ entailment in
DL-Litebool [BMP14, Corollary 2] and 2-ExpTime-hardness of UCQ entailment
in DL-LiteHbool [BMP13, Theorem 12].

Theorem 7.4. Regarding combined complexity, TCQ entailment is

• ExpTime-hard in DL-Litekrom and

• 2-ExpTime-hard in DL-LiteHkrom,

even if NRC = ∅ and NRR = ∅.

In addition to the CIs allowed in DL-Litebool, more complex GCIs with nested
conjunctions and disjunctions can be reduced to the forms in Table 7.1 by intro-
ducing appropriate abbreviations, as long as ∀R.A only appears on the right-hand

71

side and ∃R.A only appears on the left-hand side. For example, the GCI

A1 t A2 t ∃R.A3 v A4 t ∀R.(A1 u ∃S)

can be expressed by

A1 v A4 t A′, A2 v A4 t A′, A′′′ v A4 t A′,
∃R.A3 v A′′′, A′ v ∀R.A′′, A′′ v A1, A

′′ v ∃S.

These GCIs can then again be simulated by negated CQs as described above.
Moreover, this transformation is always polynomial.

In the following, we provide further reductions to TCQ entailment in DL-Litekrom
(i.e., for the two cases of considered rigid symbols). We therein use such complex
GCIs without further notice.

For the case where NRR = ∅ but possibly NRC 6= ∅, we apply a result of [BT15c,
BT15a], where NExpTime-hardness is shown for the satisfiability problem of
formulas in EL⊥-LTL, a formalism similar to TCQs, in the case that NRC 6= ∅
but NRR = ∅. Formulas in EL⊥-LTL are similar to TCQs in that they consist
of EL⊥-axioms (i.e., assertions and GCIs which may contain the concept con-
structors >, ⊥, u, and qualified existential restrictions) that are combined via
the LTL operators. The corresponding satisfiability problem further differs from
TCQ entailment because neither a global ontology nor a sequence of ABoxes is
considered.
Theorem 7.5. TCQ entailment in DL-Litekrom is co-NExpTime-hard w.r.t.
combined complexity if NRC 6= ∅.

Proof. The proof in [BT15a] is a reduction from a NExpTime-hard variant of
the domino problem. However, the assertions used in the EL⊥-LTL formula φ
constructed there are of the form A(a) for A ∈ NC and a ∈ NI, and hence
can already be seen as TCQs. Furthermore, all GCIs occurring in φ are of the
form > v A1, A1 v ⊥, or A1 u A2 v A3, and hence by Lemma 7.2 we can
directly replace them by negated CQs according to Table 7.1, without affecting
the semantics.

The next theorem covers the remaining case where NRR 6= ∅.
Theorem 7.6. TCQ entailment in DL-Litekrom is 2-ExpTime-hard w.r.t. com-
bined complexity if NRR 6= ∅.

Proof. For the proof, we adapt a reduction proposed in [BGL12] by using ideas
of [KRH13]. [BGL12] reduce the word problem for exponentially space bounded
alternating Turing machines to the satisfiability problem in ALC|gGCI-LTL (a
formalism similar to EL⊥-LTL).

We first provide some details on the ATMs we consider. An ATM is a tuple
M = (Q,Σ,Γ, q0,∆), where

72

• Q = Q∃ ∪ Q∀ ∪ {qa, qr} is a finite set of states, partitioned into existential
states (Q∃), universal states (Q∀), an accepting state qa, and a rejecting
state qr;

• Σ is the input alphabet with Σ ⊆ Γ;

• Γ is the set of working symbols containing a blank symbol B 6∈ Σ;

• q0 ∈ Q∃ ∪Q∀ is the initial state; and

• ∆ denotes the transition relation, for which we have

∆ ⊆ Q× Γ×Q× Γ× {L,R}.

We use ∆(q, σ) to denote the set {(p, %,M) | (q, σ, p, %,M) ∈ ∆}.

As usual, the computation of an ATM on an input word is described as a se-
quence of configurations, and we speak of a halting configuration if the ATM is
in an accepting or rejecting state. For both the different kinds of state and the
transition relation we employ the usual semantics [CKS81]. We assume w.l.o.g.
that an ATM never moves to the left when it is on the left-most tape cell, that
any configuration which is no halting configuration has at least one successor con-
figuration, and that all computations of an ATM are finite (cf. [CKS81, Theorem
2.6]). Further, we may assume that the length of every computation on a word
w ∈ Σk is bounded by 22k , and that every configuration in such a computation
can be represented using ≤ 2k symbols, plus one to represent the state.

Given an ATMM and an input word w, the decision problem we focus on is the
word problem: the question ifM accepts w or not. According to [CKS81, Corol-
lary 3.5], there is an exponentially space-bounded ATM M = (Q,Σ,Γ, q0,∆)
with only finite computations, for which the word problem is 2-ExpTime-hard.
In what follows, we show that this problem can be reduced to TCQ satisfiability
in DL-Litekrom with rigid role names.

To this end, let w = σ0 . . . σk−1 ∈ Σ∗ be an arbitrary input word given toM. We
next construct a TCQ φM,w and a TKB 〈OM,w, (A0)〉 in DL-Litekrom such that
M accepts w iff φM,w is satisfiable w.r.t. 〈OM,w, (A0)〉.

To get an intuition of the reduction, consider Figure 2, which shows (parts of)
example computations of such an ATM. In the tree describing all computations
(i.e., one path describes one computation), the individual configurations are rep-
resented explicitly, one after the other, and each as a chain, such that every tree
node represents one of the 2k tape cells of a configuration, which are numbered
by the A counter. Each tree node or cell is then represented by an individual in
the reduction; and, since these individuals are connected by rigid roles, the com-
putation tree ‘exists’ at all time points, numbered by the A′ counter. We now
exemplarily describe the modeling of the transitions and corresponding successor

73

A/A′

0

1

2

...

2k − 1

0

1

2

3
...

0
a

qI , %0

Tq0,σ0,R

A = A′ + 1, %1,

σ′0, %2

...

σ′0, B

A = A′, σ0
...

Tq1,σ1,R

%1,

σ′1, %2

...

σ′1, B

σ1

σ′1,q1, %1

A = A′ + 2,%2,
Tq3,σ3,L

...

q′3, σ
′
1

...

σ′1,%2

Tq2,σ2,R

%1,

...

1
a

A = A′,
%1,

Tq0,σ0,R

q′0, %
′
1,%2

...

q′0, %
′
1,σ0

q0, %1

...

Tq1,σ1,R

q′1, %
′
1,%2

...

q′1, %
′
1,σ1

q1, %1

Tq3,σ3,L

A = A′ + 1,%2

σ′3
...

Tq4,σ4,R

σ′4
...

...

2 · · ·
a

A = A′,
%2

...

%′2,σ0
...

...

%′2,σ1

%′2,q1, %1

A = A′, %2
...

%2,
Tq4,σ4,R

...

q′4, %
′
2

...

Figure 2: A sketch of the modeling of an exemplary computation tree of the ATM.
The tree nodes represent domain individuals and are labeled with relevant con-
cepts. The named individual a represents the first cell in the initial configuration,
qI is the initial machine state, and %0 the symbol in the first tape cell. Some of
the rigid concepts are printed in gray to differentiate the time points where they
are induced. The figure also abstracts from the fact that the temporal counter
A′ has to be considered modulo 2k if used in concepts such as A = A′.

configurations. In particular, we ‘propagate’ the new state q and symbol σ of a
transition and the cell contents % (of the considered configuration) that do not
change to the successor configuration, which follows in the tree. To represent all
this information, we use corresponding rigid concept names and then propagate
them via flexible concept names (marked by a prime) using the temporal dimen-
sion. More specifically, the tape contents of cell i are propagated to the successor
configuration if the individual that represents the cell satisfies A = A′ (e.g., %1
and %2 at time points 1 and 2, respectively) and the cell is not under the head
(e.g., %0 is not propagated). The cell under the head can be identified because it
satisfies a state symbol q. It thus determines the state of the considered configu-
ration and, together with the symbol in the cell, the transitions to be considered.
In a universal state, for each such transition, the configurations have one branch
identified by a specific concept of the form Tq0,σ0,M (for an existential state, there
is only one branch). The concept Tq0,σ0,M initiates the propagation of the symbol
σ0 to the successor configuration if A = A′+1. In this way, the propagation stops
correctly in the next configuration at the cell that has been previously under the
head, which satisfies A = A′ (i.e., it is left to the cell that previously satisfied
Tq0,σ0,M). The new state q0 is similarly propagated, but the corresponding time
point specifically depends on the direction of the move M . For a right move,
the propagation happens if the individual satisfying Tq0,σ0,M also satisfies A = A′

74

and thus stops at the same cell in the successor configuration (recall that the
individual satisfying Tq0,σ0,M represents the cell right to the head) (e.g., see the
propagation of q0 and q1 at time point 1). For left moves, the propagation should
stop two cells left to the individual satisfying a concept of the form Tq3,σ3,L; we
thus require the individual to satisfy A = A′ + 2 to start the propagation.

Before formally describing this intuition, we now introduce all symbols we use in
detail:

• A single named individual a identifies the root of the tree.

• Rigid role names Rq,%,M , for all q ∈ Q, % ∈ Γ, M ∈ {L,R}, represent the
edges of the tree. We collect all these role names into the set R.
Note that these roles represent the major difference to the reduction of
[BGL12], where a single rigid role fulfills this purpose, but is used within
qualified existential restrictions on the right-hand side of GCIs.

• A rigid concept name, for each element in Q ∪ Γ, represents the tape con-
tent, the current state, and the head position in each configuration in the
tree: if M is in a state q and the head is on the i-th tape cell, then the
individual (tree node) representing this cell satisfies the concept name q,
and correspondingly for the symbols in Γ.

• Rigid concept names A0, . . . , Ak−1, are used to model the bits of a binary
counter numbering the tape cells in the configurations.

• Rigid concept names I and H point out special cells. In particular, I
is satisfied by the nodes representing the initial configuration, and H is
satisfied by all nodes representing a tape cell that is located (anywhere) to
the right of the head in the current configuration.

• The rigid concept names Tq,%,M , for all q ∈ Q, % ∈ Γ, M ∈ {L,R}, are
satisfied by an individual, representing a cell, if the head is on the left
neighboring cell and the ATM executes the transition (q, σ,M), in the de-
scribed configuration.

We use the temporal dimension to synchronize successor configurations in accor-
dance with the chosen transition, i.e., to model the change in tape contents, head
position, and state from one configuration to the next:

• Flexible concept names A′0, . . . , A′k−1 are used to model a counter in the
temporal dimension. Dual to the counter A0, . . . , Ak−1, its value is incre-
mented (modulo 2k) along time but, at every time point, all individuals
share the value of this counter. It is used for the synchronization of succes-
sor configurations: if the A′ counter has value i, then the symbol in the i-th

75

tape cell of any configuration (where i is not the head position) is propa-
gated to the i-th tape cell of its successor configuration. Similarly, the state
is propagated from the cells c directly right of the head position, each point-
ing out a specific transition (via the symbols Tq,%,M), to the corresponding
cells of the successor configurations (i.e., these cells have the same position
on the tape as c for right-moves and otherwise lie two to the left);

• We further use a flexible concept name, for each element in Q∪Γ, similarly
distinguished from the rigid version by a prime. Considering a fixed time
point, these names are used for the propagation of the state q or cell content
σ of a cell c to the corresponding cell in the successor configuration(s). This
propagation happens via the right neighboring cells of that configuration,
which then satisfy q′ and σ′, respectively, at the time point whose A′-counter
corresponds to the A-counter at c.

We may further use concept names of the form A, for given concept names A, as
detailed in Lemma 7.2.

We now define the TCQ φM,w and the TKB 〈OM,w, (A0)〉, by describing the
conjuncts of φM,w and listing the GCIs contained in OM,w. To enhance read-
ability, we may use GCIs that are not in DL-Litekrom, but can be transformed as
described in the beginning of this section. We first express the tree structure in
general:

• We enforce all elements to have some successor except if they satisfy qa or qr.
Since the only elements satisfying a symbol fromQ are the ones representing
the position of the head, the tree generation thus is only stopped if we meet
a halting configuration:

qa u qr v
⊔

Rδ∈R
∃Rδ.

We use a big disjunction over all possible roles since we do not know which
transition will be chosen, yet.

• The A-counter is initialized with value 0 at a and incremented alongside
the tree, modulo 2k. Thus, all elements representing the first tape cell in
some configuration in the tree satisfy the auxiliary concept name CA=0 that
is defined by

CA=0 ≡ A0 u . . . u Ak−1.

In what follows, we use additional concept names of the form CA=i, for
polynomially many values i, which are defined similarly.
We further add the conjunct

CA=0(a)

76

to A0. Note that A0, . . . , Ak−1 are rigid, and hence this assertion must
be satisfied at every time point. We use the following GCIs to model the
counter, for all i, 0 ≤ i ≤ k − 1:

l

0≤j≤i
Aj v

l

Rδ∈R

∀Rδ.Ai,

l

0≤j<i
Aj u Ai v

l

Rδ∈R

∀Rδ.Ai,

(⊔
0≤j<i

Aj

)
u Ai v

l

Rδ∈R

∀Rδ.Ai,

(⊔
0≤j<i

Aj

)
u Ai v

l

Rδ∈R

∀Rδ.Ai.

For example, if the bits A0, . . . , Ai are all true in the current tape cell, then
in the successor cell these bits are all false.
We thus have described a sequence of configurations, where we can address
single tape cells in all the configurations using the A-counter, which restarts
every time it has reached 2k − 1, i.e., after every representation of a con-
figuration. We now enforce basic conditions which help to ensure that the
tree actually represents an accepting computation ofM on w.

• To formulate these conditions, we use the rigid concept name H to identify
the tape cells that are to the right of the head:(

H t
⊔
q∈Q

q
)
u CA=2k−1 v

l

Rδ∈R

∀Rδ.H.

Especially note that the propagation stops at tree levels whose elements rep-
resent the last cell in a configuration, since these elements satisfy CA=2k−1.

• There is only one head position per configuration:

H v
l

q∈Q

q.

Note that we do not have to consider the elements representing the cells
left to the head since, if such a cell satisfies a concept name from Q, then
all its successors in the tree are enforced to satisfy H.

• Each tape cell is associated with at most one state (which, at the same
time, represents the position of the head):

> v
l

q1,q2∈Q,q1 6=q2

q1 t q2

77

• Each tape cell contains exactly one symbol:

> v
⊔
σ∈Γ

(
σ u

l

σ′∈Γ\{σ}

σ′
)
,

Before specifying the remaining, more intricate conditions for the synchronization
of the configurations, we now describe the first configuration in the tree (starting
at a) as the initial configuration.

• In particular, we mark the corresponding elements by adding the assertion
I(a) to A0 and by propagating the concept alongside the first configura-
tion(s) as follows:

I u CA=2k−1 v
l

Rδ∈R

∀Rδ.I.

• The first configuration is modeled by adding the assertion q0(a) to A0 and
by considering the following GCIs, for all 0 ≤ i < k:

I u CA=i v σi,

I u CA=k v B,

I uB u CA=2k−1 v
l

Rδ∈R

∀Rδ.B,

where w = σ0 . . . σk−1 is the input word.

We finally come to the most involved part, the synchronization of the configura-
tions, which includes the modeling of the transitions.

• To this end, we first introduce the A′-counter, which is increased along the
temporal dimension. For every possible value of this counter, there is a
time point where a belongs to the concepts from the corresponding subset
of {A′0, . . . , A′k−1}. This is expressed using the following conjunct of φM,w:

22−
∧

0≤i≤k−1

((∧
0≤j<i

A′j(a)
)
↔
(
A′i(a)↔ #¬A′i(a)

))

This formula expresses that the i-th bit of the A′-counter is flipped from
one world to the next iff all preceding bits are true. Thus, the value of
the A′-counter at the next world is equal to the value at the current world
incremented by one.
It is not necessary to initialize this counter to 0 in A0; we only need to know
that all possible counter values are represented in some time point.

78

• The value of the A′-counter is always shared by all individuals:

22−
(∧

0≤i≤k−1
∃x.A′i(x)→ ¬∃x.A′i(x)

)
.

For the application of the A′-counter we now introduce the abbreviation
EA,A′ describing the equality of the two counters as follows:

Ei
A,A′ ≡ (Ai u A′i) t

(
Ai u A

′
i

)
,

EA,A′ ≡
l

0≤i<k

Ei
A,A′ .

Furthermore, we define similar abbreviations as follows:

EA,(A′+1 mod 2k) ≡
l

0≤j<k

(
A′j u Aj

)
t

⊔
0≤i<k

 l

0≤j<i

(
A′j u Aj

)
u A′i u Ai u

l

i+1≤j<k

Ej
A,A′

 ,
EA,(A′+2 mod 2k) ≡ E0

A,A′ u
l

1≤j<k

(
A′j u Aj

)
t

⊔
1≤i<k

 l

1≤j<i

(
A′j u Aj

)
u A′i u Ai u

l

i+1≤j<k

Ej
A,A′

 .
We now can use the temporal dimension to propagate information from one
level of the tree to the next one as outlined above, and hence specify the
transitions as follows:

• Symbols not under the head do not change:

σ u
l

q∈Q

q u EA,A′ v
l

Rδ∈R

∀Rδ.σ
′,

σ′ u EA,A′ v
l

Rδ∈R

∀Rδ.σ
′,

σ′ u EA,A′ v σ.

• We now describe the transitions. Particularly, we explicitly memorize cho-
sen transitions by using the rigid concepts Tp,%,M—by enforcing them to
be satisfied by the elements representing the cells directly right-neighbored
to the head position. Indeed, in general, there may be several such cells
because we are now at the point where we specify the branching of the
tree. Hence, we model the transitions, for all q ∈ Q and σ ∈ Γ, using the

79

following GCIs:

q u σ v
⊔

δ∈∆(q,σ)
∃Rδ, if q ∈ Q∃

q u σ v
l

δ∈∆(q,σ)

∃Rδ, if q ∈ Q∀

q u σ v
l

δ∈∆(q,σ)

∀Rδ.Tδ

• The (possible) replacement of the symbols under the head is now described
with the help of the transition concepts Tq,σ,M , for all q ∈ Q, σ ∈ Γ,
M ∈ {L,R}:

Tq,σ,M u EA,(A′+1) mod 2k v
l

Rδ∈R

∀Rδ.σ
′.

Recall that the transition concepts are only enforced to hold at the cell to
the right of the current head position (hence the “+1”).

• The state information is similarly propagated as follows, for all q ∈ Q,
σ ∈ Γ:

Tq,σ,R u EA,A′ v
l

Rδ∈R

∀Rδ.q
′,

Tq,σ,L u EA,(A′+2) mod 2k v
l

Rδ∈R

∀Rδ.q
′,

q′ u EA,A′ v
l

Rδ∈R

∀Rδ.q
′,

q′ u EA,A′ v q.

We lastly enforce the computation to be an accepting one by disallowing the state
qr entirely using the GCI:

qr v ⊥.

Note that this is correct since all the computations of M are terminating, and
each computation must end in a halting configuration (i.e., a configuration with
state qa or qr). This finishes the definition of the Boolean TCQ φM,w and the
global ontology OM,w, which consist of the conjuncts and GCIs specified above.
We further collect all assertions in the ABox A0. Given our descriptions above, it
is easy to see that the size of φM,w, OM,w, and A0 is polynomial in k. Moreover,
φM,w is satisfiable w.r.t. 〈OM,w, (A0)〉 iffM accepts w.

7.2 Upper Bounds

We now show the corresponding upper bounds.

80

7.2.1 Regarding Data Complexity

For data complexity, we directly reduce DL-LiteHbool to ALCH, and then reuse the
results from [BBL15c].

We first describe the reduction from TCQ entailment in DL-LiteHbool to TCQ
entailment in ALCH. It will incur an exponential blowup in the size of the
query, but this is irrelevant for results concerning data complexity. Let thus
K = 〈O, (Ai)0≤i≤n〉 be a TKB in DL-LiteHbool and φ be a TCQ. We construct an
ALCH TKB K′ and a TCQ φ′ such that K |= φ iff K′ |= φ′.

We first extend the set of role names to include all inverse roles R−, where R
or R− occurs in O. Then, we construct the TKB K′ := 〈O′, (A′i)0≤i≤n〉 from K
by replacing all occurrences of concepts of the form ∃R, R ∈ N−R , by ∃R.>, and
adding the following axioms:

(i) a GCI ∃R.(¬∃R−.>) v ⊥, for each R ∈ N−R (O); and

(ii) an RI R− v S− for each R v S ∈ O.

We call a CQ ψ′ a variant of a CQ ψ if ψ′ is obtained from ψ by replacing some
role atoms R(t, t′) ∈ ψ by R−(t′, t). We construct φ′ by replacing every CQ ψ in
φ by a big disjunction of all variants of ψ. The correctness of this reduction is
established next.

Lemma 7.7. We have K |= φ iff K′ |= φ′.

Proof. (⇐) Let I = (Ii)i≥0 be a model of K such that I 6|= φ. We show that we
then have a model I′ = (I ′i)i≥0 of K′ such that I′ 6|= φ′. Specifically, I′ has the
same domain as I, interprets all symbols occurring in K as I does, and, for all
I ′i, the interpretation of role names R− such that R− ∈ NR(O′) \NR(O), is equal
to (R−)Ii .

Given this definition of I′, we obviously have that I ′i |= A′i, 0 ≤ i ≤ n, since
Ii |= Ai. The same holds for the GCIs and RIs that are contained inO. Moreover,
it is easy to see that the new GCIs and RIs are satisfied, too. We thus have
I′ |= K′.

We now assume that I′ |= φ′, by contradiction. Given the construction of φ′,
we first show that, for every CQ ψ in φ which is replaced by a disjunction α in
φ′, I ′i |= α leads to Ii |= ψ, for all i ≥ 0. Let thus π be a homomorphism of
some CQ ψ′ in an arbitrary such disjunction α into some I ′i, and ψ be the CQ
that was replaced by α. ψ and ψ′ thus only differ in the role atoms. Let R(t, t′)
be an atom in ψ and S−(t′, t) be the corresponding replacement in ψ′ (i.e., we
have O |= S v R). By (ii) and I′ |= O′, we obtain (π(t′), π(t)) ∈ (R−)I′i from
(π(t′), π(t)) ∈ (S−)I′i . Hence, we also have (π(t), π(t′)) ∈ RIi , by construction,

81

which yields that π is also a homomorphism of ψ into Ii. Considering the other
direction, we trivially have that I ′i 6|= α leads to Ii 6|= ψ, for all i ≥ 0, given our
construction. By induction on the shape of φ, it now can be easily shown that
I |= φ follows, which contradicts the assumption.

(⇒) Let now I′ = (I ′i)i≥0 be a model of K′ such that I′ 6|= φ′. We show this
direction similarly by constructing a model I = (Ii)i≥0 of K such that I 6|= φ.
In particular, we assume I to have the same domain as I′, to interpret all con-
cept names as I′ does, and to interpret all role names R ∈ NR(O) such that
RIi = RI

′
i ∪ {(e, e′) | (e′, e) ∈ (R−)I′i}, for all i ≥ 0.

The latter definition particularly yields that (e, e′) ∈ RIi if (e, e′) ∈ RI
′
i , and

(e, e′) ∈ (R−)Ii if (e, e′) ∈ (R−)I′i , i ≥ 0. Together with (i) and the definition of
RIi , we thus obtain that e ∈ (∃R)Ii iff e ∈ (∃R)I′i , for R ∈ N−R (O). Regarding
the ABoxes, we thus must specially consider negative role assertions and assume
to have ¬R−(b, a) ∈ Ai, (b, a) 6∈ (R−)I′i , but (a, b) ∈ RIi . The latter implies that
(a, b) ∈ RI′i , by the definition of RIi . However, this directly yields a contradiction
since we assumed to have ¬R(a, b) ∈ Ai if ¬R−(b, a) ∈ Ai. Then, it is easy to
see that we get Ii |= Ai, 0 ≤ i ≤ n, since I ′i |= Ai. The above observation about
concepts of the form e ∈ (∃R)Ii , R ∈ N−R (O), and the fact that the interpretations
I ′i satisfy O further yields Ii |= O. Lastly, we consider an arbitrary RI R v S
in O and (e, e′) ∈ RIi . If (e, e′) ∈ RI′i , then I ′i |= O implies (e, e′) ∈ SI′i ⊆ SIi .
Otherwise, we must have (e′, e) ∈ (R−)I′i and, by (ii) (i.e., we have R− v S− ∈ O′)
and I ′i |= O′ get (e′, e) ∈ (S−)I′i . But then, we have (e, e′) ∈ SIi , as well. Hence,
we have I |= K.

As above, we now assume that I |= φ, by contradiction. Given the construction
of φ′, we regard an arbitrary CQ ψ in φ replaced by a TCQ α in φ′ (i.e., α is
a disjunction of CQs). If I ′ |= α, then there must be a homomorphism from a
disjunct ψ′ of α into I ′, and thus obviously I |= ψ by the constructions of α
and I. Let now π be a homomorphism of ψ into I. Then, for every role atom
R(t, t′) in ψ, we must either have (π(t), π(t′)) ∈ RI′ or (π(t′), π(t)) ∈ (R−)I′ , by
the construction of I. But then, π is also a homomorphism of the variant ψ′
contained in α, which contains the corresponding combination of role atoms, into
I ′. This yields I ′ |= α. By induction, it now can be easily shown that I ′ |= φ′

follows, which contradicts the assumption.

This reduction allows us to use the results for TCQ entailment in SHQ [BBL15c]
to show the following upper bounds.

Theorem 7.8. TCQ entailment in DL-LiteHbool w.r.t. data complexity is

• in co-NP if NRR = ∅ and

• in ExpTime if NRR 6= ∅.

82

Note that for ALCH a tight upper bound for the case NRR 6= ∅ w.r.t. data
complexity is still open. Hence, we here also have a gap between co-NP and
ExpTime.

Unfortunately, this reduction is not directly applicable for combined complexity
because φ′ is exponentially larger than φ.

7.2.2 Regarding Combined Complexity

Regarding combined complexity, the 2-ExpTime upper bound for DL-LiteHbool
and the case that NRR 6= ∅ follows from the case of SHIQ [BBL15a, BBL15b].

To show the remaining results for DL-Litebool, recall that we only need to consider
DL-Litekrom (see Corollary 7.3). We use the techniques applied in [BBL15c] to
solve TCQ entailment w.r.t. TKBs formulated in SHQ. The latter reduce the
problem to one or several atemporal satisfiability problems for conjunctions of
CQ-literals, similar to those in Definition 4.2. Hence, we first need to establish
the complexity of this problem for DL-Litekrom.

Lemma 7.9. Let φ be a Boolean conjunction of CQ-literals and K = 〈O,A〉 be
an (atemporal) KB in DL-Litekrom. Then the satisfiability of φ w.r.t. K can be
decided in ExpTime w.r.t. combined complexity.

Proof. Following the proof of [BBL15c, Theorem 4.1.], we reduce this problem to
exponentially many UCQ non-entailment problems.

Let φ = ρ1∧· · ·∧ρ`∧¬σ1∧· · ·∧¬σm, where ρ1, . . . , ρ`, σ1, . . . , σm are Boolean CQs.
We instantiate the variables in ρ1, . . . , ρ` with new individual names and collect
the resulting assertions into the ABox A′. Then there is a model I of K which sat-
isfies φ iff there is a model I ′ of 〈O,A∪A′〉 which satisfies ¬σ1∧· · ·∧¬σm (to satisfy
the UNA w.r.t. the new individuals, we can copy the affected domain elements).
The latter is the non-entailment problem 〈O,A ∪ A′〉 6|= σ1 ∨ · · · ∨ σm. Since
UCQ non-entailment for frontier-one disjunctive inclusion dependencies (DIDs),
and hence in DL-Litekrom, can be decided in ExpTime according to [BMP13,
Theorem 8], we obtain the result stated above.

Given Lemma 7.9 together with Corollary 7.3, we now can prove the following.

Theorem 7.10. For combined complexity, TCQ entailment in DL-Litebool is

• in ExpTime if NRC = ∅ and NRR = ∅, and

• in co-NExpTime if NRR = ∅.

Proof. By Corollary 7.3, it suffices to show the upper bounds for DL-Litekrom. In
line with [BBL15c], we follow the basic approach of Lemma 4.3, considering the

83

satisfiability problem of a TCQ φ w.r.t. a TKB K, and begin with the case that
NRC = ∅ and NRR = ∅.

• All possible mappings ι can be enumerated in exponential time.

• Moreover, the test if ι is compatible with an LTL-model of φp can be done
in ExpTime, according to [BBL15c, Lemma 4.12].

• To check r-satisfiability of a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} w.r.t. a ι
and O, it clearly suffices to check satisfiability of the (possibly exponentially
many) conjunctions χi, 1 ≤ i ≤ k, and χι(i) ∧

∧
α∈Ai α, 0 ≤ i ≤ n, w.r.t.

O individually.15 This is because, without rigid names, it is impossible
to enforce any dependency between the sets X ∈ S. Hence, it suffices
to define S as the set of all sets Xi for which χi is satisfiable w.r.t. O.
According to Lemma 7.9, the latter can be decided in ExpTime.

It can be easily seen that the consideration of all possible ι and our deterministic
definition of the maximal possible S suffices to satisfy Lemma 4.3. We thus can
decide TCQ satisfiability (and entailment) in ExpTime.

We now consider the case that only NRR = ∅, but some concept names may be
rigid. As in [BBL15c], we can assume w.l.o.g. that the input contains exactly one
empty ABox, as under combined complexity the ABoxes can be encoded into the
TCQ. Hence, we can disregard the mapping ι in the following. We can obviously
guess S and check t-satisfiability in exponential time. For the r-satisfiability test,
we additionally need to guess a set D ⊆ NRR(O) that specifies the combinations
of rigid names that are allowed to occur in a model, and a mapping τ : NI(φ)→ D
that fixes the behavior of the rigid names on the named domain elements. We
define the polynomial-sized ontology

Oτ := {Aτ(a) ≡ Cτ(a) | a ∈ NI(φ)}

and the additional conjunction

ρτ :=
∧

a∈NI(φ)
Aτ(a)(a),

where CY , Y ⊆ NRR(O), is defined as

CY :=
l

A∈Y

A u
l

A∈NRR(O)\Y

A.

We further say that an interpretation I respects D if

D = {Y ⊆ NRR(O) | there is a d ∈ ∆I with d ∈ (CY)I}.
15We can assume that all of these models have the same domain since their domains can be

assumed to be countably infinite by the Löwenheim-Skolem theorem, and that all individual
names are interpreted by the same domain elements in all models.

84

It is shown in [BBL15c, Lemma 6.2] that S is r-satisfiable w.r.t. K iff there are
D and τ as above such that each conjunction χi ∧ ρτ has a model w.r.t. O ∪Oτ
that respects D. The proof of this result is given for SHQ, but it remains the
same for DL-Litekrom. If not for the condition involving D, the claimed result
would now follow from Lemma 7.9. For D, we have to consider the proof of
[BMP13, Theorem 8] in more detail. There, an exponentially large looping tree
automaton is constructed that recognizes exactly those (forest-shaped) canonical
models of the KB that do not satisfy the given UCQ. This automaton is easily
modified to accept arbitrary models (the restriction to tree-shaped models is
without loss of generality even for UCQ entailment). We can further restrict
the state set to consider only models where every domain element satisfies some
CY with Y ∈ D. To ensure that each Y ∈ D is represented somewhere in the
model, we additionally check emptiness for the variants of this automaton using
the ABoxes {A(a) | A ∈ Y } ∪ {A(a) | A ∈ NRR(O) \ Y }, where a is a fresh
individual name. The disjoint union of all resulting interpretations will still be a
model of the original KB that does not satisfy the UCQ. The complexity result
follows from the fact that emptiness of looping tree automata can be decided in
polynomial time [VW86].

8 Conclusions

We have analyzed the computational complexity of TCQ entailment in several
members of the DL-Lite family of Description Logics. As it can be seen in Ta-
ble 1.1, many of these fragments turned out to be very complex. Nevertheless,
for several others, we obtained encouraging results, which are even better than
those for EL. Especially the data complexity of ALogTime implies that it might
be possible to solve the entailment problem by applying the combined approach
of [KLT+10] or by rewriting the TCQ into a Datalog query to be evaluated over
a database [DEGV97].

We further showed that the combined complexity of PSpace inherited from LTL
does not increase—even if rigid role names are considered. If we make the rea-
sonable assumption that all relevant information about these names (e.g., which
patients have no allergy and thus do not belong to the rigid concept ∃AllergyTo) is
available before query answering, then we do not need to guess the ABox type AR.
It remains to be seen whether existing PSpace-algorithms for LTL [GO01] can
be efficiently combined with reasoning procedures for DL-Lite [KLT+10].

In future work, it would be worth to study other variants of DL-Lite [ACKZ09]
since it might be possible to go beyond DL-LiteHhorn while keeping its complexity.
We could also combine our approach with other temporal query formalisms based
on DL-Lite [AKL+07, AKK+14, AKK+15], and investigate how to transfer and
combine existing constructions and results. On the practical side, it would be

85

interesting to see how TCQs perform in applications; some prototype implemen-
tations have already been described [THÖ15].

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. Cambridge University Press, 2009.

[ABM+14] Alessandro Artale, Davide Bresolin, Angelo Montari, Guido Sciav-
icco, and Vladislav Ryzhikov. DL-Lite and interval temporal logics:
A marriage proposal. In Torsten Schaub, editor, Proc. of the 21st
Eur. Conf. on Artificial Intelligence (ECAI’14), volume 263 of Fron-
tiers in Artificial Intelligence and Applications, pages 957–958. IOS
Press, 2014.

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and
Michael Zakharyaschev. The DL-Lite family and relations. Jour-
nal of Artificial Intelligence Research, 36:1–69, 2009.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[AKK+14] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav
Ryzhikov, Frank Wolter, and Michael Zakharyaschev. Temporal
OBDA with LTL and DL-Lite. In Meghyn Bienvenu, Magdalena
Ortiz, Riccardo Rosati, and Mantas Šimkus, editors, Proc. of the
27th Int. Workshop on Description Logics (DL’14), volume 1193 of
CEUR Workshop Proceedings, pages 21–32, 2014.

[AKK+15] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav
Ryzhikov, Frank Wolter, and Michael Zakharyaschev. First-order
rewritability of ontology-mediated temporal queries. In Qiang Yang,
editor, Proc. of the 24th Int. Joint Conf. on Artificial Intelligence
(IJCAI’15), pages 2706–2712. AAAI Press, 2015.

[AKL+07] Alessandro Artale, Roman Kontchakov, Carsten Lutz, Frank Wolter,
and Michael Zakharyaschev. Temporalising tractable description log-
ics. In Valentin Goranko and X. SeanWang, editors, Proc. of the 14th
Int. Symp. on Temporal Representation and Reasoning (TIME’07),
pages 11–22. IEEE Press, 2007.

[AKRZ14] Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and
Michael Zakharyaschev. A cookbook for temporal conceptual data
modelling with description logics. ACM Transactions on Computa-
tional Logic, 15(3):25, 2014.

86

[BAC10] Elena Botoeva, Alessandro Artale, and Diego Calvanese. Query
rewriting in DL-Lite(HN)

horn . In Volker Haarslev, David Toman, and
Grant Weddell, editors, Proc. of the 23rd Int. Workshop on Descrip-
tion Logics (DL’10), volume 573 of CEUR Workshop Proceedings,
pages 267–278, 2010.

[BBL13] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal-
izing ontology-based data access. In Maria Paola Bonacina, editor,
Proc. of the 24th Int. Conf. on Automated Deduction (CADE’13),
volume 7898 of Lecture Notes in Computer Science, pages 330–344.
Springer-Verlag, 2013.

[BBL15a] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal
conjunctive queries in expressive description logics with transitive
roles. In Bernhard Pfahringer and Jochen Renz, editors, Proc. of the
28th Australasian Joint Conf. on Artificial Intelligence (AI’15), vol-
ume 9457 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
2015. To appear.

[BBL15b] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Tem-
poral conjunctive queries in expressive DLs with non-simple roles.
LTCS-Report 15-17, Chair for Automata Theory, TU Dresden, Ger-
many, 2015. See https://ddll.inf.tu-dresden.de/web/Ver%C3%
B6ffentlichungen/2015/en#Technical_Reports.

[BBL15c] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal
query entailment in the description logic SHQ. Journal of Web
Semantics, 33:71–93, 2015.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[BCST92] David A. Mix Barrington, Kevin Compton, Howard Straubing, and
Denis Thérien. Regular languages in NC1. Journal of Computer and
System Sciences, 44(3):478–499, 1992.

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over de-
scription logic axioms. ACM Transactions on Computational Logic,
13(3):21:1–21:32, 2012.

[BLT15] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Tempor-
alizing rewritable query languages over knowledge bases. Journal of
Web Semantics, 33:50–70, 2015.

87

https://ddll.inf.tu-dresden.de/web/Ver%C3%B6ffentlichungen/2015/en#Technical_Reports
https://ddll.inf.tu-dresden.de/web/Ver%C3%B6ffentlichungen/2015/en#Technical_Reports

[BMP13] Pierre Bourhis, Michael Morak, and Andreas Pieris. The impact
of disjunction on query answering under guarded-based existential
rules. In Francesca Rossi, editor, Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence (IJCAI’13), pages 796–802. AAAI Press,
2013.

[BMP14] Pierre Bourhis, Michael Morak, and Andreas Pieris. Acyclic query
answering under guarded disjunctive existential rules and conse-
quences to DLs. In Meghyn Bienvenu, Magdalena Ortiz, Riccardo
Rosati, and Mantas Šimkus, editors, Proc. of the 27th Int. Workshop
on Description Logics (DL’14), volume 1193 of CEUR Workshop
Proceedings, pages 100–111, 2014.

[BT15a] Stefan Borgwardt and Veronika Thost. LTL over EL axioms.
LTCS-Report 15-07, Chair for Automata Theory, TU Dresden, Ger-
many, 2015. See https://ddll.inf.tu-dresden.de/web/Ver%C3%
B6ffentlichungen/2015/en#Technical_Reports.

[BT15b] Stefan Borgwardt and Veronika Thost. Temporal query answering in
EL. LTCS-Report 15-08, Chair for Automata Theory, TU Dresden,
Germany, 2015. See https://ddll.inf.tu-dresden.de/web/Ver%
C3%B6ffentlichungen/2015/en#Technical_Reports.

[BT15c] Stefan Borgwardt and Veronika Thost. Temporal query answering in
the description logic EL. In Qiang Yang, editor, Proc. of the 24th Int.
Joint Conf. on Artificial Intelligence (IJCAI’15), pages 2819–2825.
AAAI Press, 2015.

[CDGL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lemho, Maur-
izio Lenzerini, and Riccardo Rosati. DL-Lite: Tractable description
logics for ontologies. In Manuela M. Veloso and Subbaro Kambham-
pati, editors, Proc. of the 20th Nat. Conf. on Artificial Intelligence
(AAAI’05), pages 602–607. AAAI Press, 2005.

[CDGL+09] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, and Ric-
cardo Rosati. Ontologies and databases: The DL-Lite approach.
In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutier-
rez, Siegfried Handschuh, Marie-Christine Rousset, and Renate A.
Schmidt, editors, Reasoning Web. Semantic Technologies for Infor-
mation Systems, volume 5689 of Lecture Notes in Computer Science,
pages 255–356. Springer Berlin Heidelberg, 2009.

[CDL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family. Journal
of Automated Reasoning, 39(3):385–429, 2007.

88

https://ddll.inf.tu-dresden.de/web/Ver%C3%B6ffentlichungen/2015/en#Technical_Reports
https://ddll.inf.tu-dresden.de/web/Ver%C3%B6ffentlichungen/2015/en#Technical_Reports
https://ddll.inf.tu-dresden.de/web/Ver%C3%B6ffentlichungen/2015/en#Technical_Reports
https://ddll.inf.tu-dresden.de/web/Ver%C3%B6ffentlichungen/2015/en#Technical_Reports

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Al-
ternation. Journal of the ACM, 28(1):114–133, 1981.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation
of conjunctive queries in relational data bases. In Proc. of the 9th
Annual ACM Symp. on Theory of Computing (STOC’77), pages 77–
90. ACM, 1977.

[DEGV97] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic programming.
In Proc. of the 12th Annual IEEE Conf. on Computation Complexity
(CCC’97), pages 82–101. IEEE Press, 1997.

[Gab87] Dov M. Gabbay. The declarative past and imperative future: Exe-
cutable temporal logic for interactive systems. In Temporal Logic in
Specification, pages 409–448. Springer-Verlag, 1987.

[GBJS15] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Thomas Schnei-
der. Lightweight temporal description logics with rigid roles and re-
stricted TBoxes. In Qiang Yang, editor, Proc. of the 24th Int. Joint
Conf. on Artificial Intelligence (IJCAI’15), pages 3015–3021. AAAI
Press, 2015.

[GHJR+15] Martin Giese, Peter Haase, Ernesto Jiménez-Ruiz, Davide Lanti,
Özgür Özçep, Martin Rezk, Riccardo Rosati, Ahmet Soylu,
Guillermo Vega-Gorgojo, Arild Waaler, and Guohui Xiao. Optique:
Zooming in on Big Data. IEEE Computer, 48(3):60–67, 2015.

[GJS14] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Thomas Schnei-
der. Lightweight description logics and branching time: A trouble-
some marriage. In Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter, editors, Proc. of the 14th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR’14). AAAI Press, 2014.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata trans-
lation. In Gérard Berry, Hubert Comon, and Alain Finkel, edi-
tors, Proc. of the 13th Int. Conf. on Computer Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computer Science, pages
53–65. Springer-Verlag, 2001.

[KLT+10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter,
and Michael Zakharyaschev. The combined approach to query an-
swering in DL-Lite. In Fangzhen Lin, Ulrike Sattler, and Miroslaw
Truszczynski, editors, Proc. of the 12th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’10), pages 247–257.
AAAI Press, 2010.

89

[KRH13] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Complexi-
ties of Horn description logics. ACM Transactions on Computational
Logic, 14(1):2:1–2:36, 2013.

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal
description logics: A survey. In Stéphane Demri and Christian S.
Jensen, editors, Proc. of the 15th Int. Symp. on Temporal Represen-
tation and Reasoning (TIME’08), pages 3–14. IEEE Press, 2008.

[MBIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing.
On uniformity within NC1. Journal of Computer and System Sci-
ences, 41(3):274–306, 1990.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De
Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Linking data to
ontologies. Journal on Data Semantics, X:133–173, 2008.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proc. of the
18th Annual Symp. on Foundations of Computer Science (SFCS’77),
pages 46–57. IEEE Press, 1977.

[RG10] Sebastian Rudolph and Birte Glimm. Nominals, inverses, counting,
and conjunctive queries or: Why infinity is your friend! Journal of
Artificial Intelligence Research, 39(1):429–481, 2010.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and de-
terministic tape complexities. Journal of Computer and System Sci-
ences, 4(2):177–192, 1970.

[SC85] A. Prasad Sistla and Edmund M. Clarke. The complexity of propo-
sitional linear temporal logics. Journal of the ACM, 32(3):733–749,
1985.

[Tes01] Sergio Tessaris. Questions and Answers: Reasoning and Querying in
Description Logic. PhD thesis, University of Manchester, UK, 2001.

[THÖ15] Veronika Thost, Jan Holste, and Özgür Özçep. On implementing
temporal query answering in DL-Lite (extended abstract). In Diego
Calvanese and Boris Konev, editors, Proc. of the 28th Int. Workshop
on Description Logics (DL’15), volume 1350 of CEUR Workshop
Proceedings, pages 552–555, 2015.

[VW86] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques
for modal logics of programs. Journal of Computer and System Sci-
ences, 32(2):183–221, 1986.

90

	Introduction
	Preliminaries
	DL-Lite Description Logics
	Temporal Conjunctive Queries
	On Complexity

	Atemporal Canonical Models and Conjunctive Queries Revisited
	Canonical Models for Horn CIs
	Atemporal Queries

	On Upper Bounds
	A General Approach for Solving Satisfiability
	On Checking r-satisfiablility
	Consequences, Witnesses, and Witness Queries
	R-Complete Tuples
	If S is r-satisfiable w.r.t. and O, then there is an r-complete tuple w.r.t. S and .
	If there is an r-complete tuple w.r.t. S and , then S is r-satisfiable w.r.t. and O.

	Regarding Combined Complexity
	Regarding Data Complexity
	A FO Rewriting for r-satisfiability
	An Alternating Logarithmic Time Turing Machine

	Beyond the horn Fragment
	Lower Bounds
	Upper Bounds
	Regarding Data Complexity
	Regarding Combined Complexity

	Conclusions

