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Abstract

Probabilistic interpretations consist of a set of interpretations with a shared domain
and a measure assigning a probability to each interpretation. Such structures can be
obtained as results of repeated experiments, e.g., in biology, psychology, medicine, etc.
A translation between probabilistic and crisp description logics is introduced and then
utilised to reduce the construction of a base of general concept inclusions of a probabilistic
interpretation to the crisp case for which a method for the axiomatisation of a base of
GCIs is well-known.
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1 Introduction

This document proposes a method for axiomatising a base of general concept inclusions for
probabilistic interpretations. It is obtained by means of a translation between probabilistic
description logics and crisp description logics, and well-known results for the construction of
a base of GCIs for interpretations in crisp description logics. However, this approach does not
add further complexity as the translations may be computed in polynomial time. There are
several approaches for an integration of probabilities into description logics. This document
follows the basic definitions of Lutz and Schröder in [12] where a probabilistic interpretation
is defined as a family of standard interpretations over the same domain such that each
interpretation has a specific probability. These structures naturally arise from experiments, e.g.,
in biology, psychology, or medicine, respectively, that are repeated several times. If for example
the experiments may produce results with errors, or some effects may not always be observed,
then repetition is advantageous. For all such sequences of interpretations over a shared domain
the probability measure can easily be defined as a uniform discrete probability measure over
all observed interpretations. We call such probabilistic interpretations (quasi-)uniform.

At first we introduce the probabilistic description logics P01FLE⊥ and P≥FLE⊥Q≥. Then
we present a translation between P01FLE⊥ and FLE⊥ that satisfies certain consistency
properties w.r.t. the underlying probabilistic interpretation. By means of the translation we
utilise previous results for the construction of a base of general concept inclusions. In particular,
the notion of a (canonical) base of GCIs is used here that has been found by Baader and Distel in
[3, 2, 8] for the description logic EL⊥ w.r.t. greatest fixpoint semantics. Furthermore, it has been
adapted by Borchmann, Distel, and Kriegel in [6] for EL⊥ w.r.t. role-depth bounds, and has
been extended towards the more expressive description logicALEQ≥N≤(Self) in [11] (hence,
may also be applied to the smaller description logics FLE⊥ and FLE⊥Q≥). The construction
of a base of probabilistic GCIs is also generalised towards the more expressive description
logic P≥FLE⊥Q≥ but only in the case of quasi-uniform probabilistic interpretations.

Most-specific generalisations in probabilistic description logics have been subject of previous
research. In [15, 13, 14] Peñaloza and Turhan investigated methods for the construction of
most-specific concept description (w.r.t. a knowledge base) and least common subsumers in
probabilistic EL. Later, in [10, 9] Ecke, Peñaloza, and Turhan, extended their results towards
nominals and complex role inclusion axioms. This document also provides a method for the
construction of probabilistic model-based most-specific concept descriptions (w.r.t. probabilistic
interpretations).

2 The Description Logics P01FLE⊥ and P≥FLE⊥Q≥

At first, we introduce the probabilistic description logic PFLE⊥Q≥ that extends the well-
known description logic FLE . A role is either a role name r ∈ NR or of the form P./p r
for a ./ ∈ {<,≤,=,≥,> }, a role name r ∈ NR, and a probability threshold p ∈ (0, 1].
Furthermore, concept descriptions may be built according to the following syntax rule where
s denotes a role, A ∈ NC a concept name, n ≥ 2 an integer, ./ ∈ {<,≤,=,≥,> }, and
p ∈ [0, 1]:

C ::= ⊥ | > | A | CuC | ∃ s. C | ∀ s. C | ≥n. s. C | P./p C
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The description logic P01FLE⊥ does not allow for qualified ≥-restrictions ≥n. s. C, and
only allows for probabilistic concept and role constructors P>0 and P=0. Furthermore, the
description logic P≥FLE⊥Q≥ only allows for probabilistic constructors P≥p.

A detailed overview on probabilistic extensions of the description logicsALC and EL and
several complexity results for reasoning in probabilistic description logics have been given by
Lutz and Schröder in [12].

A probability measure on a countable set W is a mapping P : 2W → [0, 1] such that P(∅) = 0
and P(W) = 1 hold, and furthermore for all countable pairwise disjoint sequences (Un)n∈N

of subsets Un ⊆ W it is true that P(
⊎

n∈N Un) = ∑n∈N P(Un), i.e., P is σ-additive. For a
subset U ⊆W the value P(U) is the probability of U w.r.t. P.

Let (NC, NR) be a signature. A probabilistic interpretation over (NC, NR) is a tuple I =
(∆I , W, (·Iw)w∈W, P) that consists of a set ∆I , called domain, a countable set W of worlds, an
extension function ·Iw for each world w ∈ W, and a probability measure P on W. For each
world w ∈W the tuple (∆I , ·Iw) is an interpretation over (NC, NR) that may be extended to
all FLE⊥Q≥-concept descriptions in the canonical way. Furthermore, for the probabilistic
constructors P./p with ./ ∈ {<,≤,=,≥,> } and p ∈ [0, 1] their extensions are defined as
follows:

(P./p C)Iw := { d ∈ ∆I |P{w ∈W | d ∈ CIw } ./ p },
(P./p r)Iw := { (d, e) ∈ ∆I ×∆I |P{w ∈W | (d, e) ∈ rIw } ./ p }.

Note that the extensions are independent of the world w, i.e., they coincide in all worlds of the
probabilistic interpretation. An individual d ∈ ∆I is in the extension of P>0 C if and only if d
is possibly in the extension of C, and is in the extension of P=1 C iff d is almost surely in the
extension of C.

A world w ∈W is called possible if its probability is not 0, i.e., if P{w } > 0 holds; otherwise
we call w impossible. For a probabilistic interpretation we denote the set of all possible worlds
by Wε, and the set of all impossible worlds by W0. Of course, Wε ]W0 is a partition of W, and
P(Wε) = 1 and P(W0) = 0 hold.

A general concept inclusion (GCI) is of the form C v D where C and D are concept descrip-
tions. It holds in a probabilistic interpretation I if and only if CIw ⊆ DIw is satisfied for all
worlds w ∈W, and we shall denote this by I |= C v D.

Let I be a probabilistic interpretation. Then a TBox B is called base of GCIs for I if I models
all GCIs in B, i.e., B is sound, and whenever a GCI holds in I then it follows from B, i.e., B is
complete.

3 Translation between P01FLE⊥ and FLE⊥

It is readily verified that d ∈ (P>0 C)Iw holds if and only if there is a possible world v ∈Wε

such that d ∈ CIv hold. Analogously, d ∈ (P=1 C)Iw is equivalent to the statement that
d ∈ CIv is true for all possible worlds v ∈Wε. Similar statements hold for the probabilistic role
constructors P>0 r and P=1 r. Hence, it is possible to translate P01FLE⊥-concept descriptions
into FLE⊥-concept descriptions and vice versa.
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For this purpose a new role name ωP, and role names r>0, r=1 for each existing role name
r ∈ NR, are introduced into the signature, and we shall denote the extended signature by:

(NC, NR)
P
01 := (NC, NR ] {ωP } ] { r>0, r=1 | r ∈ NR }).

Then the translation function τ : P01FLE⊥(NC, NR)→ FLE⊥(NC, NR)
P
01 and its inverse τ−1

are inductively defined as follows:

τ(r) := r τ−1(r) := r

τ(P>0 r) := r>0 τ−1(r>0) := P>0 r

τ(P=1 r) := r=1 τ−1(r=1) := P=1 r

τ(A) := A τ−1(A) := A

τ(CuD) := τ(C)u τ(D) τ−1(CuD) := τ−1(C)u τ−1(D)

τ(∃ s. C) := ∃ τ(s). τ(C) τ−1(∃ s. C) := ∃ τ−1(s). τ−1(C)

τ(∀ s. C) := ∀ τ(s). τ(C) τ−1(∀ s. C) := ∀ τ−1(s). τ−1(C)

τ(P>0 C) := ∃ωP. τ(C) τ−1(∃ωP. C) := P>0 τ−1(C)

τ(P=1 C) := ∀ωP. τ(C) τ−1(∀ωP. C) := P=1 τ−1(C)

For each probabilistic interpretation I = (∆I , W, (·Iw)w∈W, P) over (NC, NR) we define
the interpretation I× := (∆I ×W, ·I×) over (NC, NR)

P
01 whose extension function is given as

follows:

AI
×

:= { (d, w) | d ∈ AIw } (A ∈ NC)

rI
×

:= { ((d, w), (e, w)) | (d, e) ∈ rIw } (r ∈ NR)

ωI
×

P := { ((d, v), (d, w)) |P{w } > 0}
rI
×

>0 := { ((d, w), (e, w)) | (d, e) ∈ (P>0 r)Iw }
rI
×

=1 := { ((d, w), (e, w)) | (d, e) ∈ (P=1 r)Iw }

The special role ωP connects each individual d in an arbitrary world to itself in a possible world.
Then the following lemma shows the connection between the given translation functions.

Lemma 1. Let I = (∆I , W, (·Iw)w∈W, P) be a probabilistic interpretation, d ∈ ∆I an individual,
w ∈W a world, and C a P01FLE⊥-concept description. Then the following equivalence holds:

d ∈ CIw if and only if (d, w) ∈ τ(C)I
×

.

Proof. by structural induction on C.

induction base: C = A
Of course, it holds that τ(A) = A. Thus, the equivalence follows by definition of I×.

inductive step: C = Du E

d ∈ (Du E)Iw ⇔ d ∈ DIw and d ∈ EIw

I.H.⇔ (d, w) ∈ τ(D)I
×

and (d, w) ∈ τ(E)I
×

⇔ (d, w) ∈ (τ(D)u τ(E))I
×
= τ(Du E)I

×
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inductive step: C = ∃ r. D

d ∈ (∃ r. D)Iw ⇔ ∃e ∈ ∆I : (d, e) ∈ rIw and e ∈ DIw

I.H.⇔ ∃e ∈ ∆I : ((d, w), (e, w)) ∈ τ(r)I
×

and (e, w) ∈ τ(D)I
×

⇔ (d, w) ∈ (∃ r. τ(D))I
×
= τ(∃ r. D)I

×

The equivalences are also satisfied for probabilistic roles P>0 r, since

(d, e) ∈ (P>0 r)Iw ⇔ ((d, w), (e, w)) ∈ rI
×

>0

and τ(P>0 r) = r>0 hold by definition. Analogously for P=1 r.

inductive step: C = ∀ r. D

d ∈ (∀ r. D)Iw ⇔ ∀e ∈ ∆I : (d, e) ∈ rIw implies e ∈ DIw

I.H.⇔ ∀e ∈ ∆I : ((d, w), (e, w)) ∈ τ(r)I
×

implies (e, w) ∈ τ(D)I
×

⇔ (d, w) ∈ (∀ r. τ(D))I
×
= τ(∀ r. D)I

×

With the same arguments as for existential restrictions, the statements also hold for probabilistic
roles.

inductive step: C = P>0 D

d ∈ (P>0 C)Iw ⇔ ∃v ∈W : P{ v } > 0 and d ∈ CIv

I.H.⇔ ∃v ∈W : ((d, w), (d, v)) ∈ ωI
×

P and (d, v) ∈ τ(C)I
×

⇔ (d, w) ∈ (∃ωP. τ(C))I
×
= τ(P>0 C)I

×

inductive step: C = P=1 D

d ∈ (P=1 C)Iw ⇔ ∀v ∈W : P{ v } > 0 implies d ∈ CIv

I.H.⇔ ∀v ∈W : ((d, w), (d, v)) ∈ ωI
×

P implies (d, v) ∈ τ(C)I
×

⇔ (d, w) ∈ (∀ωP. τ(C))I
×
= τ(P=1 C)I

×

As a corollary it follows that CIw ×{w } = τ(C)I
× ∩ (∆I ×{w }) and hence also

τ(C)I
×
=

⊎
w∈W

CIw ×{w }

hold for all P01FLE⊥-concept descriptions C and all probabilistic interpretations I.

4 Construction of a Base of GCIs in P01FLE⊥

The translation τ can additionally be used to translate valid general concept inclusions of I
into valid general concept inclusions of I×. Since τ has an inverse we may also translate GCIs
in the opposite direction. A more sophisticated characterisation is given in the next lemma.
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Lemma 2. Let I be a probabilistic interpretation and C, D be P01FLE⊥-concept descriptions. Then
the general concept inclusion C v D holds in I if and only if the translated GCI τ(C) v τ(D) holds
in I×.

Proof. Consider an arbitrary individual d ∈ ∆I and an arbitrary world w ∈ W. Then the
following equivalences hold:

I |= C v D⇔ ∀w ∈W ∀d ∈ ∆I : d ∈ CIw ⇒ d ∈ DIw

Lem. 1⇔ ∀(d, w) ∈ ∆I ×W : (d, w) ∈ τ(C)I
× ⇒ (d, w) ∈ τ(D)I

×

⇔ I× |= τ(C) v τ(D).

Having all neccessary notions and lemmata at hand, we are now ready to formulate the
main proposition for the construction of a base of GCIs in P01FLE⊥. We have seen that we
may translate between valid GCIs of I and I×, and the following proposition shows that it is
possible to translate a base for I× into a base for I.

Proposition 3. Let I be a probabilistic interpretation. Every base of GCIs for the interpretation I×
can be translated into a base of GCIs for I; in particular, if B is a base of GCIs for I×, then the set
τ−1(B) := { τ−1(C) v τ−1(D) |C v D ∈ B } is a base of GCIs for I.

Proof. Firstly, we show soundness of the translation τ−1(B). For this purpose consider a GCI
C v D ∈ B. Since B is a base for I×, it follows that C v D holds in I×. By Lemma 6, we
may conclude that τ−1(C) v τ−1(D) holds in I.

Secondly, we prove completeness of τ−1(B). Let C v D be a GCI holding in I. Lemma
6 then states that τ(C) v τ(D) holds in I× and thus follows from B. It remains to show
that τ−1(B) entails C v D. Consider an arbitrary model J of the translation τ−1(B). Using
Lemma 6 it follows that J × must be a model of B. By completeness of B, we conclude that
J × |= τ(C) v τ(D), and finally Lemma 6 yields that J |= C v D. Consequently, τ−1(B) is
complete for I.

However, the converse direction cannot be shown as not every interpretation over (NC, NR)
P
01

is induced by a probabilistic interpretation and hence may have different extensions for the
additional role names. So we are not able to prove that minimality of the base is preserved.

5 Translation between P≥FLE⊥Q≥ and FLE⊥Q≥

A probabilistic interpretation I is called quasi-uniform if all possible worlds have the same
probability, i.e., if P{ v } = P{w } holds for all v, w ∈ Wε. Then P{w } = ε holds for all
possible worlds w ∈Wε where ε := 1

|Wε| , and in particular it follows that only finitely many
possible worlds exist. A quasi-uniform probabilistic interpretation is uniform if it does not
contain impossible worlds.

In this section we only consider quasi-uniform probabilistic interpretations. Hence, let I
be quasi-uniform with probability ε for each possible world. We will extend the translation
function τ as introduced in the previous section to a translation τε from P≥FLE⊥Q≥ to
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FLE⊥Q≥. For this purpose we have to extend the signature (NC, NR) by adding new roles
r≥k for each role name r ∈ NR, in particular we define:

(NC, NR)
P
≥ := (NC, NR ] {ωP } ] { r≥k | k ∈ { 1, . . . , |Wε| } }).

Then the mapping τε extends τ as follows:

τε(P≥p r) := r≥d p
ε e

τ−1
ε (r≥k) := P≥k·ε r

τε(P≥p C) := ∃ωP. τε(C) (p ∈ (0, ε]) τ−1
ε (∃ωP. C) := P≥ε τ−1

ε (C)

τε(P≥p C) := ≥d p
ε e. ωP. τε(C) (p ∈ (ε, 1)) τ−1

ε (≥n. ωP. C) := P≥n·ε τ−1
ε (C)

τε(P≥1 C) := ∀ωP. τε(C) τ−1
ε (∀ωP. C) := P≥1 τ−1

ε (C)

Of course, the induced interpretation I× must also interpret the new role names r≥k. Hence,
we define the following extensions for them:

rI
×
≥k := { ((d, w), (e, w)) | (d, e) ∈ (P≥k·ε r)Iw }

= { ((d, w), (e, w)) |P{w ∈W | (d, e) ∈ rIw } ≥ k · ε },

i.e., ((d, w), (e, w)) ∈ rI
×
≥k holds iff there are k possible worlds w that satisfy (d, e) ∈ rIw .

Unfortunately, then the mappings τε and τ−1
ε are not mutually inverse. It only holds

that τε(τ−1
ε (C)) = C. For the concept description C = P≥p A it holds that τε(P≥p A) =

≥d p
ε e. ωP. A, and hence τ−1

ε (τε(P≥p A)) = P≥ε·d p
ε e

A. Obviously, if p is not of the form k · ε
for a k ∈N, then both concept descriptions are not the same. However, we may show that
the concepts τ−1

ε (τε(C)) and C have the same extensions w.r.t. the interpretation I.

Lemma 4. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds, i.e., the

probability of each possible world is ε. Then for each P≥FLE⊥Q≥-concept description C and all worlds
w ∈W the following equation holds:

CIw = (τ−1
ε (τε(C)))Iw .

Proof. by structual induction on C.

(induction base) Let C = A be a concept name. Then it holds that τ−1
ε (τε(A)) = A, and

hence the claim is trivial.

(induction step) At first consider a probabilistic concept description C = P≥p D. Then we
have the following equivalences:

d ∈ (P≥p D)Iw ⇔ P{w ∈W | d ∈ DIw } ≥ p
∗⇔ P{w ∈W | d ∈ DIw } ≥ ε · d p

ε e
I.H.⇔ P{w ∈W | d ∈ (τ−1

ε (τε(D)))Iw } ≥ ε · d p
ε e

⇔ d ∈ (P≥ε·d p
ε e

τ−1
ε (τε(D)))Iw

⇔ d ∈ (τ−1
ε (τε(P≥p D)))Iw .
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For the equivalence ∗ note that p ≤ ε · d p
ε e always holds. The other direction follows from

the fact that for each individual d which satisfies P{w ∈W | d ∈ DIw } ≥ p there must be at
least d p

ε e possible worlds w with d ∈ DIw since all possible worlds have probability ε. Hence,
it suffices to enforce a probability≥ ε · d p

ε e.
Analogously, we can prove that sIw = (τ−1

ε (τε(s)))Iw holds for all (probabilistic) roles s.

Consider a conjunction C = Du E. Then we infer the following equations:

(Du E)Iw = DIw ∩ EIw

I.H.
= (τ−1

ε (τε(D)))Iw ∩ (τ−1
ε (τε(E)))Iw

= (τ−1
ε (τε(D))u τ−1

ε (τε(E)))Iw

= (τ−1
ε (τε(Du E)))Iw .

Finally, let C = ∃ s. D be an existential restriction. Then we can make the following observa-
tions:

d ∈ (∃ s. D)Iw ⇔ ∃e ∈ ∆I : (d, e) ∈ sIw and e ∈ DIw

I.H.⇔ ∃e ∈ ∆I : (d, e) ∈ (τ−1
ε (τε(s)))Iw and e ∈ (τ−1

ε (τε(D)))Iw

⇔ d ∈ (∃ τ−1
ε (τε(s)). τ−1

ε (τε(D)))Iw

⇔ d ∈ (τ−1
ε (τε(∃ s. D)))Iw .

The case of C being a value restriction or a qualified≥-restriction can be treated analogously.

Lemma 5. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds. Then for all

individuals d ∈ ∆I , all worlds w ∈W, and all P≥FLE⊥Q≥-concept descriptions C, the following
equivalence holds:

d ∈ CIw ⇔ (d, w) ∈ τε(C)I
×

.

Proof. analogously to Lemma 1. We only show the induction step for a concept description
P≥p C where p ∈ (ε, 1). According to the definition of τε, we have that τε(P≥p C) =

≥d p
ε e. ωP. τε(C) holds. Furthermore, the following equivalences hold:

d ∈ (P≥p C)Iw ⇔ P{w ∈W | d ∈ CIw } ≥ p

⇔ ∃≥d
p
ε ew ∈Wε : d ∈ CIw

I.H.⇔ ∃≥d
p
ε ev ∈W : ((d, w), (d, v)) ∈ ωI

×
P and (d, v) ∈ τε(C)I

×

⇔ (d, w) ∈ (≥d p
ε e. ωP. τε(C))I

×
.

6 Construction of a Base of GCIs in P≥FLE⊥Q≥

In a previous section we have seen how a base of P01FLE⊥-GCIs holding in a probabilistic
interpretation I can be constructed by means of a base of FLE⊥-GCIs holding in the induced
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interpretation I× over the extended signature (NC, NR)
P
01. A similar result can be obtained

in the case of a uniform probabilistic interpretation in the description logic P≥FLE⊥Q≥. A
more sophisticated answer is given in the next proposition.

Lemma 6. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds, and C, D let

be P≥FLE⊥Q≥-concept descriptions. Then the general concept inclusion C v D holds in I if and
only if the translated GCI τε(C) v τε(D) holds in I×.

Proof. analogously to Lemma 2.

Proposition 7. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds. If B is a

base of FLE⊥Q≥-GCIs for the induced interpretation I×, then the translation

τ−1
ε (B) := { τ−1

ε (C) v τ−1
ε (D) |C v D ∈ B }

is a base of P≥FLE⊥Q≥-GCIs for I.

Proof. analogously to Proposition 3.

7 Probabilistic Model-Based Most-Specific Concept Descriptions

Model-based most-specific concept descriptions (w.r.t. interpretations) have been introduced
by Baader and Distel in [3, 2] as an adaption of the well-known notion of most-specific
concept descriptions (w.r.t. knowledge bases). Ecke, Peñaloza, and Turhan, investigated
those most-specific concept descriptions and also least common subsumers in probabilistic
extensions of the light-weight description logic EL, cf. [13, 14, 15, 9, 10]. However, they gave
constructions for those generalisations w.r.t. knowledge bases (w.r.t. open-world assumption).
In the following text the notion of a probabilistic mmsc w.r.t. interpretations (w.r.t. closed-
world assumption) is introduced. Furthermore, we present a proposition that reduces their
computation to crisp description logics.

Definition 8. Let I = (∆I , W, (·Iw)w∈W, P) be a probabilistic interpretation and X ⊆ ∆I a
set of individuals. Then a P01FLE⊥-concept description C is called probabilistic model-based
most-specific concept description (pmmsc) of X in I if it satisfies the following conditions:

(PM1) For all worlds w ∈W it holds that X ⊆ CIw .

(PM2) If D is a P01FLE⊥-concept description such that X ⊆ ⋂
w∈W DIw holds, then C v D.

In the same way we may define the pmmsc in P≥FLE⊥Q≥.

All pmmscs for a subset X in I are equivalent, and hence we shall denote the pmmsc by
XI .

Proposition 9. Let I be a probabilistic interpretation and X ⊆ ∆I a set of individuals. Then the
following statements hold:

1. The P01FLE⊥-mmsc XI is equivalent to the translation τ−1((X×W)I
×
).
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2. If I is quasi-uniform with 1
ε possible worlds, then the P≥FLE⊥Q≥-mmsc XI is equivalent to

the translation τ−1
ε ((X×W)I

×
).

Proof. Both statements can be proven analogously. We show the two conditions of a pmmsc
according to Definition 8.

Firstly, the definition of the mmsc in the default setting yields that X×W ⊆ (X×W)I
×I× .

From Lemmata 1 and 5 it follows that X ⊆ (τ−1((X×W)I
×
))Iw for all worlds w ∈W, i.e.,

τ−1((X×W)I
×
) satisfies (PM1).

Secondly, consider a concept description D such that X ⊆ DIw holds for all worlds w ∈W.
Consequently, by Lemmata 1 and 5 it follows that X×{w } ⊆ τ(D)I

×
holds for all w ∈W,

i.e., X×W ⊆ τ(D)I
×

is true. By definition of mmscs, we conclude that (X×W)I
× v τ(D)

holds. Then Lemmata 2 and 6 yield that τ−1(X×W)I
× v D holds, and hence τ−1(X×W)I

×

satisfies (PM2).

8 Choice of Semantics

Upon translation of the probabilistic interpretation I to the crisp interpretation I×, we have
to introduce the additional role ωP to encode the possibility of worlds. However, this leads to
cyclic interpretations as then every pair (p, w) is connected to all pairs (p, v) where v ∈Wε

is a possible world. Of course, I must contain at least one possible world to ensure that
P(Wε) = 1 holds. However, in cyclic interpretations like I× all model-based most-specific
concept descriptions only exist w.r.t. a role-depth bound (cf. [6]), or in gfp-semantics (cf. [8]).
The limitation of the role-depth is a practical means to ensure the existence of mmscs and is
used here.

Usually, mmscs are computed from description graphs induced by interpretations. It turns
out that in the case of interpretations constructed from probabilistic interpretations we do not
have to consider all paths in the graph. In particular, the following lemma shows that we may
ignore paths with two subsequent Q ωP-edges.

Lemma 10. For arbitrary P≥FLE⊥Q≥-concept descriptions C, D and probability thresholds p, q ∈
(0, 1] the following equivalence holds:

P≥p (CuP≥q D) ≡ P≥p CuP≥q D.

Proof. The statement easily follows from the following observations:

d ∈ (P≥p (CuP≥q D))Iw

⇔ P{w ∈W | d ∈ CIw and P{w ∈W | d ∈ DIw } ≥ q } ≥ p

⇔ P{w ∈W | d ∈ CIw } ≥ p and P{w ∈W | d ∈ DIw } ≥ q

⇔ d ∈ (P≥p CuP≥q D)Iw .

As the equivalences hold for arbitrary probabilistic interpretations I and worlds w ∈W, the
concept equivalence is true in general.
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The lemma above yields (after translation w.r.t. τ, or τε, respectively) that in order to
compute model-based most-specific concept descriptions we do not have to consider any
paths in the description graph of I× that have two subsequent Q ωP-edges.

However, we cannot interchange ∃ r and P≥p restrictions as even in the simplest case
the concept descriptions ∃ r. P≥ 1

2
A and P≥ 1

2
∃ r. A may have different extensions in a

probabilistic interpretation. Consider for example the uniform probabilistic interpretation
I = ({ d, e },{ v, w }, ·Iv , ·Iw ,{ { v } 7→ 1

2 ,{w } 7→ 1
2 }). The extension functions are given by

the two graphs below:

w1 : d er
w2 : d e

A

Then it holds that (∃ r. P≥ 1
2

A)Iw1 = { d }, but (P≥ 1
2
∃ r. A)Iw1 = ∅.

For the computation of the induced interpretation I× all vertices in the two graphs above
are equipped with ωP-loops and furthermore there are ωP-edges between vertices for the
same individual in different worlds. Then the following mmscs can be obtained:

(d, w1)
I× = ∃ r. P>0 AuP>0 ∃ r. P>0 A

(d, w2)
I× = P>0 ∃ r. P>0 A

(e, w1)
I× = P>0 A

(e, w2)
I× = AuP>0 A

(∆I ×W)I
×
= >

If I is a probabilistic interpretation such that all mmscs exist in the interpretations Iw for
all worlds w ∈ W, i.e., all interpretations Iw are acyclic, then also all mmscs exist in the
induced interpretation I×. They can be computed by means of restricted unravellings as
follows: Consider the description graph G(d,w)

I× of I× that is rooted at (d, w). Then we consider

the restricted unravelling G(d,w)
I× �ωP

∞ such that only paths in G(d,w)
I× that do not have two

subsequent ωP-edges are allowed as vertices in the restricted unravelling. Since the mmscs in
all interpretations Iw exist, there are no infinite paths from each (e, v). As a consequence, we
obtain that all model-based most-specific concept descriptions exist in I×.

9 Complexity of Base Construction

The complexity of the construction of a probabilistic base can be double-exponential in the
size of the input interpretation. The translation of the probabilistic interpretation I to the crisp
interpretation I× can be obtained in polynomial time. The same holds for the translation
of concept descriptions, i.e., they may be translated in polynomial time. Furthermore,
the computation of a base of GCIs for a crisp interpretation has double-exponential time
complexity in the worst case. This is due to the fact that the neccessary induced context
KI of an interpretation may have exponential size in I (since there may be exponentially
many model-based most-specific concept descriptions for I), and furthermore the canonical
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implicational base of a formal context may have an exponential size w.r.t. the size of the formal
context. Hence, the construction of bases of GCIs for probabilistic interpretations also has a
double-exponential time complexity in the worst case.

10 Conclusion

We have defined translations between probabilistic description logics and crisp description
logics that preserve entailment of general concept inclusions. They have been used to reduce
the problem of construction of a base of GCIs for a probabilistic interpretation to the same
problem in crisp description logics for which a well-known and practical solution exists. For
this purpose we used the description FLE⊥Q≥ that was equipped with probabilistic role
and concept constructors, in the first case only allowing probabilities > 0 and = 1 to express
possibility and certainty almost everywhere, and in the other case only allowing for lower-bound
probabilities≥ p where p ∈ (0, 1].

Furthermore, we have shown how most-specific concept descriptions can be constructed
for probabilistic interpretations – again by a reduction to the crisp case.
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A Unused Results

Lemma 11. Let C and D be two P01FLE⊥-concept descriptions. If τ(C) v τ(D) holds, then also
C v D is satisfied.

Proof. Let I be an arbitrary probabilistic interpretation over (NC, NR), and consider its induced
interpretation I× over (NC, NR ∪ {ωP }). By presumption, it follows that τ(C)I

× ⊆ τ(D)I
×

.
Now consider an arbitrary world w ∈ W and an individual d ∈ ∆I . Using the previous
Lemma 1 we get the following:

d ∈ CIw ⇔ (d, w) ∈ τ(C)I
×

⇒ (d, w) ∈ τ(D)I
×

⇔ d ∈ DIw .

As a consequence, we get that C v D holds.
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