
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Extending the Description Logic τEL(deg)
with Acyclic TBoxes

Franz Baader Oliver Fernández Gil

LTCS-Report 16-02

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Extending the Description Logic τEL(deg)
with Acyclic TBoxes

Franz Baader1 and Oliver Fernández Gil∗1

1Theoretical Computer Science, TU Dresden, Germany

Abstract

In a previous paper, we have introduced an extension of the lightweight
Description Logic EL that allows us to define concepts in an approximate
way. For this purpose, we have defined a graded membership function
deg , which for each individual and concept yields a number in the interval
[0, 1] expressing the degree to which the individual belongs to the concept.
Threshold concepts C∼t for ∼ ∈ {<,≤, >,≥} then collect all the individuals
that belong to C with degree ∼ t. We have then investigated the complexity
of reasoning in the Description Logic τEL(deg), which is obtained from EL
by adding such threshold concepts. In the present paper, we extend these
results, which were obtained for reasoning without TBoxes, to the case of
reasoning w.r.t. acyclic TBoxes. Surprisingly, this is not as easy as might
have been expected. On the one hand, one must be quite careful to define
acyclic TBoxes such that they still just introduce abbreviations for complex
concepts, and thus can be unfolded. On the other hand, it turns out that,
in contrast to the case of EL, adding acyclic TBoxes to τEL(deg) increases
the complexity of reasoning by at least on level of the polynomial hierarchy.

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA).

1

Contents

1 Introduction 3

2 The Description Logic τEL(deg) 6

2.1 The Description Logic EL . 6

2.1.1 Characterization of membership in EL 8

2.2 Adding threshold concepts to EL 10

2.3 The graded membership function deg 11

3 Acyclic TBoxes for τEL(m) 15

4 Reasoning with acyclic τEL(deg) TBoxes 19

4.1 Lower bounds . 20

4.2 Normalization . 30

4.3 A PSpace upper bound . 37

4.4 Reasoning with acyclic knowledge bases 47

5 Conclusion 57

6 Appendix 58

2

1 Introduction

Description logics (DLs) [BCM+03] allow their users to define the important
notions of an application domain as concepts by stating necessary and sufficient
conditions for an individual to belong to the concept. These conditions can be
atomic properties required for the individual (expressed by concept names) or
properties that refer to relationships with other individuals and their properties
(expressed as role restrictions). The expressivity of a particular DL is determined
on the one hand by what sort of properties can be required and how they can
be combined. On the other hand, DLs provide their users with ways of stating
terminological axioms in a so-called TBox. The simplest kind of TBoxes are called
acyclic TBoxes, which consist of concept definitions without cyclic dependencies
among the defined concept. Basically, such a TBox introduces abbreviations for
complex concept descriptions. But even this simple form of TBoxes may increase
the complexity of reasoning, as is, for example the case for the DL FL0, for which
the complexity of the subsumption problem increases from polynomial-time to
coNP-complete if acyclic TBoxes are added [Neb90].

The DL EL, in which concepts can be built using concept names as well as the
concept constructors conjunction (u), existential restriction (∃r.C), and the top
concept (>),1 has drawn considerable attention in the last decade since, on the
one hand, important inference problems such as the subsumption problem are
polynomial in EL, not only w.r.t. acyclic TBoxes, but also w.r.t. more expressive
terminological axioms called GCIs [Bra04]. On the other hand, though quite
inexpressive, EL can be used to define biomedical ontologies, such as the large
medical ontology SNOMEDCT,2 which basically is an acyclic EL TBox. In EL we
can, for example, define the concept of a good movie as a movie that is uplifting,
has a simple, but original plot, a likable and an evil character, action and love
scenes, and a happy ending.

Movie u Uplifting u ∃plot.(Simple u Original) u

∃character.Likeable u ∃character.Evil u (1)

∃scene.Action u ∃scene.Love u ∃ending.Happy.

For an individual to belong to this concept, all the stated properties need to
be satisfied. However, maybe we would still want to call a movie good if most,
though not all, of the properties hold.

In [BBG15], we have introduced a DL extending EL that allows us to define con-
cepts in such an approximate way. The main idea is to use a graded membership
function, which instead of a Boolean membership value 0 or 1 yields a member-
ship degree from the interval [0, 1]. We can then require a good movie to belong

1In FL0, we have value restrictions (∀r.C) instead of existential restrictions.
2see http://www.ihtsdo.org/snomed-ct/

3

to the EL concept (1) with degree at least .8. More generally, if C is an EL
concept, then the threshold concept C≥t for t ∈ [0, 1] collects all the individuals
that belong to C with degree at least t. In addition to such upper threshold
concepts, also lower threshold concepts C≤t are considered, and strict inequalities
may be used. For example, a bad movie could be required to belong to the EL
concept (1) with a degree less than .2. In contrast to fuzzy logics, which also yield
membership degrees, we use classical crisp interpretations to define the semantics
of the new logic. The membership degree of an individual d in a concept C is
obtained by comparing the properties that the individual has with the properties
that the concept requires. There are, of course, different possibilities for how
to define a graded membership function m based on this idea, and the seman-
tics of the obtained new logic τEL(m) depends on m. In [BBG15], we have not
only introduced this general framework, but have also defined a specific graded
membership function deg , and have investigated the complexity of reasoning in
τEL(deg) in detail. More precisely, we have shown that the satisfiability and the
ABox consistency problem in τEL(deg) are NP-complete, and the subsumption
and the instance problem are coNP-complete (the latter w.r.t. data complexity).
All these results are shown for the setting without TBoxes.

The main contribution of the present paper is to investigate the complexity of
reasoning in τEL(deg) w.r.t. acyclic TBoxes. Surprisingly, this is not as easy
as might have been expected. The problem already starts with how to define
acyclic TBoxes in τEL(deg). It turns out that simply replacing EL concepts by
τEL(deg) concepts in the definition of an acyclic TBox does not yield the desired
result. In fact, acyclic TBoxes are supposed to introduce concept names (defined
concepts) as abbreviations for complex concepts, and these complex concepts can
be obtained by unfolding defined concepts, i.e., by replacing defined concepts by
their definitions until no more defined concepts occur. For the straightforward
definition of acyclic τEL(deg) TBoxes mentioned above, this unfolding would
actually yield concepts that are not syntactically correct τEL(deg) concepts since
they may contain nested threshold operators, which is not allowed in τEL(deg).3
Thus, we propose a more sophisticated notion of acyclic TBox for τEL(deg),
which consists of an EL part and a τEL(deg) part satisfying certain properties.
These properties ensures that unfolding yields a correct τEL(deg) concept. Of
course, from a semantic point of view, we want defined concepts to have the same
meaning as their unfolded counterparts. For this to hold, we need to require
the graded membership function to “respect” the EL part of the TBox in an
appropriate way. We show how deg can be modified such that it satisfies this
requirement. This finally fixes syntax and semantics of acyclic τEL(deg) TBoxes.
We then investigate reasoning w.r.t. such TBoxes. We show that, again quite
surprisingly, the complexity increases by at least one level in the polynomial
hierarchy when acyclic TBoxes are added: satisfiability and consistency are ΠP

2 -
3In fact, the semantics of such nested concepts would not be well-defined since the graded

membership function can only deal with EL concepts as input.

4

hard and subsumption and the instance problem are ΣP
2 -hard. The best upper

bound we can currently show for these problems is PSpace.

In the next section, we will sketch how the DL τEL(deg) was defined in [BBG15]
(more details and motivating discussions can be found in that paper). In Sec-
tion 3, we introduce acyclic τEL(deg) TBoxes, and in Section 4 we provide proofs
of the mentioned complexity results.

5

2 The Description Logic τEL(deg)

We start by introducing the DL EL and some related notions that are needed
in the rest of the paper. Afterwards, we present the abstract family of DLs
τEL(m) that is obtained by extending EL with threshold concepts defined using
a graded membership function m [BBG15]. Finally, we recall the specific graded
membership function deg , and briefly discuss the results obtained in [BBG15]
concerning the computational complexity of reasoning in τEL(deg).

2.1 The Description Logic EL

Starting with finite sets of concept names NC and role names NR, the set CEL
of EL concept descriptions is obtained by combining the concept constructors
conjunction (C uD), existential restriction (∃r.C) and top (>), in the following
way:

C ::= > | A | C u C | ∃r.C (2)

where A ∈ NC, r ∈ NR and C ∈ CEL.

The semantics of EL is given through standard first-order logic interpretations.
An interpretation I = (∆I , .I) consists of a non-empty domain ∆I and an in-
terpretation function .I that assigns subsets of ∆I to concept names in NC and
binary relations over ∆I to role names in NR. The function .I is inductively
extended to arbitrary concept descriptions in the usual way, i.e.,

>I := ∆I

(C uD)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}

Given two EL concept descriptions C and D, we say that C is subsumed by D
(in symbols C v D) iff CI ⊆ DI for all interpretations I. These two concepts
are equivalent (in symbols C ≡ D) iff C v D and D v C. In addition, C is
satisfiable iff CI 6= ∅ for some interpretation I.

Information about specific individuals (represented by a set of individual names
NI) can be expressed in an ABox, which is a finite set of assertions of the form
C(a) or r(a, b), where C ∈ CEL, r ∈ NR, and a, b ∈ NI. In addition to concept and
role names, an interpretation I now assigns domain elements aI to individual
names a. We say that I satisfies an assertion C(a) iff aI ∈ CI , and r(a, b) iff
(aI , bI) ∈ rI . Further, I is a model of A (denoted as I |= A) iff it satisfies all the
assertions of A. Then, an ABox A is consistent iff I |= A for some interpretation
I. Finally, an individual a is an instance of C in A iff aI ∈ CI for all models I
of A. We denote the set of individual names occurring in A as Ind(A).

6

An EL TBox T is a finite set of concept definitions of the form E
.
=CE, where

E ∈ NC and CE is an EL concept description.4 Additionally, we require that no
concept name occurs more than once on the left hand side of a definition. Concept
names occurring on the left hand side of a definition of T are called defined
concepts while all other concept names are called primitive concepts. The sets
of defined and primitive concepts of T are denoted as NTd and NTpr, respectively.
Note that NTpr = NC \NTd , and thus also contains all concept names not occurring
in T . An interpretation I is a model of T (in symbols I |=T) iff EI=(CE)I for
all E .

=CE ∈T . The relations v and ≡ are now defined modulo all models of T
and denoted as vT and ≡T , respectively.

TBoxes can be classified into being acyclic or cyclic, based on how their defined
concepts depend on each other.

Definition 1 (Cyclic/acyclic EL TBoxes). Let T be an EL TBox. We define
→ as a binary relation over the set NTd to represent direct dependency between
defined concepts in the following way. A defined concept E1 directly depends on a
defined concept E2 (denoted as E1 → E2) iff E1

.
= CE1 ∈ T and E2 occurs in CE1 .

Let →+ be the transitive closure of →. The TBox T contains a terminological
cycle iff there exists a defined concept E in T that depends on itself, i.e., E →+ E.
Then, T is called cyclic if it contains a terminological cycle. Otherwise, it is called
acyclic.

For acyclic TBoxes, the relation →+ induces a well-founded partial order � on
the set NTd , i.e., E1 � E2 iff E2 →+ E1. Furthermore, the unfolding uT (C) of an
EL concept description C with respect to T is defined as follows:

uT (C) :=


C if C ∈ NTpr
uT (CE) if C = E and E

.
= CE ∈ T

uT (C1) u uT (C2) if C = C1 u C2

∃r.uT (C ′) if C = ∃r.C ′

Based on this, the meaning of a concept C can always be determined from the
meaning of its unfolded description: CI=[uT (C)]I for all models I of T , which
means that C≡T uT (C). From a model-theoretical point of view this is captured
by the following proposition (see [Neb91]).

Proposition 2. Let T be an acyclic EL TBox. Any interpretation I of NTpr ∪NR

can be uniquely extended into a model of T .

We now define some notions related to EL concept descriptions that will be useful
for subsequent chapters.

4In this paper, we do not consider so-called general concept inclusions (GCIs), which are of
the form C v D for C,D ∈ CEL.

7

Definition 3 (sub-description). Let C be an EL concept description. The set
sub(C) of sub-descriptions of C is defined in the following way:

sub(C) :=


{C} if C = > or C ∈ NC,

{C} ∪ sub(C1) ∪ sub(C2) if C is of the form C1 u C2,

{C} ∪ sub(D) if C is of the form ∃r.D.

Note that the number of sub-descriptions |sub(C)| of a concept C is linear in the
size of C. Next, we define the role depth of a concept description C.

Definition 4 (role depth). The role depth rd(C) of an EL concept description C
is inductively defined as follows:

rd(>) = rd(A) := 0,

rd(C1 u C2) := max(rd(C1), rd(C2)),

rd(∃r.C) := rd(C) + 1.

A concept description is called an atom iff it is a concept name or an existential
restriction. The set of all EL atoms is denoted by NA. Additionally, every EL
concept description is a conjunction C1 u . . . uCn of atoms. These conjuncts are
called the top-level atoms of C and the set {C1, . . . , Cn} is denoted as tp(C).

2.1.1 Characterization of membership in EL

The definition of the graded membership function deg that we will recall in Sec-
tion 2.3 is based on the representation of concepts and interpretations as graphs,
and homomorphisms between these graphs.

Definition 5 (EL description graph). An EL description graph is a graph of the
form G = (VG, EG, `G) where:

• VG is a set of nodes.

• EG ⊆ VG × NR × VG is a set of edges labeled by role names,

• `G : VG → 2NC is a function that labels nodes with sets of concept names.

In [BKM99], it is shown that every EL concept description C can be translated
into an EL description tree TC and vice versa. Moreover, in [Baa03] interpre-
tations I are translated into EL description graphs GI = (VI , EI , `I) in the
following way:

• VI = ∆I ,

8

TC : v0 : {A}

v1 : {A,B}

v2 : {}

r

r

v3 : {A}

r

GI : a1 : {A}

a2 : {A,B}

a3 : {B}

r

r

r

Figure 1: EL description graphs.

• EI = {(vrw) | (v, w) ∈ rI},

• `I(v) = {A | v ∈ AI} for all v ∈ VI .

The following example illustrates the relation between concept descriptions and
description trees, and interpretations and description graphs.

Example 6. The EL concept description

C := A u ∃r.(A uB u ∃r.>) u ∃r.A

yields the EL description tree TC depicted on the left-hand side of Figure 1. The
description graph on the right-hand side corresponds to the following interpreta-
tion:

• ∆I := {a1, a2, a3},

• AI := {a1, a2} and BI := {a2, a3},

• rI := {(a1, a2), (a2, a3), (a3, a1)}.

Now, homomorphisms between EL description trees were introduced in [BKM99]
to characterize subsumption in EL: C v D iff there exists a homomorphism from
TD to TC mapping the root of TD to the root of TC (Thm. 1, [BKM99]). The
following definition generalizes such homomorphisms to graphs.

Definition 7. Let G = (VG, EG, `G) andH = (VH , EH , `H) be two EL description
graphs. A mapping ϕ : VG → VH is a homomorphism fromG toH iff the following
conditions are satisfied:

1. `G(v) ⊆ `H(ϕ(v)) for all v ∈ VG, and

2. vrw ∈ EG implies ϕ(v)rϕ(w) ∈ EH .

In Example 6, the mapping ϕ with ϕ(vi) = ai+1 for i = 0, 1, 2 and ϕ(v3) = a2

is a homomorphism. The proof of the subsumption characterization result in
[BKM99] can be easily adapted to characterize element-hood in EL, i.e., whether
d ∈ CI for some d ∈ ∆I .

9

Theorem 8. Let I be an interpretation, d ∈ ∆I, and C an EL concept descrip-
tion. Then, d ∈ CI iff there exists a homomorphism ϕ from TC to GI such that
ϕ(v0) = d.

2.2 Adding threshold concepts to EL

In [BBG15], we have extended EL with a family of concept constructors of the
form C∼t, such that C is an EL concept description, ∼ ∈ {<,≤, >,≥}, and t is a
rational number in [0, 1]. These new constructors can then be combined with the
basic EL concept constructors (2) to form more complex concepts, e.g., (∃r.A)<1u
∃r.(A u B)≥.8 u B. Concepts of the form C∼t are called threshold concepts. The
semantics of such concepts is based on a graded membership functionm. The idea
is that, given an interpretation I and d ∈ ∆I , mI(d, C) computes a value between
0 and 1 representing the extent to which d belongs to C in I. For instance, the
concept C>.8 collects all the individuals that belong to C with degree greater than
.8. To indicate which function m is used to obtain the semantics of threshold
concepts, we call the extended logic τEL(m). We require such functions m to
satisfy the following two properties.

Definition 9. A graded membership function m is a family of functions that
contains for every interpretation I a function mI : ∆I × CEL → [0, 1] satisfying
the following conditions (for C,D ∈ CEL):

M1: d∈CI ⇔ mI(d, C)=1 for all d ∈ ∆I ,

M2: C≡D ⇔ ∀I ∀d ∈ ∆I : mI(d, C)=mI(d,D).

The formal semantics of threshold concepts is then defined in terms of m as
follows: (C∼t)

I := {d ∈ ∆I | mI(d, C) ∼ t}. Taking this into account, .I is
extended in a natural way to interpret complex τEL(m) concept descriptions.

Coming back to Definition 9, on the one hand, propertyM2 expresses the intuition
that membership values should not depend on the syntactic form of a concept,
but only on its semantics. On the other hand, requiring M1 has the following
consequences.

Proposition 10. For every EL concept description C we have C≥1 ≡ C and
C<1 ≡ ¬C, where the semantics of negation is defined as usual, i.e., (¬C)I :=
∆I \ CI.

The equivalence C<1 ≡ ¬C says that negation of EL concepts is expressible in
τEL(m). This does not imply, however, that τEL(m) is closed under negation.
Note that nesting of threshold constructors is not allowed. For example, strings
like ((∃r.A)<1)<1 or (C∼t)<1 do not constitute well-formed concepts in τEL(m).
Thus, negation cannot be nested using these constructors.

10

Regarding notation, we will sometimes use C=t to abbreviate the concept de-
scription C≤t u C≥t. Symbols like Ĉ, D̂ will be used to refer to τEL(m) concept
descriptions. Last, some other notions defined for EL in the previous section
extend naturally to τEL(m) by additionally handling threshold concepts in the
following way:

• role depth: extends to τEL(m) concept descriptions by defining rd(C∼t) := 0
for all threshold concepts C∼t,

• sub-description: for all threshold concepts C∼t, sub(C∼t) := {C∼t}.

2.3 The graded membership function deg

In addition to defining the family of DLs τEL(m), in [BBG15] we also define a
concrete graded membership function deg and study its induced DL τEL(deg).
Since the latter constitutes our main object of study, we shall briefly describe the
principal components supporting the definition of deg .

Basically, we use the homomorphism characterization of membership in EL (The-
orem 8) as a starting point. The computation of degI(d, C) relies on exploring
the search space consisting of all partial mappings from TC to GI that map the
root of TC to d and respect the edge structure of TC . Let us explain the reason
for considering such partial mappings using the following example.

Example 11. Figure 2 shows a description tree TC corresponding to the concept
C := A u ∃s.(B1 u ∃r.B2 u ∃r.B3), and the description graph associated to an
interpretation I. Clearly, d0 6∈ CI , and thus there is no homomorphism that
maps v0 to d0. Nevertheless, the mappings depicted in the figure (represented
by the dashed lines and the dotted ones) provide two different views of how d0

partially satisfies the properties required by C. The idea is then to calculate
to which degree each partial mapping fulfills the homomorphism conditions (see
Definition 7), and take the degree of the best one as the membership degree
degI(d0, C).

These partial mappings are called partial tree-to-graph homomorphisms (ptgh),
and are formally defined as follows.

Definition 12 (Def. 4, [BBG15]). Let T = (Vt, Et, `t, v0) and G = (Vg, Eg, `g) be
a description tree (with root v0) and a description graph, respectively. A partial
mapping h : Vt → Vg is a partial tree-to-graph homomorphism (ptgh) from T to
G iff the following conditions are satisfied:

1. dom(h) is a subtree of T with root v0, i.e., v0 ∈ dom(h) and if (v, r, w) ∈ Et
and w ∈ dom(h), then v ∈ dom(h);

11

TC :
v0 : {A}

v1 : {B1}

v2 : {B2}

r

v3 : {B3}

r

s

GI :
d0 : {A}

d1 : {}

d3 : {B2}

r

d4 : {B3}

r

s

d2 : {B1}

d5 : {}

r

s

Figure 2: Partial mappings.

2. for all edges (v, r, w) ∈ Et, w ∈ dom(h) implies (h(v), r, h(w)) ∈ Eg.

To measure to which degree a ptgh h satisfies the homomorphism conditions, a
weighted function hw : dom(h)→ [0, 1] is defined and the value hw(v0) considered
as the corresponding degree. We use again Figure 2 to sketch how hw calculates
such degrees.

Example 13. Let h denote the mapping represented by the dashed lines and g
the other one. To compute hw(v0), we basically count the number of properties
of v0 (say `), check how many of those d0 actually has in I (say k) and give
k/` as the membership degree hw(v0). In our example, v0 has two properties,
namely, A and the existence of an s-successor with a certain structure (the node
v1). In particular, the s-successor of d0 selected by h to match v1, does not
satisfy all the conditions required by v1. Now, instead of assuming that d0 lacks
the second property and setting hw(v0) = 1/2, hw(v1) computes a value that
expresses to which degree d1 satisfies the conditions required by v1. This is done
by applying the same idea recursively. This procedure stops at nodes of TC having
no successors in dom(h).

Thus, the real computation is done in a bottom-up manner. First, we have
hw(v2)=1 and hw(v3)=1. Based on these two values and the fact that d1 6∈ (B1)I ,
we obtain hw(v1)=2/3. Finally, since d0 ∈ AI , we get hw(v0) = (1 + hw(v1))/2 =
5/6. Concerning the mapping g, the reader can verify that gw(v0) < hw(v0), and
thus deg sees h as a better approximation for membership in C.

The intuition given in the previous example is formally expressed in the following
definition.

Definition 14 (Def. 5, [BBG15]). Let T be a finite EL description tree, G
an EL description graph and h : VT → VG a ptgh from T to G. We define

12

the weighted homomorphism induced by h from T to G as a recursive function
hw : dom(h)→ [0..1] in the following way:

hw(v) :=


1 if |`T (v)|+ k∗(v) = 0

|`T (v) ∩ `G(h(v))|+
∑

1≤i≤k
hw(vi)

|`T (v)|+ k∗(v)
otherwise.

The elements used to define hw have the following meaning. For a given v ∈
dom(h), k∗(v) denotes the number of successors of v in T , and v1, . . . , vk with
0 ≤ k ≤ k∗(v) are the children of v in T such that vi ∈ dom(h).

Based on these ideas, we now defined the graded membership function deg . How-
ever, in order to satisfy property M2, all concept descriptions C are transformed
into an appropriate reduced form Cr before actually applying the computations
sketched above. This reduced form, which was introduced in [Küs01], removes
redundancies from concepts, and has the property that C ≡ D iff the description
trees of Cr and Dr are isomorphic.

Definition 15 (Def. 6, [BBG15]). Let I be an interpretation, d ∈ ∆I and C an
EL concept with reduced form Cr. Moreover, let H(TCr , GI , d) be the set of all
ptghs h from TCr to GI with h(v0) = d. Then,

degI(d, C) := max{q | hw(v0) = q and h ∈ H(TCr , GI , d)}

We have shown in [BBG15] that the maximum in the above expression always
exists. This implies that the function deg is well-defined. In addition, we could
show that the properties M1 and M2 are satisfied. Regarding the induced DL
τEL(deg), we have investigated the computational complexity of the standard
reasoning problems satisfiability, subsumption, ABox consistency and instance
checking. In particular, the subsumption and the satisfiability problems are tack-
led by establishing the following polynomial model property for the satisfiability
of concepts of the form Ĉ u ¬D̂ for τEL(deg) concepts Ĉ, D̂. Note that this is
equivalent to the non-subsumption problem and satisfiability is a special case.

Lemma 16 (Lem. 5, [BBG15]). Let Ĉ and D̂ be τEL(deg) concepts of sizes s(Ĉ)

and s(D̂)5. If Ĉ u ¬D̂ is satisfiable, then there exists an interpretation I such
that ĈI \ D̂I 6=∅ and |∆I |≤s(Ĉ)×s(D̂).

A analogous property has been also proved for consistent ABoxes of the form
A ∪ {¬Ĉ(a)}, thus yielding a bounded model property for non-instance (A 6|=
Ĉ(a)). Unfortunately, in this case the bound on the model’s size has the size of
the concept Ĉ in the exponent. Nevertheless, since consistency is a particular

5The size s(Ĉ) of a τEL(deg) concept description Ĉ is the number of occurrences of symbols
needed to write Ĉ, where the numbers used to write threshold values are encoded in binary.

13

case where Ĉ is not present, we have a polynomial model property for ABox
consistency. In addition, checking whether a finite interpretation I satisfies a
τEL(deg) concept/ABox can be done in polynomial time. Overall, we can thus
employ a standard guess-and-check NP-algorithm to decide satisfiability, non-
subsumption, and ABox consistency. For non-instance, this algorithm is only in
NP if we consider data complexity as defined in [DLNS94].

Theorem 17 (Th. 5 and Th. 6, [BBG15]). In τEL(deg), satisfiability and
consistency are NP-complete, whereas subsumption and instance checking (w.r.t.
data complexity) are coNP-complete.

14

3 Acyclic TBoxes for τEL(m)

We now turn to introducing acyclic TBoxes for the whole family of DLs τEL(m),
and hence also for τEL(deg). As with acyclic TBoxes in EL, the purpose is to in-
troduce abbreviations for composite τEL(m) concept descriptions. For instance,
the EL concept definition E .

=∃r.Au∃r.B can be used to abbreviate the threshold
concept (∃r.Au∃r.B)≥1/2 as E≥1/2. On top of this, we can then also introduce the
abbreviation β for E≥1/2 and use this abbreviation in other concept definitions,
as done in the following TBox:

α
.
= ∃s.A u ∃r.β

β
.
= E≥1/2

E
.
= ∃r.A u ∃r.B

 (3)

Overall, the concept name α then abbreviates the τEL(m) concept description
∃s.A u ∃r.(∃r.A u ∃r.B)≥1/2, which can be obtained from α by unfolding.

However, we cannot use arbitrary acyclic sets of τEL(m) concept definitions. For
example, suppose that α is now defined in the TBox (3) as α .

= ∃s.A u ∃r.(β>.8)
instead. Even though the right-hand side of this definition is a syntactically
well-formed τEL(m) concept, unfolding α w.r.t. this new TBox yields

∃s.A u ∃r.(((∃r.A u ∃r.B)≥1/2)>.8), (4)

which is not a well-formed τEL(m) concept description since threshold operators
are nested. The following definition is designed to avoid this problem.

Definition 18. An acyclic τEL(m) TBox T̂ is a pair (Tτ , T), where T is an
acyclic EL TBox and Tτ is a set of concept definitions of the form α

.
= Ĉα

satisfying the following conditions:

• Ĉα is a τEL(m) concept description,

• α does not depend on itself and it does not occur in T ,

• for all threshold concepts C∼t occurring in Ĉα, no defined concept of Tτ
occurs in C.

The TBox (3) can be seen as an acyclic τEL(m) TBox where the first two defi-
nitions belong to Tτ and the last one to T .

Given an acyclic τEL(m) TBox T̂ = (Tτ , T), we define the set NT̂d of defined
concepts in T̂ as the union NTτd ∪ NTd , where NTτd is the set of defined concepts in
Tτ . We denote the set NC \ NT̂d as NT̂pr. The notion of unfolding is extended to
acyclic τEL(m) TBoxes by considering the following two additional rules:

uT̂ (α) := uT̂ (Ĉα), for all α .
= Ĉα ∈ Tτ

uT̂ (C∼t) := [uT (C)]∼t

15

Then, it is easy to see that the restrictions imposed in the previous definition
guarantee that α ∈ NTτd always unfolds into a well-formed τEL(m) concept de-
scription uT̂ (α), whereas E ∈ NTd unfolds into an EL concept. Regarding arbi-
trary τEL(m) concept descriptions Ĉ, we say that Ĉ is correctly defined w.r.t T̂
if the pair (Tτ ∪ {α

.
= Ĉ}, T) is still an acyclic τEL(m) TBox, where α is a fresh

concept name not occurring in T̂ and Ĉ.

We are now ready to fix the semantics for this kind of TBoxes. To start with, we
say that an interpretation I is a model of Tτ (and write I |= Tτ) iff αI = (Ĉα)I

in τEL(m) for all α .
= Ĉα∈Tτ . Then, I satisfies T̂ iff I |= T and I |= Tτ . The

corresponding subsumption and equivalence relations vT̂ and ≡T̂ on correctly
defined τEL(m) concepts are defined w.r.t. the set of models of T̂ . The next step
is to ensure that defined concepts α and their unfolded counterparts uT̂ (α) have
the same meaning in all models of T̂ , i.e.,

α≡T̂ uT̂ (α). (5)

Since this equivalence holds for EL, the only constructor that might lead to a
problem is the threshold constructor. More precisely, given a threshold concept
C∼t with C ∈ CEL, for all models of T̂ the following must hold:

(C∼t)
I=((uT (C))∼t)

I . (6)

Thus, we must turn our attention to the graded membership function m since
m is providing the semantics for such concepts C∼t. In principle, the graded
membership function m is defined on C since C is an EL concept description.
However, this function (e.g., deg) is agnostic of the TBox and thus treats defined
and primitive concepts alike: they are just concept names for m. In order to
satisfy (6), the function needs to be aware of the TBox. Let us illustrate this
using the graded membership function deg :

Example 19. Let T̂ = (Tτ , T) be the τEL(m) acyclic TBox corresponding to
the definitions in (3). In addition, let I be an interpretation such that ∆I =
{d0, dr, ds}, AI={ds}, BI={dr}, and rI={(d0, d0), (d0, dr)}, sI={(d0, ds)}.

When trying to extend I to a model of T̂ , we first note that we have (∃r.A u
∃r.B)I=∅, and hence EI must be interpreted as the empty set. Then, since E is
treated as a concept name by deg , this means that degI(d,E) = 0 for all d ∈ ∆I .
Therefore, (E≥1/2)I = ∅, and consequently we must define βI := αI := ∅. To see
that (6) fails to hold, one can observe that in contrast to degI(d0, E) = 0, for d0

we obtain degI(d0,∃r.Au∃r.B)=1/2 (recall the ideas defining deg). This means
that (E≥1/2)I 6= ((uT (E))≥1/2)I . Obviously, the problem propagates up to the
more general requirement in (5). First, d0 6∈βI but d0∈(uT̂ (β))I . Moreover, it is
easy to check that d0∈(uT̂ (α))I , and thus α 6≡T̂ uT̂ (α).

To avoid the problem demonstrated by this example, the graded membership
function m needs to take into account the definitions in T . This means that T

16

must be a parameter of this function. Furthermore, to ensure that property (6)
is satisfied, the membership degrees for an EL concept description C should be
the same as for its unfolding uT (C). Taking this into account, we extend a given
graded membership function m such that it takes concept definitions in acyclic
EL TBoxes into account.

Definition 20. For all graded membership functions m (in the sense of Defi-
nition 9), the extension of m computing membership degrees w.r.t. acyclic EL
TBoxes is a family of functions containing for every interpretation I a function
m̂I : ∆I × CEL × T(I)→ [0, 1] satisfying

m̂I(d, C, T) := mI(d, uT (C)),

where T(I) is the set of all acyclic EL TBoxes T such that I |= T .

Clearly, well-definedness of m and acyclicity of T imply well-definedness of m̂.
For the sake of simplicity, we will from now on use m both to denote the original
graded membership function and its extension m̂.

The use of unfolding in the above definition ensures that, for all interpretations I
and d ∈ ∆I , we have d ∈ (C∼t)

I iff d ∈ ((uT (C))∼t)
I . Consequently, (6) always

holds, as does (5). Finally, it is easy to see that the analogon of Proposition 2 is
also valid for acyclic τEL(m) TBoxes.

Proposition 21. Let T̂ be an acyclic τEL(m) TBox. Any interpretation I of
NT̂pr ∪ NR can be uniquely extended into a model of T̂ .

The following lemma is an easy consequence of Definition 20. It shows that graded
membership functions constructed in such a way satisfy a generalization of the
conditions stated in Definition 9.

Lemma 22. Let m be a graded membership function as in Definition 20. Then,
for all acyclic EL TBoxes T , we have:

M1 T : d∈CI ⇔ mI(d, C, T)=1 for all I |= T and d ∈ ∆I

M2 T : C≡T D ⇔ ∀I |=T ∀d∈∆I : mI(d, C, T)=mI(d,D, T)

where C and D are EL concept descriptions.

Proof. Being m a graded membership function in the sense of Definition 9, it
satisfies M1 and M2. Hence, since C ≡T uT (C), the definition of m with respect
to T satisfies M1 T . Moreover, C ≡T D implies that uT (C) ≡ uT (D). From this
it is easy to verify that m also satisfies M2 T .

To sum up, we have introduced a notion of acyclic TBoxes for τEL(m) such
that unfolding still works from a syntactic point of view, i.e., the unfolding of a

17

defined concept is a syntactically correct τEL(m) concept description. To ensure
that unfolding is also correct from the semantic point of view (i.e., (5) holds), we
had to extend m such that it takes the EL part of the given acyclic TBox into
account. In the following, we consider the case where m = deg and show that the
presence of acyclic τEL(deg) TBoxes increases the complexity of reasoning.

18

4 Reasoning with acyclic τEL(deg) TBoxes

We will not only investigate the satisfiability and the subsumption problem, but
also consistency and instance. In the presence of an acyclic τEL(deg) TBox, the
concepts occurring in the ABox need to be correctly defined w.r.t. this TBox.
An acyclic τEL(deg) knowledge base is a pair K= (T̂ ,A) where T̂ is an acyclic
τEL(deg) TBox, and A is a finite set of assertions Ĉ(a) or r(a, b), where Ĉ is
correctly defined w.r.t. T̂ .

The size s(T̂) of an acyclic τEL(deg) TBox T̂ = (Tτ , T) corresponds to the
following expression:

s(T̂) := |NT̂d | +
∑

α
.
=Ĉα∈Tτ∪T

s(Ĉα)

Furthermore, we define the size s(A) of an ABox A as:

s(A) :=
∑

Ĉ(a)∈A
a∈Ind(A)

s(Ĉ) +
∑

r(a,b)∈A
a,b∈Ind(A)

1

Finally, the size s(K) of a KB K = (T̂ ,A) is simply s(T̂) + s(A).

Proposition 21 together with (5) tell us that reasoning w.r.t. acyclic τEL(deg)
TBoxes can be reduced to reasoning in the empty terminology, through unfolding.
However, as shown in [Neb90] for the DL FL0, unfolding may produce concept
descriptions of exponential size. The following example shows the corresponding
version for EL.

Example 23. The TBox Tn is inductively defined as follows (n≥0):

T0 := {α0
.
= >}

T1 := T0 ∪ {α1
.
= ∃r.α0 u ∃s.α0}

. . .

Tn := Tn−1 ∪ {αn
.
= ∃r.αn−1 u ∃s.αn−1}

It is easy to see that s(Tn) = Θ(n), but s(uTn(αn)) ≥ 2n.

Thus, by applying unfolding and then using the known NP decision procedures for
satisfiability/non-subsumption in τEL(deg) [BBG15], we obtain an NExpTime
algorithm to decide the same problems w.r.t. acyclic τEL(deg) TBoxes. The
natural question to ask is thus: can we do better than NExpTime? We will show
that this is indeed the case by providing a PSpace upper bound. At the moment,
we do not have a matching lower bound. However, we can show that (unless
NP=ΠP

2) the complexity of reasoning w.r.t. acyclic τEL(deg) TBoxes is higher
than of reasoning in τEL(deg) without a TBox. We start with showing the lower
bounds.

19

4.1 Lower bounds

We reduce the problem ∀∃3SAT to concept satisfiability with respect to acyclic
τEL(deg) TBoxes. This problem is well-known to be complete for the class ΠP

2

(see [Sto76], Section 4).

Definition 24 (∀∃3SAT). Let u= {u1, . . . , un}, v= {v1, . . . , v`} be two disjoint
sets of propositional variables, and ϕ(u, v) a 3CNF formula defined over u ∪ v,
i.e., a finite set of propositional clauses C = {c1, . . . , cq} such that each ck is a
set of three literals {γk1 , γk2 , γk3} over u ∪ v. A formula ∀u∃v.ϕ(u, v) is valid iff
for all truth assignments t of the variables in u there is an extension of t for the
variables in v satisfying ϕ(u, v). ∀∃3SAT is then the problem of deciding whether
a formula ∀u∃v.ϕ(u, v) is valid or not.

The idea for the reduction goes as follows. Each formula ∀u∃v.ϕ(u, v) is translated
into an acyclic τEL(deg) TBox T̂ ϕn containing a defined concept αn such that:
∀u∃v.ϕ(u, v) is valid iff αn is satisfiable in T̂ ϕn (n is the number of variables in u).

The first step consists of encoding ϕ(u, v) into a τEL(deg) concept description Ĉϕ.
Literals defined over u and v are represented by concept names Ai, Āi (1 ≤ i ≤ n)
and Bj, B̄j (1 ≤ j ≤ `), respectively, according to the following mapping:

η(ui) := Ai, η(¬ui) := Āi, η(vj) := Bj, η(¬vj) := B̄j (7)

Based on η, each clause ck is represented by the EL concept description:

Dk :=η(γk1) u η(γk2) u η(γk3) (8)

The satisfiability of ck could then be simulated through the threshold concept
(Dk)≥1/3. In fact, by the definition of deg , an individual d belongs to (Dk)≥1/3

iff it belongs to at least one concept name in {η(γk1), η(γk2), η(γk3)}. Therefore,
the τEL(deg) concept (D1)≥1/3 u . . . u (Dq)≥1/3 appears as a plausible choice to
capture the satisfiability status of ϕ(u, v). Nevertheless, pairs of concepts (Ai, Āi)
and (Bj, B̄j) need to be complementary, since they are meant to play the role of
a literal ui (vj) and its negation. To this end, we define a TBox T cn,` as follows:

T cn,` :=
n⋃
i=1

{Fi
.
= Ai u Āi} ∪

⋃̀
j=1

{Gj
.
= Bj u B̄j}

Then, (Fi)=1/2 collects the elements that are instances of exactly one concept in
{Ai, Āi} (similarly for (Gj)=1/2 and {Bj, B̄j}). Putting all these pieces together,
Ĉϕ is defined as follows:

Ĉϕ :=

ql

k=1

(Dk)≥1/3 u
nl

i=1

(Fi)=1/2 u
l̀

j=1

(Gj)=1/2

20

The following result follows from the construction of Ĉϕ.

Lemma 25. ϕ(u, v) is satisfiable iff Ĉϕ is satisfiable w.r.t. T cn,`.

Proof. (⇒) Assume that ϕ(u, v) is satisfiable. Then, there exists a truth as-
signment t for u ∪ v satisfying ϕ(u, v). Using t we construct a single-pointed
interpretation I0 = ({d0}, .I0), where .I0 interprets the primitive concept names
Ai, Āi (1 ≤ i ≤ n) and Bj, B̄j (1 ≤ j ≤ `) as follows:

• d0 ∈ (Ai)
I0 iff t(ui) = true and d0 ∈ (Āi)

I0 iff t(ui) = false

• d0 ∈ (Bj)
I0 iff t(vj) = true and d0 ∈ (B̄j)

I0 iff t(vj) = false

Obviously, since t is a truth assignment it follows that:

d0 ∈ (Ai)
I0 iff d0 6∈ (Āi)

I0 , for all 1 ≤ i ≤ n (9)

and,
d0 ∈ (Bj)

I0 iff d0 6∈ (B̄j)
I0 , for all 1 ≤ j ≤ ` (10)

Consequently, its extension into a model of T cn,` is such that (Fi)
I0 = (Gj)

I0 = ∅.
We now prove that d0 ∈ (Ĉϕ)I0 . As a direct consequence of (9), (10) and the
definition of deg w.r.t. TBoxes, we obtain:

d0 ∈

(
nl

i=1

(Fi)=1/2 u
l̀

j=1

(Gj)=1/2

)I0

Moreover, let Dk be an arbitrary concept as constructed in 8, and ck its corre-
sponding clause in ϕ(u, v). Since t satisfies ϕ(u, v), this means that there exists
a literal γ in ck such that t(γ) = true. Suppose that γ is of the form ui. Then,
η(γ) = Ai and by construction of I0 we know that d0 ∈ (η(γ))I0 . Conversely,
if γ is of the form ¬ui, we then have t(ui) = false and η(γ) = Āi. Again, by
construction of I0 this means that d0 ∈ (η(γ))I0 . The same applies if γ is of the
form vj or ¬vj. Therefore, by the definition of Dk and the definition of deg w.r.t.
T , we further have d0 ∈ ((Dk)≥1/3)I0 . Thus,

d0 ∈

(
ql

k=1

(Dk)≥1/3

)I0

Overall, we just have shown that d0 ∈ (Ĉϕ)I0 .

21

(⇐) Conversely, assume that Ĉϕ is satisfiable with respect to T cn,`. This means
that there exists a model I of T cn,` and d ∈ ∆I such that d ∈ (Ĉϕ)I . We define
the assignment td for u ∪ v as follows:

td(ui) = true iff d ∈ (Ai)
I (1 ≤ i ≤ n)

td(vj) = true iff d ∈ (Bj)
I (1 ≤ j ≤ `)

Let us now show that td satisfies ϕ(u, v). We take an arbitrary clause ck of ϕ(u, v)

and its corresponding concept description Dk (as defined in (8)). Since d ∈ (Ĉϕ)I ,
this means that d ∈ ((Dk)≥1/3)I . Therefore, there exists a literal γ in ck such that
d ∈ (η(γ))I . If η(γ) corresponds to Ai, then by (7) and the construction of td we
have that γ = ui and td(γ) = true. In case η(γ) = Āi, d ∈ ((Fi)=1/2)I implies
that d 6∈ (Ai)

I . This means that γ = ¬ui and td(ui) = false. One can see that
in both cases td satisfies ck. A similar reasoning can be used with the other two
possible forms of η(γ), namely, Bj and B̄j for all 1 ≤ j ≤ `. Finally, since ck has
been chosen arbitrarily, we can conclude that td satisfies ϕ(u, v). Thus, ϕ(u, v) is
a satisfiable propositional formula.

Obviously, this is not enough to achieve our main goal, since ∀∃3SAT asks for
the satisfiability of ϕ(u, v) in all truth assignments of u. To mimic this universal
quantification, we extend the TBox Tn (from Example 23) into T̂ ϕn in such a way
that for all models I of T̂ ϕn , (αn)I 6= ∅ iff for all X ⊆ u there exists dX ∈ ∆I

satisfying:

dX ∈ (Ĉϕ)I and for all i, 1 ≤ i ≤ n : dX ∈ (Ai)
I iff ui ∈ X (11)

Let Tn be the EL description tree corresponding to the concept description
uTn(αn). We denote the interpretation induced by Tn as In. For instance, for
n=3, the interpretation I3 has the following shape6:

d0

r s

r

r s

s

r

r s

r

r s

s

s

It is easy to see that the extension of In into a model of Tn is such that d0 ∈ (αn)In .
Moreover, a one-to-one correspondence can be established between the set of

6For an arbitrary n, In has the shape of the full binary tree of depth n, where edges leading
to left children are labeled with r and the ones leading to right children are labeled with s.

22

leaves and the words in {r, s}n as follows. For all words x= x1 . . . xn in {r, s}n,
the corresponding leaf dx is the one reached from d0 by the path d0x1d1 . . . xndx.
Then, the desired group of elements satisfying (11) would also exist if: for each
word x∈{r, s}n there is at least one path d0x1 . . . xndx such that:

dx ∈ (Ĉϕ)In and dx ∈ (Ai)
In iff xi = r (1 ≤ i ≤ n) (12)

The following proposition is an easy consequence of the definition of Tn.

Proposition 26. Let I be a model of Tn and d ∈ ∆I. For all 0 ≤ i ≤ n: if
d ∈ (αi)

I, then for each word x ∈ {r, s}i there exists a path dx1d1 . . . xidi in GI
such that dj ∈ (αi−j)

I for all 1 ≤ j ≤ i.

This means that the structure of Tn certainly guarantees that every model sat-
isfying αn contains a path d0x1 . . . xndx from a distinguished element d0, for all
x ∈ {r, s}n. Moreover, the domain elements in such a path satisfy d0 ∈ (αn)In ,
d1 ∈ (αn−1)In , . . ., dx ∈ (α0)In . Hence, the first part of (12) can be satisfied by
modifying the definition of α0 in Tn as:

α0
.
= Ĉϕ (13)

Of course, all such models need not have the same shape as In. Hence, to also
fulfill the second part of (12), one needs to express within the logic the correct
propagation of A1, . . . , An along each path. For simplicity, we explain the intu-
ition of how to do this for n= 3. Consider x1 and A1. A solution could be to
redefine α3 as α3

.
=∃r.(α2 u βr2) u ∃s.(α2 u βs2), where:

βr2 :=
l

x2,x3∈{r,s}

∀x2x3.¬Ā1 βs2 :=
l

x2,x3∈{r,s}

∀x2x3.¬A1 (14)

The definition of βr2 implies that if d0 ∈ (α3)I3 , then all paths starting at d0

following a word x of the form r.{r, s}2 must end up at an element dx such that
dx 6∈ (Ā1)I3 . In particular, for a special one where dx ∈ (α0)I3 , this means that
dx ∈ (A1)I3 . Now, βr2 is obviously not a τEL(deg) concept, but its meaning can
be equivalently expressed in the logic. We illustrate this with the help of the
following diagram.

TE3
2

: v

Ā1

r

Ā1

s

r

Ā1

r

Ā1

s

s

d1

Ā1

s

s
h

23

Let E3
2 be the EL concept description associated to the description tree TE3

2
shown

on the left-hand side of the diagram. Notice that TE3
2
exhibits all (and only) paths

falsifying βr2 . Based on it, one can observe the following:

• if d0 has an r-successor leading to one such path (d1 on the right-hand
side), then there is always a ptgh h from TE3

2
to GI such that h(v)=d1 and

hw(v)>0. Therefore, d1 6∈ [(E3
2)≤0]I .

• Conversely, if no such path exists, then for all partial mappings h from TE3
2

to GI and all paths vx2v2x3v3 in TE3
2
such that v3 ∈ dom(h), it is the case

that h(v3) 6∈ (Ā1)I . Therefore, by definition of hw, it must be the case that
hw(v) = 0. Consequently, degI(d1, E

3
2) = 0 and d1 ∈ [(E3

2)≤0]I .

Hence, βr2 is equivalent to the threshold concept (E3
2)≤0. To express βs2, we define

a dual concept E 3̄
2 , by using Ai instead of Āi. Finally, to succinctly represent these

“exponentially large” concepts, we employ the EL TBoxes T 3 and T 3̄ defined as
follows:

T 3 :=


E3

2
.
= ∃r.E3

1 u ∃s.E3
1

E3
1
.
= ∃r.E3

0 u ∃s.E3
0

E3
0
.
= Ā1

 T 3̄ :=


E 3̄

2
.
= ∃r.E 3̄

1 u ∃s.E 3̄
1

E 3̄
1
.
= ∃r.E 3̄

0 u ∃s.E 3̄
0

E 3̄
0
.
= A1


The good that comes from this is that we obtain the following equivalences:

(E3
2)≤0 ≡T 3

l

x2,x3∈{r,s}

∀x2x3.¬Ā1 and (E 3̄
2)≤0 ≡T 3̄

l

x2,x3∈{r,s}

∀x2x3.¬A1

The same arguments also apply to Ā2, Ā3 and A2, A3, by defining similar concept
descriptions E2

1 , E
1
0 and E 2̄

1 , E
1̄
0 , respectively, and their corresponding TBoxes

T 2, T 1 and T 2̄, T 1̄. Based on this, one can in general use the threshold concepts
(Ei

i−1)≤0 and (E ī
i−1)≤0 to represent the generalization of the value restrictions

used in (14) to arbitrary lengths. Let Tn,p be the union of all these TBoxes, i.e.,

Tn,p :=
n⋃
i=1

(T i ∪ T ī)

Proposition 27. For all models I of Tn,p, d ∈ ∆I and 1 ≤ i ≤ n:

1. d ∈ [(Ei
i−1)≤0]I iff d ∈

(d

x∈{r,s}i−1

∀x.¬Ān−i+1

)I
.

2. d ∈ [(E ī
i−1)≤0]I iff d ∈

(d

x∈{r,s}i−1

∀x.¬An−i+1

)I
.

24

Proof. We only give the proof for the first statement (the second one can be shown
using the same argument). We denote as TEii−1

the description tree corresponding
to the unfolding uT i(Ei

i−1) of Ei
i−1 in T i. For simplicity, we use just ` (without

subscript) to refer to the labeling of TEii−1
.

(⇒) Assume that d ∈ [(Ei
i−1)≤0]I . Since Ei

i−1 is a defined concept in T i, this
implies:

degI(d,Ei
i−1, T i) = degI(d, uT i(E

i
i−1)) = 0

For a contradiction, suppose that:

d 6∈
(l

x∈{r,s}i−1

∀x.¬Ān−i+1

)I
Then, there is a word x1 . . . xi−1 ∈ {r, s}i−1 such that d 6∈ (∀x1 . . . xi−1.¬Ān−i+1)I .
The semantics of the value restriction constructor yields the existence of a path
of the form dx1d1 . . . xi−1di−1 in GI such that di−1 ∈ (Ān−i+1)I .

By definition of Ei
i−1 in T i, there is a path v0x1v1 . . . xi−1vi−1 in TEii−1

with
`(vi−1) = {Ān−i+1}, where v0 is the root of TEii−1

. Therefore, the ptgh h from
TEii−1

to GI with h(v0) = d and h(vj) = dj (1 ≤ j ≤ i−1) induces a weighted ho-
momorphism hw such that: hw(v0) > 0. This contradicts our initial assumption
since it implies:

degI(d, uT i(E
i
i−1)) > 0

Thus, the left to right implication holds.

(⇐) Assume that

d ∈
(l

x∈{r,s}i−1

∀x.¬Ān−i+1

)I
This implies that d ∈ (∀x1 . . . xi−1.¬Ān−i+1)I for all words x1, . . . , xi−1 ∈ {r, s}i−1.
Hence, any path of the form dx1d1 . . . xi−1di−1 in GI is restricted to have:

di−1 6∈ (Ān−i+1)I

Let now v0x1v1 . . . xi−1vi−1 be any path in TEii−1
. By definition of Ei

i−1 in T i

we know that x1 . . . xi−1 ∈ {r, s}i−1 and `(vi−1) = {Ān−i+1}. Therefore, for all
ptgh h from TEii−1

to GI having h(v0) = d and vi−1 ∈ dom(h), it is the case
that Ān−i+1 6∈ `I(h(vi−1)). Hence, since vi−1 is a leaf in TEii−1

, this means that
hw(vi−1) = 0.

Overall, we have shown that for all leaves v in TEii−1
and all ptgh h with v ∈

dom(h), it holds that hw(v) = 0. Then, since `(v) = ∅ iff v is a non-leaf node,
there is no possible way in which hw(v0) > 0. Consequently, it follows:

degI(d, uT i(E
i
i−1)) = 0

Thus, d ∈ [(Ei
i−1)≤0]I .

25

Having these equivalences, the next step is to integrate the threshold concepts of
the form (Ei

i−1)≤0 and (E ī
i−1)≤0 into the definitions of Tn. For all 1 ≤ i ≤ n:

αi
.
= ∃r.(αi−1 u (Ei

i−1)≤0) u ∃s.(αi−1 u (E ī
i−1)≤0)

We name the resulting TBox as Tn,τ (including the modification of α0 as stated
in (13)). Then, the final acyclic τEL(deg) TBox T̂ ϕn is the pair (Tn,τ , T cn,` ∪ Tn,p).
The following proposition is the equivalent of Proposition 26 w.r.t. T̂ ϕn .

Proposition 28. Let I be a model of T̂ ϕn and d ∈ ∆I. For all 0 ≤ i ≤ n: if
d ∈ (αi)

I, then for each word x ∈ {r, s}i there exists a path dx1d1 . . . xidi in GI
such that for all 1 ≤ j ≤ i,

• di ∈ (αi−j)
I,

• di ∈ [(Ei−j+1
i−j)≤0]I if xi = r, otherwise di ∈ [(Ei−j+1

i−j)≤0]I.

We now prove an intermediate result that is equivalent to having the wanted
properties in (11) and (12).

Lemma 29. For all n ≥ 0 and all interpretations I such that I |= T̂ ϕn and
(αn)I 6= ∅ the following holds:

• for all subsets X of {A1, . . . , An} there exists dX ∈ ∆I such that:

dX ∈ (α0)I and dX ∈ (Ai)
I iff Ai ∈ X (1 ≤ i ≤ n) (15)

Proof. Let I be an interpretation such that I |= T̂ ϕn and (αn)I 6= ∅. We fix an
arbitrary subset X of {A1, . . . , An} and show that X satisfies (15). Let d ∈ ∆I

be an element in (αn)I . We define the word x ∈ {r, s}n corresponding to X as
follows:

xi = r iff Ai ∈ X (1 ≤ i ≤ n) (16)

The application of Proposition 28 to d, yields that there is a path dx1d1 . . . xndn
in GI such that for all 1 ≤ i ≤ n:

• di ∈ (αn−i)
I ,

• di ∈ [(En−i+1
n−i)≤0]I if xi = r, otherwise di ∈ [(En−i+1

n−i)≤0]I

In particular, the suffix dixi+1 . . . xndn is of length n − i. Therefore, we further
have:

xi = r ⇒ di ∈ [(En−i+1
n−i)≤0]I

⇒ di ∈ (∀xi+1 . . . xn.¬Āi)I (Proposition 27 applied to di and En−i+1
n−i)

⇒ dn 6∈ (Āi)
I

26

Symmetrically, xi = s implies dn 6∈ (Ai)
I . Now, we know that Fi

.
= Aiu Āi ∈ T cn,`

and α0 is of the form:
α0

.
= Ĉϕ

Since dn ∈ (α0)I it follows:

dn ∈ (Ai)
I iff xi = r (1 ≤ i ≤ n)

From the way the word x is defined in (16), we can conclude that dn is an element
of ∆I satisfying (15) with respect to X.

Using Lemma 29 we finally show that the described reduction is correct.

Lemma 30. ∀u∃v.ϕ(u, v) is valid iff αn is satisfiable in T̂ ϕn .

Proof. (⇒) Assume that (∀u)(∃v)ϕ(u, v) is valid. We take the interpretation In
and extend it into a model În of T̂ ϕn satisfying αn. By construction, In is tree-
shaped and there is a one-to-one correspondence between words in {r, s}n and
the leaves in Tn. The leaf dx corresponding to the word x is the one reached from
d0 through the path d0x1d1 . . . xndx. Let Ln denote the set of leaves of Tn. The
interpretation of Ai, Āi under În is defined as follows. For all 1 ≤ i ≤ n:

(Ai)
În := {dx | dx ∈ Ln and xi = r}

(Āi)
În := {dx | dx ∈ Ln and xi = s} (17)

Hence, for all leaves d of Tn and all i ∈ {1 . . . n} we have:

d ∈ (Ai)
În iff d 6∈ (Āi)

În (18)

To assign meaning to Bj, B̄j under În, let d be any leaf of Tn. We define the
assignment td for u ∪ v as follows. First,

td(ui) = true iff d ∈ (Ai)
În (1 ≤ i ≤ n)

Second, td assigns truth values to the variables in v such that it satisfies ϕ(u, v).
This is always possible because (∀u)(∃v)ϕ(u, v) is valid. Then, for all 1 ≤ j ≤ `:

(Bj)
În := {d | d ∈ Ln and td(vj) = true}

(B̄j)
În := {d | d ∈ Ln and td(vj) = false} (19)

Hence, as in (18), for all leaves d of Tn and all j ∈ {1 . . . `} we have:

d ∈ (Bj)
În iff d 6∈ (B̄j)

În (20)

Now, let us look at the interpretation I0 and the element d0 ∈ ∆I constructed
in the proof of Lemma 25. One can observe the following similarities between d0

and any leaf d ∈ Ln:

27

• d0 satisfies (9) and (10), while d satisfies (18) and (20) w.r.t. În.

• the assignment t used in Lemma 25 and the current truth assignment td
satisfy both ϕ(u, v).

• the correspondence established between t(ui) and t(vj), and the membership
of d0 in concept names Ai and Bj under I0, is the same as the one between
td and d under În. Similarly for negated literals and membership in Āi and
B̄j.

Therefore, it is not hard to conclude that like in Lemma 25 for d0 and I0, d ∈
(Ĉϕ)În for all d ∈ Ln.

Since T̂ ϕn is an acyclic τEL(deg) TBox, there is a unique way to extend În into a
model of T̂ ϕn . Having done so, let h(d) denote the height of a domain element d
in Tn. We show by induction on h(d) the following claim:

for all d ∈ ∆În: d ∈ (αh(d))
În

Induction Base. d ∈ ∆În and h(d) = 0. Then, d is a leaf in Tn. Recall that α0 is
defined in Tn,τ as:

α0
.
= Ĉϕ

As explained above, we have d ∈ (Ĉϕ)În . Hence, d ∈ (α0)În .

Induction Step. Let d ∈ ∆În with 0 < h(d) ≤ n. We assume our claim holds for
all e ∈ ∆În with h(e) < h(d).

To start, αh(d) is defined in Tn,τ as:

αh(d)
.
= ∃r.(αh(d)−1 u (E

h(d)
h(d)−1)≤0) u ∃s.(αh(d)−1 u (E

h(d)
h(d)−1)≤0)

By construction of Tn, there exists e ∈ ∆În such that (d, e) ∈ rÎn and h(e) =

h(d)− 1. The application of induction hypothesis to e yields e ∈ (αh(d)−1)În .

Consider now any word y ∈ {r, s}h(d)−1. Since h(e) = h(d) − 1, by definition of
Tn there is a unique path of the form ey1e1 . . . yh(d)−1eh(d)−1 in Tn, where eh(d)−1

is a leaf. Moreover, such a path is suffix of a path d0x1d1 . . . djxjexj+1 . . . xndn,
where dj = d, xj = r and eh(d)−1 = dn. Then, we obtain the following equalities:

n− (j + 1) = (h(d)− 1)− 1

n− h(d) + 1 = j

Since xj = r, by (17) we obtain that dn ∈ (An−h(d)+1)Îαn , and by (18) dn 6∈
(Ān−h(d)+1)În . Hence, as y was chosen arbitrarily from {r, s}h(d)−1, we have just

28

shown that:

e ∈

 l

y∈{r,s}h(d)−1

∀y.¬Ān−h(d)+1

In

The application of Proposition 27 then yields e ∈ [(E
h(d)
h(d)−1)≤0]În . For the ∃s

restriction in the definition of αh(d), the corresponding result can be shown in the
same way. Therefore, d ∈ (αh(d))

În .

Using this result and the fact that d0 is of height n in Tn, we can conclude that
d0 ∈ (αn)În . Thus, αn is satisfiable with respect to T̂ ϕn .

(⇐) Conversely, assume that αn is satisfiable with respect to T̂ ϕn . This means
that there exists an interpretation I such that I |= T̂ ϕn and (αn)I 6= ∅. Let us
fix a partial truth assignment t covering all the variables in u. We show that t
can be extended to v in such a way that it satisfies ϕ(u, v). The subset Xt of
{A1, . . . , An} is induced by t as follows:

Xt := {Ai | t(ui) = true} (1 ≤ i ≤ n)

By Lemma 29, we know that there exists dt ∈ ∆I such that:

• dt ∈ (Ai)
I iff Ai ∈ Xt (iff t(ui) = true),

• dt ∈ (α0)I .

We use dt to extend t to v as follows. For all 1 ≤ j ≤ `:

t(vj) = true iff dt ∈ (Bj)
I

Therefore, since dt satisfies the complementary restrictions required by (Fi)=1/2

and (Gj)=1/2 in the definition of Ĉϕ for Ai, Āi (1 ≤ i ≤ n) and Bj, B̄j (1 ≤ j ≤ `),
respectively, we further obtain for all literals γ over u ∪ v:

t(γ) = true iff dt ∈ (η(γ))I (21)

Moreover, since dt ∈ (Ĉϕ)I we have that dt ∈ [(Dk)≥ 1
3
]I for all 1 ≤ k ≤ q. By

definition of deg and Dk there must exist a literal γ in ck such that dt ∈ (η(γ))I .
It then follows from (21) that t satisfies every clause ck ∈ C, and consequently it
satisfies ϕ(u, v). Since the partial truth assignment t for u was chosen arbitrarily,
we thus have shown that (∀u)(∃v)ϕ(u, v) is valid.

Finally, it is easy to see that T̂ ϕn is an acyclic τEL(deg) TBox and its size is
polynomial in the size of ∀u∃v.ϕ(u, v). Therefore, ∀∃3SAT is polynomial-time re-
ducible to concept satisfiability w.r.t. acyclic τEL(deg) TBoxes. In addition, non-
satisfiability can be reduced to the subsumption and the instance problem, and
satisfiability to the consistency problem, by the same argument used in [BBG15]
for the setting without TBoxes. Thus, we obtain the following lower bounds.

29

Lemma 31. In τEL(deg), satisfiability and consistency are ΠP
2 -hard and the sub-

sumption and the instance problems are ΣP
2 -hard, with respect to acyclic τEL(deg)

TBoxes.

4.2 Normalization

To simplify the technical development of the decision procedures presented in the
next section, it is convenient to use TBoxes in a special form. We now introduce
normalized τEL(deg) TBoxes in reduced form, and show that one can (without
loss of generality) restrict the attention to this kind of TBoxes.

Let us start by recalling the normal form for EL TBoxes introduced in [Baa02].
An EL TBox T is said to be normalized iff α .

= Cα ∈ T implies that Cα is of the
form:

P1 u . . . u Pk u ∃r1.β1 u . . . u ∃rn.βn
where k, n ≥ 0, P1, . . . , Pk ∈ NTpr, and β1, . . . , βn ∈ NTd . We extend this form
to τEL(deg), and say that a τEL(deg) TBox T̂ = (Tτ , T) is normalized iff T is
normalized and α .

= Ĉα ∈ Tτ implies that Ĉα is of the form:

P̂1 u . . . u P̂k u ∃r1.β1 u . . . u ∃rn.βn

where k, n ≥ 0, for all 1 ≤ i ≤ k either P̂i ∈ NT̂pr or it is of the form E∼t with
E ∈ NTd , and β1, . . . , βn ∈ NT̂d .

To illustrate this normalization process we start with a simpler version of Example
12 in [Baa02].

Example 32. Let T be the EL TBox consisting of the following definitions:

α1
.
= P1 u α2 u ∃r1.∃r2.α3

α2
.
= P2 u α3 u ∃s.(α3 u P3)

α3
.
= P4

Using auxiliary definitions we obtain a new TBox T ′:

α1
.
= P1 u α2 u ∃r1.β1

β1
.
= ∃r2.α3

α2
.
= P2 u α3 u ∃s.β2

β2
.
= α3 u P3

α3
.
= P4

This step is formalized as the exhaustive application of the rule R∃.

30

Condition: applies to concept definitions of the form α
.
= C1 u . . . u Cn if

there is an index i ∈ {1, . . . , n} with Ci = ∃r.D and D 6∈ NTd .

Action: its application replaces the conjunct Ci by ∃r.β, and introduces a new
definition β .

= D, where β is a fresh concept name.

Since α1, α2 and β2 contain top-level atoms which are defined concepts, T ′ is not
yet normalized. The original normalization process is devised to handle cyclic EL
TBoxes that can be interpreted by different types of semantics. Consequently, the
approach used to overcome this problem varies according to each semantics. In
our case, however, this becomes simpler since the EL TBox T we are dealing with
is acyclic. The solution for this follows from the discussion presented in [Baa02]
for the general case, and consists of substituting these occurrences of defined
concepts by their definitions. Following the example we obtain the following
TBox:

α1
.
= P1 u P2 u P4 u ∃s.β2 u ∃r1.β1

β1
.
= ∃r2.α3

α2
.
= P2 u P4 u ∃s.β2

β2
.
= P4 u P3

α3
.
= P4

We name the corresponding rule Rα and formally define it as follows.

Condition: applies to concept definitions of the form α
.
= C1 u . . . u Cn if

there is an index i ∈ {1, . . . , n} with Ci = β and β .
= Cβ ∈ T .

Action: its application replaces Ci by Cβ.

Then, once R∃ can no longer be applied, an exhaustive application of the rule Rα

will produce a normalized acyclic EL TBox. However, to have a polynomial time
procedure generating a new TBox of polynomial size, the sequence of applications
of Rα should not be arbitrary. This is achieved by following the order � induced
by →+, i.e., Rα can be applied to a concept definition α

.
= Cα only if it has

already been applied to all β ∈ NTd such that β � α.

Each application of R∃ replaces a top-level atom of the form ∃r.D with a new
atom ∃r.β, and introduces a simpler definition β .

= D. Concerning Rα, such an
ordered sequence of rule applications will always terminate since we are dealing
with acyclic TBoxes. Moreover, the idempotency of u can be exploited to avoid
duplications. Hence, Rα is only applied one time for each top-level atom of the
form β ∈ NTd occurring in the TBox that results from the application of R∃, and
it does not cause an exponential blow-up of the size of the TBox. Thus, the

31

described normalization procedure runs in polynomial time and produces a TBox
T ′ of size polynomial in the size of T .

This procedure can be easily adapted to normalize acyclic τEL(deg) TBoxes. The
rules R∃ and Rα can be applied to Tτ in the same way. The only difference is
that to apply Rα in Tτ , the definition β .

= Cβ may also occur in T . Additionally,
it is required that all occurrences of threshold concepts E∼t in T̂ are such that E
is a defined concept in T . For example, α1 could have been defined as:

α1
.
= P1 u ∃r1.[(P2 u ∃r2.P3)≤.8] u ∃r1.∃r2.α3

To handle this we use a new rule R∼.

Condition: applies to concept definitions of the form α
.
= Ĉ1 u . . . u Ĉn ∈ Tτ

if there is an index i ∈ {1, . . . , n} with Ĉi = D∼t and D 6∈ NTd .

Action: its application replaces the conjunct Ĉi by (ED)∼t, and adds a new
definition ED

.
= D to T , being ED a fresh concept name.

Thus, the normalization will yield the τEL(deg) TBox T̂ = (Tτ , T) consisting of
the following two sets of definitions:

α1
.
= P1 u ∃r1.β4 u ∃r1.β1

β4
.
= E≤.8

β1
.
= ∃r2.α3

α2
.
= P2 u P4 u ∃s.β2

β2
.
= P4 u P3

α3
.
= P4

and T the following set:

E
.
= P2 u ∃r2.P3

Notice that in order to trigger the application of R∼, the concerned existential
restriction in the definition of α1 had to be first decomposed by applying R∃.
With this in mind, we define the normalization procedure for acyclic τEL(deg)
TBoxes as the execution of the following steps.

1. Apply the rule R∃ exhaustively to Tτ .

2. Apply the rule R∼ to Tτ as long as possible.

3. Normalize the augmented EL TBox T .

4. Apply the rule Rα exhaustively to Tτ .

32

The applications of R∃ and Rα to Tτ modify only Tτ , while no new threshold
expressions are introduced. Regarding the second step, as D∼t is such that no
defined concept in Tτ occurs in it, the unfolding of the threshold concept (ED)∼t
introduced by the application of the rule R∼t is also such that no defined concept
in Tτ occurs in it. Furthermore, adding ED

.
= D to T does not introduce any

concept name α ∈ NTτd in definitions of T . Finally, the normalization of T only
transforms the structure of T . Therefore, T̂ ′ satisfies the restrictions required
for τEL(m) TBoxes in Definition 18, and it is easy to see that no cycles are
introduced in it.

Now, after the first step has been executed, all occurrences of threshold concepts
in Tτ appear as top-level atoms on its concept definitions. Consequently, the
application of R∼ in the second step will cover all of them. Moreover, the nor-
malization of T before the final step guarantees that R∃ need not be applied in
case Rα applies to a defined concept in T . Overall, this implies that the resulting
TBox T̂ ′ is normalized.

Last, one can see that the rule R∼ is applied at most one time for each threshold
concept D∼t occurring in a definition of the initial TBox Tτ . Consequently, at
most polynomially many new definitions of the form ED

.
= D are added to T .

Thus, using the same arguments given for the application of R∃ and Rα in the EL
setting, the devised normalization procedure runs in polynomial time and yields
a normalized acyclic τEL(deg) TBox T̂ ′ of size polynomial in the size of T̂ .

We now show that normalization preserves the unfolding of defined concepts.

Lemma 33. Let T̂ be an acyclic τEL(deg) TBox and T̂ ′ the τEL(deg) TBox that
results from a single application of a normalization rule. Then, for all defined
concepts α in T̂ , uT̂ (α) = uT̂ ′(α)

Proof. Let R be a normalization rule and β
.
= Ĉβ ∈ T̂ the concept definition

that R has been applied to. We use well-founded induction on the partial order
induced by →+ on NTτd ∪ NTd . For all defined concepts α in T̂ we distinguish two
cases:

• α 6= β. This means that R was not applied to α .
= Ĉα, and consequently

α
.
= Ĉα ∈ T̂ ′. The top-down recursive application of unfolding through

the structure of Ĉα with respect to T̂ and T̂ ′ may only result in different
concept descriptions if:

uT̂ (α′) 6= uT̂ ′(α
′)

for some symbol α′ occurring in Ĉα that corresponds to a defined concept
name in T̂ . However, α →+ α′ and the application of the induction hy-
pothesis to α′ imply that this is never the case. Hence, uT̂ (α) = uT̂ ′(α).

• α = β. Let Ĉβ be of the form Ĉ1 u . . . u Ĉn. We analyze the outcome of
applying each of the three possible rules to β .

= Ĉβ:

33

– R∼: the rule was applied to a conjunct Ĉi such that Ĉi = D∼t and
D 6∈ NTd . Its application replaces Ĉi by (ED)∼t in Ĉβ, and adds ED

.
= D

to T ′ where ED is a fresh concept name. By definition of unfolding we
have:

uT̂ (β) =
i−1l

j=1

uT̂ (Ĉj) u [uT̂ (D)]∼t u
nl

j=i+1

uT̂ (Ĉj)

and,

uT̂ ′(β) =
i−1l

j=1

uT̂ ′(Ĉj) u [uT̂ ′(ED)]∼t u
nl

j=i+1

uT̂ ′(Ĉj)

Applying the same inductive argument used above we obtain uT̂ (Ĉj) =

uT̂ ′(Ĉj) for all j 6= i (likewise for D). Thus, since uT̂ ′(ED) = uT̂ ′(D)
it follows that uT̂ (β) = uT̂ ′(β).

– R∃: the rule has been applied to an atom Ĉi of the form ∃r.D̂ such
that D̂ 6∈ NT̂d . Hence, Ĉi is substituted in Ĉβ by ∃r.β1 with β1 being
a fresh concept name and β1

.
= D̂ ∈ T̂ ′. By definition of unfolding we

have:

uT̂ (β) =
i−1l

j=1

uT̂ (Ĉj) u ∃r.uT̂ (D̂) u
nl

j=i+1

uT̂ (Ĉj)

and,

uT̂ ′(β) =
i−1l

j=1

uT̂ ′(Ĉj) u ∃r.uT̂ ′(β1) u
nl

j=i+1

uT̂ ′(Ĉj)

We know that uT̂ ′(β1) = uT̂ ′(D̂). Hence, the same reasoning used for
R∼ yields uT̂ (α) = uT̂ ′(α).

– Rα: there is an index 1 ≤ i ≤ n such that Ĉi is of the form β1, and
β1

.
= Ĉβ1 ∈ T̂ . The application of Rα to β1 replaces it in Ĉβ with

Ĉβ1 . Since β →+ β1, the application of induction hypothesis yields
uT̂ (β1) = uT̂ ′(β1) = uT̂ ′(Ĉβ1). Again, uT̂ (Ĉj) = uT̂ ′(Ĉj) for all j 6= i,
and the rest follows from the definition of unfolding on β.

This property is then invariant under any number of rule applications. Therefore,
the following proposition is a direct consequence of Lemma 33.

Proposition 34. Let T̂ be an acyclic τEL(deg) TBox and T̂ ′ the normal form
of T̂ . For all defined concepts α in T̂ , uT̂ (α) = uT̂ ′(α).

34

Proposition 34 implies that reasoning with respect to an acyclic τEL(deg) TBox
T̂ can be reduced to reasoning with respect to its normal form T̂ ′. Therefore,
from now on we only consider normalized TBoxes.

We still require one more transformation. Recall that for acyclic EL TBoxes, the
value of degI(d, C, T) is defined in terms of applying the basic definition of deg to
the unfolding of C in T . Moreover, deg needs to further translate uT (C) into its
reduced form [uT (C)]r. Since uT (C) may result in a concept of exponential size, it
is certainly not a good idea to unfold and then compute the reduced form. To have
this issue handled in a more transparent way by the decision procedures presented
in the next section, we introduce the reduced form for acyclic EL TBoxes. The
ideas that follow are based on the results shown by Küsters in [Küs01].

Definition 35. Let T be an acyclic EL TBox and C an EL concept description.
Then, C is reduced with respect to T iff:

• C is reduced according to Küsters’ definition modulo vT (i.e., vT is used
to identify redundancies instead of v).

We say that T is in reduced form iff for all α .
= Cα ∈ T the concept Cα is reduced

with respect to T .

The benefit of using these type of TBoxes is that the unfolding of a defined
concept will always result in a reduced concept description.

Lemma 36. Let T be a normalized acyclic EL TBox in reduced form. Then, for
all α .

= Cα the EL concept description uT (α) is reduced.

Proof. We use well-founded induction on →+ over NTd . Since T is normalized,
Cα has the following structure:

P1 u . . . u Pk u ∃r1.α1 u . . . u ∃rn.αn

Clearly, α →+ αi for all 1 ≤ i ≤ n. Therefore, the application of induction
hypothesis yields that uT (αi) is reduced. Now, since Cα is reduced with respect
to T , for all pairs (∃ri.αi, ∃rj.αj) we have:

• ri 6= rj, or

• αi 6vT αj and αj 6vT αi.

In addition, we know that αi ≡T uT (αi) and αj ≡T uT (αj). This means that
having ri = rj, it will be the case that uT (αi) 6v uT (αj) and uT (αj) 6v uT (αi).
Finally, since uT (α) is the following concept description

P1 u . . . Pk u ∃r1.uT (α1) u . . . u ∃rn.uT (αn)

we can conclude that uT (α) is reduced.

35

To translate acyclic EL TBoxes into its reduced form, the algorithm sketched in
[Küs01] (derived from Proposition 6.3.1.) to compute the reduced form of EL
concept descriptions comes in handy. By using vT instead of v, it will be able
to compute the reduced form Cr(T) of a concept C with respect to T . Since vT
is decidable in polynomial time in EL [Baa03], the modified procedure also runs
in polynomial time. Moreover, the concept Cr(T) satisfies C ≡T Cr(T).

Based on this we can devise a very simple polynomial time transformation that
given an acyclic EL TBox T outputs and equivalent TBox T ′ in reduced form.
The translation and its correctness are given in the following lemma.

Lemma 37. Let T be a normalized acyclic EL TBox. The TBox T ′ obtained
from T by the substitution of α .

= Cα for α .
= (Cα)r(T) (for all α .

= Cα ∈ T)
satisfies the following:

1. T and T ′ are equivalent.

2. T ′ is in reduced form.

Proof. 1) We show that every model of T is a model of T ′ and vice versa. Let I
be a model of T , then αI = (Cα)I for all α .

= Cα ∈ T . Since Cα ≡T (Cα)r(T),

this means that αI =
[
(Cα)r(T)

]I
for all α .

= (Cα)r(T) ∈ T ′. Hence, I |= T ′.

Conversely, let I ′ be a model of T ′. We take a model I of T such that ∆I = ∆I
′

andXI = XI
′ , for allX ∈ NTpr∪NR. Such a model exists because of Proposition 2.

We prove that αI = αI
′ for all α .

= Cα ∈ T . The proof goes by induction on the
partial order induced by →+. Since T is normalized, each top-level atom of Cα
is of the form A ∈ NTpr or ∃r.β, where β .

= Cβ ∈ T . Moreover, the set of atoms
occurring in (Cα)r(T) is a subset of the corresponding set for Cα. Therefore, we
distinguish two cases for all top-level atoms At of Cα:

• At occurs in (Cα)r(T). If At = A, by selection of I we have AI = AI
′ .

Otherwise, At = ∃r.β and α →+ β. The application of induction yields
βI = βI

′ and thus (∃r.β)I = (∃r.β)I
′ . Hence, it is not hard to see that for

all d ∈ ∆I , d ∈ αI implies d ∈ αI′ .

• At only occurs in Cα. There must be a top-level atom At′ in Cα such that
At′ vT At and At′ does occur in (Cα)r(T). From the previous point we know
that (At′)I = (At′)I

′ . Therefore, if d ∈ (At′)I
′ we also have d ∈ (At′)I and

d ∈ AtI . Hence, d ∈ αI′ implies d ∈ αI .

Thus, we have shown that αI = αI
′ . This implies the following equalities:

αI
′
= αI = (Cα)I = (uT (Cα))I

36

Then, since I and I ′ have the same interpretation for NTpr ∪ NR, this means that
[uT (Cα)]I = [uT (Cα)]I

′ . Hence, for all α .
= Cα ∈ T we have:

αI
′
= [uT (Cα)]I

′

Consequently, αI′ = (Cα)I
′ and I ′ is a model of T .

2) Assume that T ′ is not in reduced form. Then, there exists α .
= (Cα)r(T) ∈ T ′

such that (Cα)r(T) is reducible with respect to T ′. This means that there are two
top-level atoms At1 and At2 in (Cα)r(T) such that At1 vT ′ At2. Since we just have
shown that T and T ′ are equivalent from a model-theoretic point of view, we also
have At1 vT At2. Hence, we obtain a contradiction against the fact that (Cα)r(T)

is reduced with respect to T . Thus, T ′ is in reduced form.

To sum up, given an acyclic τEL(deg) TBox T̂ = (Tτ , T), we have demonstrated
the following along this section:

• T̂ can be normalized in polynomial time into an acyclic TBox T̂ ′ = (T ′τ , T ′),
such that reasoning w.r.t. T̂ can be reduced to reasoning w.r.t. T̂ ′.

• The new TBox T ′ can be translated in polynomial time into an equivalent
EL TBox T ′′ in reduced form.

• The computation of the reduced form only removes atoms from concept
definitions. Therefore, T ′′ remains normalized.

Hence, reasoning in τEL(deg) with respect to acyclic TBoxes can be restricted
to normalized acyclic TBoxes in reduced form.

Proposition 38. Satisfiability and subsumption on concepts defined in an acyclic
τEL(deg) TBox can be reduced in polynomial time to satisfiability and subsump-
tion on concepts defined in a normalized acyclic τEL(deg) TBox in reduced form.

4.3 A PSpace upper bound

We now present a PSpace procedure that decides satisfiability of concepts of the
form α1 u ¬α2 w.r.t. an acyclic τEL(deg) TBox T̂ , where α1, α2 ∈ NT̂d . The
restriction to defined concepts is without loss of generality, since every τEL(m)

concept Ĉ correctly defined w.r.t. T̂ can be equivalently replaced with a fresh
concept name αĈ , by adding αĈ

.
= Ĉ to Tτ .

As mentioned earlier, by using unfolding, we can reduce our problem to satisfia-
bility of the concept uT̂ (α1) u ¬uT̂ (α2). Therefore, the application of Lemma 16

37

yields that α1 u ¬α2 is satisfiable in T̂ iff there exists an interpretation I over
NT̂pr ∪ NR such that:

[uT̂ (α1)]I\[uT̂ (α2)]I 6=∅ and |∆I | ≤ s(uT̂ (α1)) · s(uT̂ (α2))

Since uT̂ (α1) or uT̂ (α2) may be concepts of size exponential in s(T̂), this gives an
exponential bounded model property, and hence the mentioned NExpTime upper
bound. However, the construction used to prove Lemma 16 in [BBG15] provides
additional information about I, which allows us to improve on this upper bound:

• I is tree-shaped,

• the depth of its description tree TI is bounded by:

rd(uT̂ (α1)) + rd(uT̂ (α2)) (22)

• the element d0 ∈ ∆I corresponding to the root of TI satisfies

d0 ∈ [uT̂ (α1) u ¬uT̂ (α2)]I

Fortunately, the depth (22) of TI is always polynomial in s(T̂). Thus, despite
its size, one can non-deterministically generate I in a top-down fashion, while
keeping the used space polynomial in s(T̂). Let d ≥ 0 and b > 0 be natural
numbers. Then, each run ρ of the procedure Gen described below generates a
tree-shaped interpretation Iρ over NT̂pr ∪NR, such that |∆Iρ| ≤ b and the depth of
TIρ is not greater than d.:

1: procedure Gen(d : N, b : binary)
2: b := b− 1
3: non-deterministically choose a subset P of NT̂pr
4: if (d 6= 0) and (b 6= 0) then
5: for all r ∈ NR do
6: non-deterministically choose 0 ≤ br ≤ b
7: b := b− br
8: for all 1 ≤ i ≤ br do
9: non-deterministically choose 0 ≤ bir ≤ b
10: b := b− bir
11: Gen(d− 1, bir + 1)
12: end for
13: end for
14: end if
15: end procedure

Note that each recursive call decreases the value of d, and therefore it is a ter-
minating procedure executing at most d nested recursive calls. Moreover, as

38

evidenced by the parameter declaration b : binary, Gen works with the binary
representation of the value b (similarly for variables br and bir). Finally, the set of
variables br and bir can be reduced to two variables since they are only used within
the scope of the for loops. Therefore, each run of Gen uses space polynomial on
d and the number of bits needed to represent b.

The general idea of the procedure is as follows: each recursive call represents
an individual of ∆Iρ and the recursion tree lays out the tree-shaped form of Iρ.
The set P contains the primitive concept names that a domain element is an
instance of, the number br stands for the number of r-successors, and bir means
that the interpretation rooted at the i-th r-successor has at most bir+1 elements.
To formalize this intuition we define the notion of a run of Gen.

Definition 39. A run ρ of Gen on (d, b) is a tree of recursive calls T(d,b) such
that:

• its root v0 is labeled by the non-deterministic choices P , br for all r ∈ NR,
and bir for all 1 ≤ i ≤ br.

• for all r ∈ NR, there are exactly br successors vr1, . . . , vrbr of v0 such that,
the tree rooted at vri is a run of Gen on (d− 1, bir + 1).

Figure 3 depicts a run ρ of Gen (left-hand side). Such a run induces the EL
description tree Tρ (right-hand side) with the same structure, where its nodes are
labeled with the corresponding sets P chosen by ρ and the edges with the role
names generating the corresponding recursive call (line 5 in Gen). Therefore, we
say that ρ induces the interpretation Iρ that has the description tree Tρ.

P = {A,B}
br = 2, bs = 1
b1
r = 1, b2

r = 3, b1
s = 0

P = {A}
br = 1
b1
r = 0

P = {B}

P = {}
br = 0, bs = 0

P = {A}
br = 0, bs = 0

ρ : Tρ: v0 : {A,B}

v1 : {A}

v4 : {B}

r

r

v2 : {}

r

v3 : {A}

s

Figure 3: A run ρ of Gen on (2, 5) and its induced EL description tree Tρ.

39

Conversely, for all tree-shaped interpretations I of size at most b and depth not
greater than d, there is always a run of Gen describing I.

Lemma 40. Let d ≥ 0 and b > 0 be two natural numbers. For all tree-shaped
interpretations I over NT̂pr ∪ NR with ∆I ≤ b and depth not greater than d, there
is a run ρ of Gen on (d, b) such that I=Iρ.

Proof. Let I be a tree-shaped interpretation of depth d(I) such that |∆I | ≤ b
and d(I) ≤ d. We show how to guide a run ρ of Gen such that Iρ = I. The
proof goes by induction on the number d(I).

Let d0 ∈ ∆I be the root of TI . For all r ∈ NR we denote as r(d0) = {e1, . . . , en}
(n ≥ 0) the set of r-successors of d0 in I. In addition, for an r-successor ei of d0,
TI [ei] denotes the subtree of TI rooted at ei, and Iei the associated interpretation.
Then, when Gen is invoked on (d, b) it makes the following non-deterministic
choices:

• P = `I(d0),

• for all r ∈ NR: br = |r(d0)|,

• for all r ∈ NR and ei ∈ r(d0): bir = |∆Iei | − 1,

• for all r ∈ NR and 1 ≤ i ≤ br, the recursive call Gen(d − 1, bir + 1) follows
a run ρir such that Iρir = Iei .

Since |∆I | ≤ b and d(I) ≤ d, the first three choices are consistent with the
execution of Gen. Regarding the last choice, since TI is a tree we know that
d(Iei) < d(I). Consequently, d(Iei) ≤ d− 1 and the induction hypothesis can be
applied to obtain the proper run ρir. Therefore, ρ induces an EL description tree
Tρ such that:

• its root v0 is labeled with `I(d0),

• for all r ∈ NR: v0 has exactly |r(d0)| children v1, . . . , v|r(d0)|, each edge (v0, vi)
(1 ≤ i ≤ |r(d0)|) is labeled with r, and the subtree Tρ[vi] rooted at vi in Tρ
is equal to TI [ei].

Thus, we can conclude that Iρ = I.

Lemma 40 ensures that, by choosing d as in (22) and b as s(uT̂ (α1)) · s(uT̂ (α2)),
the set of runs of Gen on (d, b) covers a set of interpretations that suffices to
find out if uT̂ (α1)u¬uT̂ (α2) is satisfiable. Hence, it remains to see how to check
for a run ρ of Gen, whether d0 ∈ [uT̂ (α1) u ¬uT̂ (α2)]Iρ . It turns out, however,
that the unique extension of Iρ satisfying T̂ (recall Proposition 21) can actually

40

be computed along the run ρ. The idea is that being Iρ tree-shaped, such an
extension will be computed in a bottom-up manner. Therefore, by doing that we
simply need to check whether d0 ∈ (α1 u ¬α2)Iρ .

To this end, we transform the procedure Gen into a function Gen+ such that
each run ρ additionally computes a set Ex ⊆ NT̂d with the following meaning:

Ex := {α | α ∈ NT̂d and d0 ∈ αIρ}

The special forms introduced in Section 4.2 for acyclic TBoxes are of great help in
computing Ex. In particular, the normal form of T̂ provides the following shape
for Ĉα:

P̂1 u . . . u P̂k u ∃r1.α1 u . . . u ∃rn.αn

Consequently for all d ∈ ∆Iρ , d ∈ αIρ iff:

1. d ∈ (P̂i)
Iρ for all 1 ≤ i ≤ k, and

2. for all 1 ≤ i ≤ n, there exists di ∈ ∆Iρ such that (d, di) ∈ (ri)
Iρ and

di ∈ (αi)
Iρ .

The computation of Ex will be based on checking these two conditions for d0.
If P̂i is of the form A ∈ NT̂pr, verifying whether d0 ∈ AIρ is simple since Iρ
already contains that information (the non-deterministic choice in line 3). To
check whether d0 ∈ (E∼t)

Iρ , we further extend Gen+ to compute for all runs ρ
an assignment D : NTd → [0, 1] such that:

D(E) := degIρ(d0, uT (E))

Once D is computed for d0, it is immediate to verify whether d0 ∈ (E∼t)
Iρ .

Regarding Condition 2, as explained before the successors e of d0 in Iρ are the
roots of the interpretations induced by runs corresponding to the recursive calls
triggered by ρ. Hence, the sets Exe computed by such calls provide the necessary
information to determine whether d0 ∈ (∃ri.αi)Iρ for all 1 ≤ i ≤ n. However,
since d0 may have exponentially many direct successors in Iρ, a PSpace procedure
cannot store all the corresponding sets Exe. To deal with this, Gen+ will compute
a relation of the form z ⊆ (NR × NT̂d) ∪ (ε× NT̂pr) such that: (r, α) ∈ z iff there is
e ∈ ∆Iρ satisfying (d0, e) ∈ rIρ and α ∈ Exe. In this way we can keep the relevant
information needed to verify whether d0 ∈ (∃ri.αi)Iρ , while using polynomial
space.

Putting all these ideas together, we transform Gen into Gen+ as follows:

1: function Gen+(d : integer, b : binary)
2: b := b− 1
3: non-deterministically choose a subset P of NT̂pr

41

4: initialize v and z
5: if (d 6= 0) and(b 6= 0) then
6: for all r ∈ NR do
7: non-deterministically choose 0 ≤ br :≤ b
8: b := b− br
9: for all 1 ≤ i ≤ br do
10: non-deterministically choose 0 ≤ bir ≤ b
11: b := b− bir
12: (Exir, D

i
r) :=Gen+(d− 1, bir + 1)

13: update v
14: update z
15: end for
16: end for
17: end if
18: D := SUBdeg(v)
19: Ex := SUBex(D, z)
20: return (Ex, D)
21: end function

The subroutines SUBdeg and SUBex invoked in lines 18 and 19 correspond to
the computation of the assignment D and the set Ex, respectively. The execution
of line 14 updates the relation z using the content of Exir after each recursive call
has been executed. Regarding the symbol v in line 13, as we explain below it
represents a table used to help the computation of D.

Let us now move on to the details of the computation of Ex and D. We start
with the computation of D, and afterwards explain how to compute Ex.

Due to the normal form of T̂ , the EL concept E in E∼t is a defined concept in
T . Therefore, by Definition 20 for all d ∈ ∆Iρ :

d ∈ (E∼t)
Iρ iff degIρ(d, uT (E)) ∼ t

Coming back to Chapter 2.3 we know that degIρ(d, uT (E)) is the maximal value
of hw(v0) among all ptghs h ∈ H(TuT (E), GIρ , d), where v0 is the root of the
description tree TuT (E). Note that we use directly TuT (E), since being T in reduced
form implies that uT (E) is reduced (see Lemma 36). Now, E is defined in T as
follows:

E
.
= P1 u . . . u Pq u ∃r1.E1 u . . . u ∃rn.En

This gives us the following information regarding TuT (E):

• the label of v0 in TuT (E) is the set {P1, . . . , Pq},

• v0 has exactly n (n ≥ 0) successors v1, . . . , vn in TuT (E),

• for all 1 ≤ i ≤ n, the subtree TuT (E)[vi] of TuT (E) rooted at vi is exactly the
description tree associated to uT (Ei).

42

Additionally, the computation of hw(v0) is based on the following expression:

hw(v0) =


1 if q + n = 0

|{P1,...,Pq} ∩ `Iρ (d)|+
∑

1≤i≤k
hw(wi)

q+n
otherwise.

where w1, . . . , wk are the children of v0 in TuT (E) mapped by h. Now, regarding
a ptgh h yielding a maximal value for hw(v0) we observe the following:

• if (d, e) ∈ (ri)
Iρ for some e ∈ ∆Iρ , then we can assume that vi ∈ dom(h).

• Let h(vi) = ei where ei ∈ ∆Iρ . Then, hw(vi) = degIρ(ei, uT (Ei)). This is
a consequence of vi being the root of the description tree corresponding to
uT (Ei), and the fact that hw(v0) is maximal.

Therefore, degIρ(d, uT (E)) can be expressed as:

|{P1, . . . , Pq} ∩ `Iρ(d)|+
n∑
i=1

max{degIρ(e, uT (Ei)) | (d, e) ∈ (ri)
Iρ}

q + n
(23)

Thus, knowing the values degIρ(e, uT (F)) for all successors e of d in Iρ and all
F ∈ {E1, . . . , En}, it is straightforward to compute degIρ(d, uT (E)). Therefore,
similar to the computation of Ex the assignment D for d0 can be computed by
using all the assignments D recursively computed for all successors of d0 in Iρ.
Once more, the problem related to the possible exponentially many successors of
d0 needs to be addressed. Here is where the aforementioned table v comes into
play. It is defined as v : (NR × NTd) ∪ (ε × NT̂pr) → [0, 1] and each entry v[r, E]
stores the value max{De(E) | (d0, e) ∈ rIρ}, where De is the assignment D for e,
and v[ε, P] = 1 iff P ∈ P (0 otherwise). The following fragment of pseudo-code
updates v within a run of Gen+:

1: v[r, E] = 0 for all (r, E) ∈ (NR × NTd) ∪ (ε× NT̂pr) // Initialization
2: v[ε, P] = 1 iff P ∈ P

3:
...

4: Di
r := Gen+(d− 1, bir + 1)

5: for all (E .
= CE ∈ T) do

6: if Di
r(E) > v[r, E] then

7: v[r, E] := Di
r(E)

8: end if
9: end for

Here, Di
r stands for the assignment D corresponding to the root element of the

interpretation induced by the recursive call. In other words, the i-th r-successor
of d0 in Iρ. After all the recursive calls have been executed, v is used to compute
D as described in the following subroutine:

43

procedure SUBdeg(v : (NR × NTd) ∪ (ε× NT̂pr)→ [0, 1])
for all (E .

= CE ∈ T) do
c := |{P | P ∈ tp(CE) and v[ε, P] = 1}|
for all ∃r.E ′ ∈ tp(CE) do

c := c+ v[r, E ′]
end for
D(E) := c

|tp(CE)|
end for
return D

end procedure

It remains to see the details of the computation of Ex. The updating of the
relation z in Gen+ is carried out as follows:

1: z := {(ε, P) | P ∈ P} // Initialization

2:
...

3: Exir := Gen+(d− 1, bir + 1)
4: for all (α .

= Ĉα ∈ Tτ ∪ T) do
5: if α ∈ Exir then
6: z := z ∪ {(r, α)}
7: end if
8: end for

Then, using D and z Conditions 1 and 2 can be verified, and Ex can be computed
in the following way:

procedure SUBex(D : NTd → [0, 1], z ⊆ (NR × NT̂d) ∪ (ε× NT̂pr))
s := ∅
for all (α .

= Ĉα ∈ Tτ ∪ T) do
if ([P ∈ tp(Ĉα)]⇒ (ε, P) ∈ z) and ([E∼t ∈ tp(Ĉα)]⇒ D(E) ∼ t) and

([∃r.β ∈ tp(Ĉα)]⇒ (r, β) ∈ z) then
s := s ∪ {α}

end if
end for
return s

end procedure

Thus, using the function Gen+ we define our non-deterministic algorithm to
decide satisfiability of concepts of the form α1 u ¬α2 with respect to acyclic
τEL(deg) TBoxes.

Since Gen+ terminates, this implies that Algorithm 1 terminates as well. In the
following, we show that Algorithm 1 is sound and complete. Let us start by
showing that Gen+ computes the right values for D and Ex.

Lemma 41. Let d ≥ 0 and b > 0 be two natural numbers, and ρ be a run of
Gen+ on (d, b). Then,

44

Algorithm 1 Satisf. of α1 u ¬α2 w.r.t. acyclic τEL(deg) TBoxes.

Input: An acyclic τEL(deg) TBox T̂ and α1, α2 ∈ NT̂d .
Output: “yes”, if α1 u ¬α2 is satisfiable in T̂ , “no” otherwise.

1: b := s(uT̂ (α1)) · s(uT̂ (α2)) // b is stored in binary
2: d := rd(uT̂ (α1)) + rd(uT̂ (α2))
3: (Ex, D) := Gen+(d, b)
4: if α1 ∈ Ex and α2 6∈ Ex then
5: return “yes”
6: end if
7: return “no”

1. D(E) = degIρ(d0, uT (E)), for all E .
= CE ∈ T .

2. Ex = {α | α ∈ NT̂d and d0 ∈ αIρ}

Proof. Let d(Iρ) denote the depth of TIρ . We prove our claims by induction on
d(Iρ). To start, we fix a role name r ∈ NR and define r(d0) = {e1, . . . , en} to be
the set of r-successors of d0 in Iρ (with n ≥ 0). By construction of TIρ , ρ does
exactly n recursive calls Gen+(d − 1, bir) (1 ≤ i ≤ n). Let ρir denote the run
corresponding to the i-th call. Then, the interpretation Iρir induced by ρir is the
one having the description tree TIρ [ei], i.e., the subtree of TIρ rooted at ei.

The tree shape of Iρ implies that d(Iρir) < d(Iρ). Therefore, induction hypothesis
can be applied to obtain:

Di
r(E) = deg

I
ρir (ei, uT (E))

Exir = {α | α ∈ NT̂d and ei ∈ αIρir}

The same reasoning applies for all the other role names s ∈ NR. Note that since
Iρir is a subtree of Iρ, those two equalities are also valid for Iρ, i.e.:

Di
r(E) = degIρ(ei, uT (E))

Exir = {α | α ∈ NT̂d and ei ∈ αIρ}

Therefore, after all the recursive calls have been executed and the values in table
v and relation z have been fully updated, we have for all (r, E) ∈ NR × NTd :

v[r, E] = max{degIρ(e, uT (E)) | (d0, e) ∈ rIρ} (24)

and,
z = {(r, α) | e ∈ ∆Iρ , (d0, e) ∈ rIρ and e ∈ αIρ} (25)

Looking at the subroutine SUBdeg, for all E .
= CE ∈ T the value D(E) is

computed by the following expression:

D(E) =

|tp(CE) ∩ P|+
∑

∃r.E′∈tp(CE)

v[r, E ′]

tp(CE)

45

Now, by construction of Iρ we have that `Iρ(d0) = P . Hence, replacing v[r, E ′]
by the right-hand side of the equality in (24) we obtain the expression in (23).
Consequently, we have shown that:

D(E) = degIρ(d0, uT (E))

Last, let α .
= Ĉα ∈ Tτ ∪ T with Ĉα of the form:

P̂1 u . . . u P̂q u ∃r1.α1 u . . . u ∃rn.αn

According to SUBex, α ∈ Ex iff:

• for all 1 ≤ i ≤ q: if P̂i is of the form E∼t then D(E) ∼ t, otherwise P̂i ∈ P ,
and

• (rj, αj) ∈ z, for all 1 ≤ j ≤ n.

Since `Iρ(d0) = P and D(E) = degIρ(d0, uT (E)), the first statement is equivalent
to have d0 ∈ (P̂i)

Iρ (1 ≤ i ≤ q). Furthermore, (25) makes the second statement
equivalent to having d0 ∈ (∃rj.αj)Iρ (1 ≤ j ≤ n). Thus, α ∈ Ex iff d0 ∈ αIρ .

Note that the base case for the induction is already contained in the proof.

Using Lemma 41 we now prove that Algorithm 1 is sound and complete.

Lemma 42. Let T̂ be an acyclic τEL(deg) TBox and α1, α2 two defined concepts
in T̂ . Then,

Algorithm 1 answers “yes” iff α1 u ¬α2 is satisfiable in T̂ .

Proof. (⇒) Suppose that the algorithm gives a positive answer and let ρ be the
run of function Gen+ that leads to it. Then, we can talk about the interpretation
Iρ induced by ρ. The “yes” answer means that for ρ, α1 ∈ Ex and α2 6∈ Ex. Then,
the application of Lemma 41 yields:

d0 ∈ (α1 u ¬α2)Iρ

with d0 ∈ ∆Iρ . Hence, α1 u ¬α2 is satisfiable with respect to T̂ .

(⇐) Assume that α1 u ¬α2 is satisfiable with respect to T̂ . This means that
there exists an interpretation I such that I |= T̂ and (α1 u ¬α2)I 6= ∅. By the
bounded model property discussed at the beginning of this section and the sub-
sequent remarks, one can assume that I is tree-shaped and satisfies the following
properties:

1. ∆I has at most s(uT̂ (α1)) · s(uT̂ (α2)) elements,

46

2. the depth of TI is not greater than rd(uT̂ (α1)) + rd(uT̂ (α2)), and

3. its root element d0 satisfies: d0 ∈ (α1 u ¬α2)I .

The selection of d and b in Algorithm 1 and the application of Lemma 40 guar-
antee the existence of a run ρ of Gen+ on (d, b) generating the restriction of I
to NT̂pr ∪ NR. Hence, the application of Lemma 41 implies that the conditional
in line 4 must evaluate to true for such a run ρ. Thus, Algorithm 1 answers
“yes”.

Algorithm 1 uses space polynomial in the size of T̂ to store the binary represen-
tation of b. Furthermore, z and v are also stored within polynomial space, and
the two subroutines run in polynomial time. Therefore, since each run ρ of Gen+
on (d, b) does at most d many nested recursive calls, ρ uses space polynomial in
s(T̂). In addition, it is easy to see that both b and d can be computed in time
polynomial in s(T̂). Thus, Algorithm 1 is a non-deterministic polynomial space
decision procedure for satisfiability of concepts of the form α1 u¬α2 with respect
to acyclic τEL(deg) TBoxes. This means that satisfiability and non-subsumption
are in NPSpace. Then, by Savitch’s theorem [Sav70] and since PSpace is closed
under complement, we obtain the following results.

Theorem 43. In τEL(deg), satisfiability and subsumption are in PSpace, with
respect to acyclic τEL(deg) TBoxes.

4.4 Reasoning with acyclic knowledge bases

We show in this section that satisfiability and subsumption are still decidable in
PSpace with respect to acyclic knowledge bases. Furthermore, we also consider
the consistency and the instance problem. LetK = (T̂ ,A) be an acyclic τEL(deg)
knowledge base:

• K is consistent iff there is an interpretation I such that I |= K.

Additionally, let a ∈ NI be an individual name and α a defined concept in T̂ :

• a is an instance of α with respect to K iff for all models I of K it holds that
aI ∈ αI .

Without loss of generality, we can restrict our attention to the consistency prob-
lem for KBs of the form (T̂ ,A ∪ {¬α(a)}), since all the other problems can be
reduced to it.

Proposition 44. Let K = (T̂ ,A) be an acyclic τEL(deg) KB, α, α1 and α2

defined concepts in T̂ and a ∈ NI. Then,

47

1. α is satisfiable with respect to K iff (T̂ ,A ∪ {α(b)}) is consistent, where b
is an individual name not occurring in A.

2. α1 is subsumed by α2 with respect to K (in symbols α1 vK α2) iff the knowl-
edge base (T̂ ,A ∪ {α1(b),¬α2(b)}) is inconsistent, where b is an individual
name not occurring in A.

3. a is an instance of α in K (in symbols K |= α(a)) iff (T̂ ,A ∪ {¬α(a)}) is
not consistent.

Further, since T̂ is acyclic, by using unfolding we can again get rid of the TBox
and reduce reasoning to consistency with respect to the empty terminology. The
unfolding of a τEL(deg) ABox A with respect to T̂ is defined as follows:

uT̂ (A) :=
⋃

Ĉ(a)∈A
a∈Ind(A)

{[uT̂ (Ĉ)](a)} ∪
⋃

r(a,b)∈A
a,b∈Ind(A)

{r(a, b)}

Proposition 45. Let K = (T̂ ,A) be an acyclic τEL(deg) KB, α a defined concept
in T̂ and a ∈ NI. (T̂ ,A ∪ {¬α(a)}) is consistent iff uT̂ (A) ∪ {[¬uT̂ (α)](a)} is
consistent.

In what follows, we show how to extend the ideas used to design Gen+ and
Algorithm 1, to decide consistency of uT̂ (A) ∪ {[¬uT̂ (α)](a)}. As mentioned in
Section 2.3, there is again a bound for the size of the interpretations that one
needs to look at to decide consistency of uT̂ (A) ∪ {[¬uT̂ (α)](a)}. Moreover, if
such an ABox is consistent, it has a model J of the following form (see [BBF15]):

A
. . .

(a1)
J

(a2)
J

(ap)J

Ia2

Ia1

Iap

where Ind(A) = {a1, a2, . . . , ap} and Ia1 , Ia2 , . . . , Iap are tree-shaped interpre-
tations. The inner area of the diagram consists of the satisfaction of the role
assertions in A, i.e., (aJ , bJ) ∈ rJ iff r(a, b) ∈ A. Additionally, an upper bound
is provided for the size of these tree-shaped interpretations. We will later talk
about how big this bound could be, but for the moment let us focus in how to
reuse Gen+ and Algorithm 1.

To start, it is clear that by choosing the appropriate values for d and b, the
interpretations Ia can be independently generated using the function Gen+. It

48

is important to keep in mind that aIa is the root of Ia. Consequently, a run ρa of
Gen+ inducing Ia will compute two sets Exa and Da with the following meaning:

Da(E) = degIa(aIa , uT (E)), for all E .
= CE ∈ T

Exa = {β | β .
= Ĉβ ∈ Tτ ∪ T and aIa ∈ βIa}

Recall that technically Ia (as generated by Gen+) only interprets symbols from
NT̂pr ∪ NR, but when writing βIa we meant its unique extension to a model of T̂ .
The veracity of the previous two equalities has been shown in Lemma 41. Now,
the construction of the model J depicted above (Lemma 44 in [BBF15]) is done
in two steps. First, the interpretations Ia for all a ∈ Ind(A) are obtained using
Lemma 42 in [BBF15] and the combined (Lemma 43, [BBF15]) in the following
way:

• ∆J =
⋃

a∈Ind(A)

∆Ia ,

• AJ =
⋃

a∈Ind(A)

AIa for all A ∈ NT̂pr,

• rJ =
⋃

a∈Ind(A)

rIa ∪ {(aIa , bIb) | r(a, b) ∈ A} for all r ∈ NR, and

• aJ = aIa , for all a ∈ Ind(A).

This means that given an individual a ∈ Ind(A), a defined concept β and an
element d ∈ ∆Ia , it is not necessarily the case that dJ ∈ βJ iff β ∈ Exd (similarly
for the membership degrees and the assignment Dd). The reason is that the role
assertions between individual names are used to build J , but they are not taken
into account by ρa to compute Exd and Dd. Fortunately, this could only be the
case for the domain elements aJ = aIa corresponding to the individual names of
A. This is a consequence of the following observation: for all a ∈ Ind(A) and
d ∈ ∆Ia such that d 6= aIa , no path in GJ starting at d reaches a domain element
bJ (b ∈ Ind(A)). As a result we obtain the following:

degJ (d, uT̂ (E)) = degIa(d, uT̂ (E)), for all E .
= CE ∈ T

d ∈ βJ iff d ∈ βIa , for all β .
= Ĉβ ∈ Tτ ∪ T

Therefore, if we can compute the correct content/values of Exa and Da for the
unique extension of J satisfying T̂ , it will be possible to verify whether J satisfies
uT̂ (A) ∪ {[¬uT̂ (α)](a)} (as it is done for subsumption in the previous section).
There are two obstacles that we need to overcome. The first one is that Exa and
Da, as computed by ρa, do not contain enough information to obtain the ones
corresponding to J .

49

Example 46. Let a1, a2 ∈ Ind(A) and r(a1, a2) ∈ A. Suppose that a run ρa1

of Gen+ representing Ia1 yields Da1(E) = t1 for some E .
= CE ∈ T . Likewise,

Da2(E ′) = t2 for some run ρa2 representing Ia2 and E ′ .= CE′ ∈ T . In addition,
there is a top-level atom in CE of the form ∃r.E ′.

As explained above, the value of Da2(E ′) has not been considered in the com-
putation of Da1(E), and it may well be the case that it actually affects Da1(E)
in the big model J , i.e., degJ ((a1)J , uT̂ (E)) > t1. This could happen if for all
r-successors d of a1 in Ia1 , we have that degIa1 (d, uT̂ (E ′)) < t2. Clearly, this is
not something that can be inferred from Da1 , but from the table v computed for
a1 by ρa1 .

Similarly, assume that β 6∈ Exa1 for some β .
= Ĉβ ∈ Tτ . This means that aIa 6∈ βIa .

It could happen that a2 satisfies properties in J that would make (a1)J ∈ βJ .
Then, we would need to look into the relation z computed for a1 by ρa1 , to discern
such a change.

To deal with that, we rearrange the structure of function Gen+ such that it
returns the pair (z, v) instead of (Ex, D). The following sketches how to modify
Gen+ accordingly.

1: function Gen+(d : integer, b : binary)

2:
...

3: initialize v and z
4:

...
5: (zir, v

i
r) :=Gen+(d− 1, bir + 1)

6: Di
r := SUBdeg(vir)

7: Exir := SUBex(Di
r, z

i
r)

8: update v
9: update z

10:
...

11: return (z, v)
12: end function

Note that in the previous version of Gen+, the computation of Di
r and Exir are

the last operations executed inside the recursive call Gen+(d − 1, bir + 1), and
v, z are updated right away after that. This order of actions is kept in the new
definition given above. Since the computation of Di

r and Exir only requires of
vir and zir, and these are returned by Gen+, the new modifications preserve the
properties of Gen+.

The next step is to recompute za and va for all a ∈ Ind(A) using the information
provided by the role assertions in A. Following Example 46, since bJ is related to
aJ by the role name r, this means that va and za must be updated with respect
to r, Exb and Db. Obviously, changes in va and za should be propagated to the

50

individuals that a is related to, and so on. The function Gen+ can cope with
such propagation in a bottom-up form, because it is computing a tree-shaped
structure. However, this is no longer the case for the individuals in A, since role
assertions can define cycles involving them.

To solve this we appeal to the acyclic nature of T̂τ and T . It allows to traverse
the structure of any defined concept (bottom-up) based on the partial order �
induced by →+ on NT̂d . Note that now we limit our attention to the fragment of
J corresponding to the role assertions in A, which is part of the input. There-
fore, provided that (za, va) has been computed for all a ∈ Ind(A), the following
subroutine updates all those pairs with respect to the combined interpretation
J .

1: procedure Update()
2: compute Da := SUBdeg(va) // for all a ∈ Ind(A)
3: let {E1, . . . , En} be a post-order of � (induced by →+ on NTd)
4: for all 1 ≤ i ≤ n do
5: for all r(a, b) ∈ A do
6: if Db(Ei) > va[r, Ei] then
7: va[r, Ei] := Db(Ei)
8: end if
9: end for
10: re-compute Da // for all a ∈ Ind(A)
11: end for
12: compute Exa := SUBex(Da, za) // for all a ∈ Ind(A)

13: let {β1, . . . , βn} be a post-order of � on NT̂d
14: for all 1 ≤ i ≤ n do
15: for all r(a, b) ∈ A do
16: if βi ∈ Exb then
17: za := za ∪ {(r, βi)}
18: end if
19: end for
20: re-compute Exa // for all a ∈ Ind(A)
21: end for
22: end procedure

Let us prove that Update does what we have claimed.

Lemma 47. For all a ∈ Ind(A), let ρa be a run of A and Ia its induced interpre-
tation. Moreover, based on these interpretations let J be the interpretation that
results from the combination described above. Then,

1. Da(E) = degJ (aJ , uT (E)), for all E .
= CE ∈ T .

2. Exa = {β | β .
= Ĉβ ∈ Tτ ∪ T and aJ ∈ βJ }

51

Proof. We give the proof for the assignments Da. The case for Exa can be done
using the same idea and Lemma 41. To differentiate the final assignment Da from
the initial one computed by ρa, we denote the latter as D0

a (likewise for va and
v0
a). We show the claim by well-founded induction on the partial order �.

Let a ∈ Ind(A) and E .
= CE ∈ T . Since T is normalized, the concept description

CE has the following structure:

P1 u . . . u Pq u ∃r1.E1 u . . . u ∃rn.En

Clearly, when n = 0 the value degJ (aJ , uT (E)) does not depend on any successor
of aJ . Moreover, by construction of J we know that aJ ∈ (Pi)

J iff aIa ∈ (Pi)
Ia

for all 1 ≤ i ≤ q. This implies that:

degJ (aJ , uT (E)) = degIa(aIa , uT (E))

Then, by Lemma 41 we obtain that:

D0
a(E) = degJ (aJ , uT (E))

Looking at SUBdeg one can see that the computation of D0
a(E) depends only

on the values v0
a[ε, P]. Furthermore, it is easy to see that those values are never

changed by a run of Update. Hence, va[ε, P] = v0
a[ε, P] and Da(E) = D0

a(E).
Thus, Da(E) is the right number.

Now, to show the claim for n > 0 we start by making some observations for all
b ∈ Ind(A). Let F be a defined concept in T :

• By Lemma 41, the initial table v0
b satisfies the following:

v0
b [r, F] = max{degIb(d, uT (F)) | d ∈ ∆Ib and (bIb , d) ∈ rIb}

As explained above, since d 6= bIb it further satisfies:

v0
b [r, F] = max{degJ (d, uT (F)) | d ∈ ∆Ib and (bIb , d) ∈ rIb} (26)

Additionally, let j be the index of F in the post-order created in line 3. Then,

• the value of vb[r, F] only changes at the jth iteration of the outer-loop in
line 4.

• let k be the largest index of F ′ among all the top-level atoms of the form
∃r.F ′ in the definition of F . Then, taking into account the previous state-
ment, the value of Db(F) never changes after the kth iteration of the outer-
loop.

• since F ′ � F , this means that j > k. Consequently, the final value of Db(F)
is computed before the iteration corresponding to F .

52

Coming back to the defined concept E, we know that E � Ej for all 1 ≤ j ≤ n.
Then, the application of induction hypothesis yields:

Da(Ej) = degJ (aJ , uT (Ej)) (27)

Moreover, since at the moment of updating va[r, Ej] the value of Db(Ej) is the
one in (27) for all b ∈ Ind(A), using (26) we obtain:

va[r, Ej] = max{degJ (d, uT (Ej)) | d ∈ ∆J and (aJ , d) ∈ rJ }

Thus, by the same arguments given in Lemma 41 it follows:

Da(E) = degJ (aJ , uT (E))

By the previous lemma, once (Exa, Da) has been computed by Update for all a ∈
Ind(A), it is easy to verify whether J satisfies A∪{¬α(a)}. Therefore, it remains
to make sure that enough candidates J are considered to decide the satisfiability
status of uT̂ (A)∪{[¬uT̂ (α)](a)}. This relies on estimating the appropriate values
for d and b. Given an ABox A in τEL(deg), the ABox A(a) consists of all the
concept assertions D̂(a) occurring in A. Then,

• Let mrd(A) be the maximal role depth of a concept D̂ occurring in an ABox
A, i.e.,

mrd(A) := max{rd(D̂) | D̂(a) ∈ A}

The interpretations Ia used to compose J are built in such a way that its
depth d(Ia) can be bounded by:

d(Ia) ≤ mrd(A(a)) + rd(Ĉ)

In the present context this means that da can be chosen as:

mrd(uT̂ (A(a))) + rd(uT̂ (α))

• Moreover, we have an upper-bound for |∆Ia |, namely,

|∆Ia| ≤ s(A(a)) · [s(Ĉ)]u

where u = |sub(Ĉ)|. Translating this bound to our current setting, we
obtain:

|∆Ia| ≤ s(uT̂ (A(a))) · [s(uT̂ (α))]u
∗

with u∗ now being |sub(uT̂ (α))|.

53

Putting all the given arguments together, we devise Algorithm 2 below as a non-
deterministic procedure to decide consistency of (T̂ ,A∪{¬α(a)}). The following
lemma shows that it is correct.

Lemma 48. Let K = (T̂ ,A) be an acyclic τEL(deg) KB, α a defined concept in
T̂ and a ∈ Ind(A). Then,

Algorithm 2 answers “yes” iff (T̂ ,A ∪ {¬α(a)}) is consistent.

Proof. (⇒) Suppose that the algorithm gives a positive answer, and for all a ∈
Ind(A) let ρa be the run of Gen+ that leads to it. Then, we can talk about the
interpretation Ia induced by ρa. Now, let J be the interpretation that results
from the combination of all the fragments Ia and the role assertions occurring
in A. A “yes” answer implies that the for loop described between lines 7 and 13
never falsifies β ∈ Exb for all concept assertions β(b) ∈ A. By Lemma 47, this
means that the extension of J satisfying T̂ is also a model of A.

In addition, the conditional in line 14 must evaluate to true. Consequently, for the
same reasons explained above, we obtain that aJ 6∈ αJ . Thus, (T̂ ,A∪ {¬α(a)})
is consistent.

(⇐) Conversely, assume that (T̂ ,A ∪ {¬α(a)}) is consistent. This means that
there is an interpretation J |= K such that aJ 6∈ αJ . By Proposition 45 and the
mentioned results from [BBF15], one can assume that J is of the form described
before. Therefore, for all a ∈ Ind(A) the corresponding interpretation Ia is tree-
shaped and satisfies:

• d(Ia) ≤ mrd(uT̂ (A)) + rd(uT̂ (α)), and

• |∆Ia | ≤ s(uT̂ (A)) · [s(uT̂ (α))]u
∗ (note that s(uT̂ (A(a))) ≤ s(uT̂ (A))).

By the selection of d and b in Algorithm 2 and an application of Lemma 40, there
is always a run ρa of Gen+ generating Ia for all a ∈ Ind(A). Then, by Lemma 47,
after executing Update none of the subsequent conditionals could evaluate to
false. Thus, the algorithm answers “yes”.

Regarding the computational complexity of Algorithm 2, one can see that the
value of d is a polynomial in the size of K. Furthermore, since there are poly-
nomially many individual names, this means that any run of the algorithm uses
polynomial space (including the execution of Update), except maybe for the
number of bits needed to represent b. Indeed, the expression that calculates b is
exponential in u∗. To give a preliminary approximation of how big b could be,
we observe that due to unfolding we may end up with the following worst-case
lower bounds:

2s(T̂) ≤ s(uT̂ (A)) and 2s(T̂) ≤ s(uT̂ (α))

54

Algorithm 2 Consistency of (T̂ ,A ∪ {¬α(a)}).

Input: An acyclic KB (T̂ ,A), a defined concept α in T̂ and a ∈ NI.
Output: “yes”, if (T̂ ,A ∪ {¬α(a)}) is consistent, “no” otherwise.

1: b := s(uT̂ (A)) · [s(uT̂ (α))]u
∗

// b is represented in binary
2: d := mrd(uT̂ (A)) + rd(uT̂ (α))
3: for all b ∈ Ind(A) do
4: (zb, vb) := Gen+(d, b)
5: end for
6: Update()
7: for all b ∈ Ind(A) do
8: for all β(b) ∈ A do
9: if β 6∈ Exb then
10: return “no”
11: end if
12: end for
13: end for
14: if α 6∈ Exa then
15: return “yes”
16: end if
17: return “no”

In particular, u∗ corresponds to the number of sub-descriptions of uT̂ (α). Hence,
in view of the lower bound for the size of uT̂ (α) one might think that the following
lower bound also holds:

22s(T̂) ≤ [s(uT̂ (α))]u
∗

(28)

Therefore, in the worst-case we would end up with an ExpSpace non-deterministic
procedure. However, on the one side, a closer look at the reductions in Propo-
sition 44 reveals that there are better choices for b depending on the reasoning
problem. On the other side, the statement in (28) is actually false.

• Knowledge base consistency and satisfiability : in these cases the problem
reduces to consistency of a τEL(deg) ABox. Consequently, such double
exponential explosion does not exist. Thus, b simply becomes s(uT̂ (A)) or
s(uT̂ (A ∪ {α(b)})).

• Subsumption: the reduction produces an ABox of the form:

A ∪ {α1(b),¬α2(b)}

The key aspect is that b does not occur in A. This means that the pre-
processing propagation of the negative assertions does not go through the

55

cycles that may occur in A. This obviously avoids the exponential explosion
and b can be selected as:

s(uT̂ (A)) + [s(uT̂ (α1)) · s(uT̂ (α2))]

• Instance checking : According to (28), in this case the algorithm would need
to store a value b ≥ 22s(T̂) . However, one can show that the number of
sub-descriptions in uT̂ (α) is actually bounded by s(T̂) (see Corollary 51 in
the Appendix). Hence, the statement made in (28) is false and b can be
chosen as:

s(uT̂ (A)) · [s(uT̂ (α))]s(T̂)

Consequently, the binary representation of b needs only polynomially many
bits in the size of T̂ .

Thus, reasoning in τEL(deg) with respect to acyclic KBs is in PSpace.

Theorem 49. In τEL(deg), consistency and instance checking w.r.t. acyclic
τEL(deg) knowledge bases are in PSpace.

56

5 Conclusion

We have introduced a notion of acyclic TBoxes for τEL(m) such that unfolding
still works both from the syntactic and the semantic point of view. For the special
case of τEL(deg), we have investigated the complexity of reasoning w.r.t. such
acyclic TBoxes. In contrast to the case of EL, in τEL(deg) the presence of acyclic
TBoxes increases the complexity.

Regarding future research, we will try to close the gap between ΠP
2 /ΣP

2 and
PSpace. Unfortunately, it is not clear to us how the construction employed in the
hardness proof could be extended to higher levels of the polynomial hierarchy,
let alone to PSpace. Conversely, it is also not clear how to generate and test
an exponentially large model on some fixed level of the polynomial hierarchy.
Another interesting and non-trivial problem is to extend our approach to more
general forms of TBoxes (e.g., GCIs). As demonstrated by the semantic problems
for unrestricted sets of concept definitions shown in this paper, naive extensions
will probably lead to unintuitive results. For example, we have seen that, em-
bedded in a threshold concept, a concept name and its definition need not lead
to the same result. We have overcome this problem by modifying the graded
membership function using unfolding. For TBoxes that are not acyclic, or do not
even consist of concept definitions, this simple solution is not possible. Other
interesting open problems are, for instance, to provide an intuitive semantics for
nested threshold operators, and to apply our approach of approximately defining
concepts to other DLs.

57

6 Appendix

Lemma 50. Let T be an acyclic EL TBox in normal form. Then, for all α ∈ NTd
the number of sub-descriptions of uT (α) is at most s(T).

Proof. Recall the definition of sub(C) in Definition 3. Let sub∗(C) ⊆ sub(C) be
the following set:

sub∗(C) :=


{C} if C = > or C ∈ NC,

{C} ∪ sub∗(C1) ∪ sub∗(C2) if C is of the form C1 u C2,

{∃r.D} if C is of the form ∃r.D.

Furthermore, for all α .
= Cα ∈ T , let →+(α) denotes the set of defined concepts

in T that α depends on, i.e.:

→+(α) := {β | β ∈ NTd and α→+ β}

We prove the following claim about the set sub(uT (α)):

sub(uT (α)) = sub∗(uT (Cα)) ∪
⋃

β
.
= Cβ∈T

β ∈→+(α)

sub∗(uT (Cβ)) (29)

The proof is by well-founded induction on the partial order � induced by →+

on NTd . Let α .
= Cα ∈ T , due to the normal form of T the concept Cα has the

following structure:

P1 u . . . Pq u ∃r1.β1 u . . . u ∃rn.βn

The unfolding of α with respect to T is the following concept description:

uT (α) = P1 u . . . Pq u ∃r1.uT (β1) u . . . u ∃rn.uT (βn)

By the definitions of sub and sub∗, we can express the set sub(uT (α)) as follows:

sub(uT (α)) = sub∗(uT (Cα)) ∪
n⋃
i=1

sub(uT (βi)) (30)

Now, the application of the induction hypothesis to each βi (1 ≤ i ≤ n) yields:

sub(uT (βi)) = sub∗(uT (Cβi)) ∪
⋃

β
.
= Cβ∈T

β ∈→+(βi)

sub∗(uT (Cβ))

58

Hence, substituting the previous equality in (30) we obtain the following one:

sub(uT (α)) = sub∗(uT (Cα)) ∪
n⋃
i=1

[
sub∗(uT (Cβi)) ∪

⋃
β
.
= Cβ∈T

β ∈→+(βi)

sub∗(uT (Cβ))

]

Finally, since →+(α) =
n⋃
i=1

(
{βi} ∪ →+(βi)

)
, it is clear that the set defined by

the big union in the previous equality is equal to the one represented by the big
union in (29). Thus, our claim in (29) is true.

According to the definition of sub∗, for a top-level atom ∃ri.βi of Cα the set of
concepts sub∗(∃ri.uT (βi)) corresponds to {∃ri.uT (βi)}. Hence, it is not hard to
see that for all α .

= Cα ∈ T it holds:

|sub∗(uT (Cα))| ≤ s(Cα)

Thus, using (29) we can conclude that |sub(uT (α))| ≤ s(T) for all α ∈ NTd .

Now, since sub(E∼t) is equal to {E∼t}, the previous result also applies to acyclic
τEL(deg) TBoxes.

Corollary 51. Let T̂ be an acyclic τEL(deg) TBox in normal form. Then, for
all α ∈ NT̂d it holds:

|sub(uT̂ (α))| ≤ s(T̂)

59

References

[Baa02] Franz Baader. Terminological cycles in a description logic with
existential restrictions. LTCS-Report LTCS-02-02, Chair for Au-
tomata Theory, Institute for Theoretical Computer Science, Dres-
den University of Technology, Germany, 2002. See http://lat.inf.tu-
dresden.de/research/reports.html.

[Baa03] Franz Baader. Terminological cycles in a description logic with exis-
tential restrictions. In Georg Gottlob and Toby Walsh, editors, IJCAI,
pages 325–330. Morgan Kaufmann, 2003.

[BBF15] Franz Baader, Gerhard Brewka, and Oliver Fernández Gil. Adding
Threshold Concepts to the Description Logic EL. LTCS-Report
LTCS-15-09, LTCS-15-09, Chair for Automata Theory, Institute for
Theoretical Computer Science, TU Dresden, Germany, Germany,
2015. See http://lat.inf.tu-dresden.de/research/reports.html.

[BBG15] Franz Baader, Gerhard Brewka, and Oliver Fernandez Gil. Adding
threshold concepts to the description logic EL. In Carsten Lutz and
Silvio Ranise, editors, Frontiers of Combining Systems - 10th Interna-
tional Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24,
2015. Proceedings, volume 9322 of Lecture Notes in Computer Science,
pages 33–48. Springer, 2015.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge
University Press, New York, NY, USA, 2003.

[BKM99] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least com-
mon subsumers in description logics with existential restrictions. In
Thomas Dean, editor, IJCAI, pages 96–103. Morgan Kaufmann, 1999.

[Bra04] Sebastian Brandt. Polynomial time reasoning in a description logic
with existential restrictions, GCI axioms, and - what else? In Ra-
mon López de Mántaras and Lorenza Saitta, editors, Proceedings of
the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004,
including Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004, pages 298–302. IOS Press, 2004.

[DLNS94] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Deduction in concept languages: From subsumption to in-
stance checking. J. Log. Comput., 4(4):423–452, 1994.

[Küs01] Ralf Küsters. Non-Standard Inferences in Description Logics, volume
2100 of Lecture Notes in Computer Science. Springer, 2001.

60

[Neb90] Bernhard Nebel. Terminological reasoning is inherently intractable.
Artif. Intell., 43(2):235–249, 1990.

[Neb91] Bernhard Nebel. Terminological cycles: Semantics and computational
properties, 1991.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and de-
terministic tape complexities. J. Comput. Syst. Sci., 4(2):177–192,
1970.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput.
Sci., 3(1):1–22, 1976.

61

	Introduction
	The Description Logic EL(deg)
	The Description Logic EL
	Characterization of membership in EL

	Adding threshold concepts to EL
	The graded membership function deg

	Acyclic TBoxes for EL(m)
	Reasoning with acyclic EL(deg) TBoxes
	Lower bounds
	Normalization
	A PSpace upper bound
	Reasoning with acyclic knowledge bases

	Conclusion
	Appendix

