
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Approximately Solving Set Equations

Franz Baader Pavlos Marantidis Alexander Okhotin

LTCS-Report 16-03

Submitted to 30th International Workshop on Unification

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Approximately Solving Set Equations

Franz Baader
Department of Computer Scince
Technische Universität Dresden

Pavlos Marantidis
Department of Computer Scince
Technische Universität Dresden

Alexander Okhotin
Department of Mathematics and Statistics

University of Turku

April 18, 2017

Abstract

Unification with constants modulo the theory ACUI of an associative
(A), commutative (C) and idempotent (I) binary function symbol with a
unit (U) corresponds to solving a very simple type of set equations. It is
well-known that solvability of systems of such equations can be decided
in polynomial time by reducing it to satisfiability of propositional Horn
formulae. Here we introduce a modified version of this problem by no
longer requiring all equations to be completely solved, but allowing for a
certain number of violations of the equations. We introduce three different
ways of counting the number of violations, and investigate the complexity
of the respective decision problem, i.e., the problem of deciding whether
there is an assignment that solves the system with at most ` violations for
a given threshold value `.

1

1 UNIFICATION MODULO ACUI AND SET EQUATIONS 2

1 Unification modulo ACUI and set equations

The complexity of testing solvability of unification problems modulo the theory

ACUI := {x+ 0 = x, x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ x = x}

of an associative, commutative and idempotent function symbol “+” with a unit
“0” was investigated in detail by Kapur and Narendran [?], who show that el-
ementary ACUI-unification and ACUI-unification with constants are polynomial
whereas general ACUI-unification is NP-complete. Here we concentrate on ACUI-
unification with constants, but formally introduce the problem in its disguise of
testing solvability of set equations.

Given a finite base set B and a set of variablesX = {Z1, . . . , ZN} that can assume
as values subsets of B, consider a system Σ of set equations, which consists of
finitely many equations of the following form:

K ∪X1 ∪ . . . ∪Xm = L ∪ Y1 ∪ . . . ∪ Yn, (1)

where K,L are subsets of B and X1, . . . , Xm, Y1, . . . , Yn ∈ X.

A B-assignment is a mapping of subsets of B to the variables, i.e., it is of the
form σ : X → P(B). If there is no confusion, we will omit the prefix B- from
B-assignment. Such an assignment σ is a solution of the system of set equations
Σ if

K ∪ σ(X1) ∪ . . . ∪ σ(Xm) = L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)

holds for all equations of the form (1) in Σ.

The correspondence between unification and set equations can be understood
more easily with an example.

Example 1. Consider the following ACUI-unification problem:

x1 + x2 = a+ b+ c

a+ x2 = b+ x3

x1 + x3 = a+ c

Setting B = {a, b, c} to be the set of all constants and introducing set variables
Xi for every variable xi, the above problem can be transformed into the system
of set equations:

X1 ∪X2 = {a, b, c}
{a} ∪X2 = {b} ∪X3

X1 ∪X3 = {a, c}

A solution to the latter is the assignment σ, such that σ(X1) = {a, c}, σ(X2) =
{b}, σ(X3) = {a}. This corresponds to the substitution τ , such that τ(x1) = a+c,
τ(x2) = b, τ(x3) = a, which is a solution to the initial unification problem.

2 MINIMIZING THE NUMBER OF VIOLATED EQUATIONS 3

Solvability of a system of set equations can be reduced in polynomial time (see
below) to satisfiability of propositional Horn formulae [?], which can be tested in
linear time [?].

To introduce this reduction, we define Boolean variables p(a,X) for every a ∈ B
and X ∈ X. The intuitive semantics of these variables is that p(a,X) is true iff
a is not in X for the given assignment.

Now, for each equation of the form (1) and each a ∈ K \L we generate the Horn
clauses

p(a, Y1) ∧ . . . ∧ p(a, Yn)→ ⊥.

Indeed, whenever an element a ∈ B is in K but not in L, for the equation to hold
true, a must be in some Yj. The symmetric Horn clauses are also produced, i.e.,
for each a ∈ L \K

p(a,X1) ∧ . . . p(a,Xm)→ ⊥.

It remains to deal with the elements a 6∈ K ∪L. First, if a belongs to none of the
variables on the right-hand side, then it should not belong to any of the variables
on the left-hand side, which is expressed by the Horn clauses

p(a, Y1) ∧ . . . ∧ p(a, Yn)→ p(a,Xj) for all j = 1, . . . ,m.

Symmetrically, if a is not on the left-hand side, it cannot be on the right-hand
side, which yields

p(a,X1) ∧ . . . ∧ p(a,Xm)→ p(a, Yj) for all j = 1, . . . , n.

The number of derived Horn clauses and their sizes are polynomial in the size
of the given system Σ of set equations, where the size of Σ is the sum of the
cardinality of B, the number of variables in X, and the number of equations in
Σ. The size of a Horn clause is just the number of literals occurring in it.

It is easy to see that the Horn formula obtained by conjoining all the Horn clauses
derived from a system of set equations is satisfiable iff the original system of set
equations has a solution (see [?] for details). Consequently, solvability of systems
of set equations can be decided in polynomial time.

2 Minimizing the number of violated equations

We say that the B-assignment σ violates a set equation of the form (1) if

K ∪ σ(X1) ∪ . . . ∪ σ(Xm) 6= L ∪ σ(Y1) ∪ . . . ∪ σ(Yn).

Given a base set B, a set of variables X = {Z1, . . . , ZN}, a system Σ of k set
equations of the form (1), and a nonnegative integer `, we now ask whether there

2 MINIMIZING THE NUMBER OF VIOLATED EQUATIONS 4

exists a B-assignment σ such that at most ` of the equations of the system are
violated by σ. We call this decision problem MinVEq-SetEq. For a given `,
MinVEq-SetEq(`) consists of all systems of set equations for which there is a
B-assignment that violates at most ` equations of the system.

We will show that MinVEq-SetEq is NP-complete using reductions to and from
Max-HSAT. Given a Horn formula ϕ that is a conjunction of k Horn clauses
and a nonnegative integer `, Max-HSAT asks whether there is a propositional
assignment τ that satisfies at least ` of the Horn clauses of ϕ. For a given `,
Max-HSAT(`) consists of those Horn formulae for which there is a propositional
assignment that satisfies at least ` of its Horn clauses. It is well-known that
Max-HSAT is NP-complete [?].

Reducing MinVEq-SetEq to Max-HSAT For this purpose, we introduce
new Boolean variables good(i), whose rôle is to determine whether the ith equa-
tion is to be satisfied or not. We conjoin good(i) to the left-hand side of each of
the Horn clauses derived from the ith equation, i.e., if the ith equation is of the
form (1), then we generate the following Horn clauses:

• For each a ∈ K \ L: good(i) ∧ p(a, Y1) ∧ . . . ∧ p(a, Yn)→ ⊥;

• For each a ∈ L \K: good(i) ∧ p(a,X1) ∧ . . . ∧ p(a,Xm)→ ⊥;

• For each a 6∈ K ∪ L:

good(i) ∧ p(a, Y1) ∧ . . . ∧ p(a, Yn)→ p(a,Xj) for all j = 1, . . . ,m;

good(i) ∧ p(a,X1) ∧ . . . ∧ p(a,Xm)→ p(a, Yj) for all j = 1, . . . , n.

• Furthermore, we add the Horn clause > → good(i).

If k′ is the number of clauses generated by the original reduction (see Section 1)
and k is the number of set equations in the system Σ, then we obtain k′ +k Horn
clauses in this modified reduction. Let ϕΣ = C1 ∧ · · · ∧ Ck′+k denote the Horn
formula obtained by conjoining these Horn clauses.

Let us illustrate the above construction with a small example.

Example 2. Consider the follwing system of set equations, that is not solvable:

X1 ∪X2 = {a}
{b, c} ∪X2 = {b} ∪X3

X1 ∪X3 = {c}

For the first equation, the reduction in Section 1 introduces the following clauses.
Since K = ∅, L = {a}:

2 MINIMIZING THE NUMBER OF VIOLATED EQUATIONS 5

• a ∈ L \K, thus we get

p(a,X1) ∧ p(a,X2)→ ⊥

• b, c /∈ K ∪ L, thus we get

> → p(b,X1) > → p(b,X2) > → p(c,X1) > → p(c,X2)

Proceeding likewise for the other two equations, conjoining the good(i) literals
and introducing the > → good(i) clauses, we finally get the Horn clauses:

good(1) ∧ p(a,X1) ∧ p(a,X2)→ ⊥ good(3)→ p(a,X1)

good(1)→ p(b,X1) good(3)→ p(a,X3)

good(1)→ p(b,X2) good(3)→ p(b,X1)

good(1)→ p(c,X1) good(3)→ p(b,X3)

good(1)→ p(c,X2) good(3) ∧ p(c,X1) ∧ p(c,X3)→ ⊥
good(2) ∧ p(a,X2)→ p(a,X3) > → good(1)

good(2) ∧ p(a,X3)→ p(a,X2) > → good(2)

good(2) ∧ p(c,X3)→ ⊥ > → good(3)

The system contains k = 3 equations and the original reduction would produce
k′ = 13 clauses. Thus, ϕΣ contains k′ + k = 16 Horn clauses.

The truth assignment that sets p(a,X1), p(a,X2), p(a,X3), p(c,X3) and good(3)
to false and all other variables to true, manages to satisfy all but the last clause.
This corresponds to the B-assignment σ such that σ(X1) = σ(X2) = {a} and
σ(X3) = {a, c}, that satisfies the first two equations and violates the third one.

Intuitively, setting the Boolean variable good(i) to false “switches off” the Horn
clauses induced by the ith equation in the original reduction. Consequently,
the satisfaction of these clauses is no longer enforced, which means that the ith
equation may be violated. By maximizing satisfaction of the clauses > → good(i),
we thus minimize the number of violated set equations. More precisely, we can
show the following lemma.

Lemma 1. Let Σ be a system of set equations consisting of k equations and
generating k′ clauses in the reduction introduced in Section 1. Then we have

Σ ∈ MinVEq-SetEq(`) iff ϕΣ ∈ Max-HSAT((k′ + k)− `).

Proof. Let Σ ∈ MinVEq-SetEq(`). This means that there exists an assignment σ
of sets to variables such that at most ` of the equations are violated. Suppose that
the ith equation is not violated. Then, set good(i) to true, and for all elements
a ∈ B and every variable Z appearing in the ith equation, set p(a, Z) to true iff

2 MINIMIZING THE NUMBER OF VIOLATED EQUATIONS 6

a /∈ σ(Z). This assignment makes all clauses corresponding to the ith equation
valuate to true, plus the > → good(i) clause.

If the jth equation is violated, set good(j) to false. Then all clauses corresponding
to the jth equation valuate to true. Thus all original k′ equations valuate to
true, plus at least k − ` of the > → good(i) clauses. We conclude that ϕΣ ∈
Max-HSAT((k′ + k)− `).

For the opposite direction, let ϕΣ ∈ Max-HSAT((k′ + k) − `). This means that
there is a truth assignment v and a set of indices I ⊆ {1, . . . , k′+k}, |I| > k′+k−`
such that

∧
i∈I Ci(v) = 1. Initially, observe that since there are k equations,

k > `. Thus, if at least k′ + k − ` clauses valuate to true, this implies that h of
the > → good(i) clauses (and thus good(i)s) valuate to true, with k > h > k− `.

Suppose that good(i) is set to true. If all clauses corresponding to the ith equation
valuate to true, we can derive an assignment that does not violate the ith equation
by setting a ∈ σ(Z) iff p(a, Z) is set to false. If not all clauses corresponding to
the ith equation valuate to true, consider a new valuation, where good(i) is set to
false. This makes all clauses corresponding to the ith equation valuate to true.
Thus, at least as many clauses as before valuate to true. We can continue this
procedure until all original k′ clauses valuate to true, while at least k − ` of the
good(i)s are set to true. Thus Σ ∈ MinVEq-SetEq(`).

Since Max-HSAT is in NP, this lemma implies that MinVEq-SetEq also belongs
to NP.

Reducing Max-HSAT to MinVEq-SetEq Consider the Horn formula ϕ =
C1 ∧ . . . ∧ Ck, where Ci is a Horn clause for i = 1, . . . , k. To construct a corre-
sponding system of set equations, we use the singleton base set B = {a}. For
every Boolean variable p appearing in ϕ, we introduce a set variable Xp. Intu-
itively, a belongs to Xp iff p is set to false. Now, each Horn clause in ϕ yields the
following set equations:

• If Ci is of the form p1∧ . . .∧ pn → p, then the corresponding set equation is

Xp1 ∪ . . . ∪Xpn ∪Xp = Xp1 ∪ . . . ∪Xpn .

Obviously, this equation enforces that a cannot belong to Xp if it does not
belong to any of the variables Xpi .

• If Ci is of the form p1 ∧ . . . ∧ pn → ⊥, then the corresponding set equation
is

Xp1 ∪ . . . ∪Xpn = {a}.

This equation enforces that a must belong to one of the variables Xpi .

2 MINIMIZING THE NUMBER OF VIOLATED EQUATIONS 7

• If Ci is of the form > → p, then the corresponding set equation is

∅ = Xp.

This equation ensures that a cannot belong to Xp.

The following example exhibits the construction of Σϕ.

Example 3. Consider the Horn formula

ϕ = (p1 ∧ p2 → p3) ∧ (p1 ∧ p3 → ⊥) ∧ (p2 ∧ p3 → ⊥) ∧ (> → p1) ∧ (> → p2).

The corresponding set equations are

Xp1 ∪Xp2 ∪Xp3 = Xp1 ∪Xp2

Xp1 ∪Xp3 = {a}
Xp2 ∪Xp3 = {a}

Xp1 = ∅
Xp2 = ∅

Given the intuition underlying the variables Xp (a belongs to Xp iff p is set to
false), it is easy to prove the following lemma.

Lemma 2. Let ϕ = C1 ∧ . . . ∧ Ck be a Horn formula and Σϕ the corresponding
system of set equations. Then ϕ ∈ Max-HSAT(`) iff Σϕ ∈ MinVEq-SetEq(k− `).

Proof. Suppose that ϕ ∈ Max-HSAT(`). This means that there exists a truth
assignment v and a set of indices I ⊆ {1, . . . , k}, |I| = ` such that

∧
i∈I Ci(v) = 1.

It suffices to show that there is a mapping σ : {Xp1 , . . . , Xpn} → {∅, {a}} such
that ` equations of Σϕ are not violated. Indeed, given the assignment v mentioned
before, define σ(Xpi) = {a} iff v(pi) = 0. Then the claim is that, for every i ∈ I,
the ith equation is not violated for this mapping. Indeed, if the ith equation is
of the form:

• Xp1∪ . . .∪Xpn∪Xp = Xp1∪ . . .∪Xpn , then Ci = p1∨· · ·∨pn → p evaluated
to true under v, thus meaning that either one of the pis are evaluated to
false, or p is evaluated to true. In the first case, a belongs to both sides,
thus the equation is not violated. In the second case, σ(Xp) = ∅, and again
the equation is not violated.

• Xp1 ∪ · · · ∪ Xpn = {a}, then Ci = p1 ∨ · · · ∨ pn → ⊥ evaluated to true
under v, thus meaning that one of the pis are evaluated to false. By the
definition of σ, this means that σ(Xpi) = {a} for some i = 1, . . . , n, and
thus σ(Xp1 ∪ · · · ∪Xpn) = {a}, i.e., the equation is not violated.

3 MINIMIZING THE NUMBER OF VIOLATING ELEMENTS 8

• ∅ = Xp, then Ci = > → p evaluated to true under v, thus meaning that
p is evaluated to true. By the definition of σ, this means that σ(Xp) = ∅,
and thus the equation is not violated.

Thus, an assignment was derived w.r.t. which at least ` equations of Σϕ are not
violated. Thus Σϕ ∈ MinVEq-SetEq(k − `).

For the opposite direction, if Σϕ ∈ MinVEq-SetEq(k − `), there is a mapping σ
such that ` equations of Σϕ are not violated. Define v(p) = 0 iff σ(Xp) = {a}
and proceed in the same way to prove that ϕ ∈ Max-HSAT(`).

Since Max-HSAT is NP-hard, this lemma implies that MinVEq-SetEq is also NP-
hard. Put together, the two lemmas yield the exact complexity of the MinVEq-
SetEq problem.

Theorem 1. MinVEq-SetEq is NP-complete. NP-hardness holds even if we re-
strict the cardinality of the base set B to 1.

3 Minimizing the number of violating elements

Instead of minimizing the number of violated equations, we can also minimize
the number of violating elements of B.

Given an assignment σ, we say that a ∈ B violates an equation of the form (1)
w.r.t. σ if a ∈ (K ∪ σ(X1) ∪ . . . ∪ σ(Xm)) ∆(L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)), where
∆ denotes the symmetric difference of two sets. We say that a ∈ B violates the
system of set equations Σ w.r.t. σ if it violates some equation in Σ w.r.t. σ. Given
a base set B, a set of variables X = {Z1, . . . , ZN}, a system Σ of k set equations
and a nonnegative integer `, we now ask whether there exists a B-assignment σ
such that at most ` of the elements of B violate Σ w.r.t. σ. We call this decision
problem MinVEl-SetEq. For a given `, MinVEl-SetEq(`) consists of all systems
of set equations for which there is a B-assignment σ such that at most ` of the
elements of B violate Σ w.r.t. σ.

In contrast to the problem MinVEq-SetEq considered in the previous section,
MinVEl-SetEq can be solved in polynomial time. In order to show this, we
introduce the notion of projection. Given an element a ∈ B, the projection of an
equation of the form (1) to a is the equation

(K ∩ {a}) ∪X1 ∪ . . . ∪Xm = (L ∩ {a}) ∪ Y1 ∪ . . . ∪ Yn. (2)

The projection of a system of set equations Σ to a, Σa, is the system of the
projections of all equations in Σ to a. Note that, for Σa, we use the base set
{a}. Finally, the projection of a B-assignment σ to a is the {a}-assignment
σa : X→ P({a}) defined as σa(X) = σ(X) ∩ {a}.

3 MINIMIZING THE NUMBER OF VIOLATING ELEMENTS 9

Continuing Example 1 from above, note that a violates Σ w.r.t. σ, while b, c do
not. Furthermore, for each element of B = {a, b, c}, we can get a projection of Σ:

Projection to a Projection to b Projection to c

X1 ∪X2 = {a}
X2 = X3

X1 ∪X3 = ∅

X1 ∪X2 = ∅
{b} ∪X2 = {b} ∪X3

X1 ∪X3 = ∅

X1 ∪X2 = ∅
{c} ∪X2 = X3

X1 ∪X3 = {c}

Likewise, for the assignment σ we get the projections:

σa σb σc

σa(X1) = {a}
σa(X2) = {a}
σa(X3) = {a}

σb(X1) = ∅
σb(X2) = ∅
σb(X3) = ∅

σc(X1) = ∅
σc(X2) = ∅
σc(X3) = {c}

One can easily check that σb and σc solve Σb and Σc respectively, while this is
not the case for σa. This is not unrelated to earlier note that a violates Σ w.r.t.
σ, as shown in the next lemma.

Lemma 3. The following facts hold:

1. The element a ∈ B violates Σ w.r.t. σ iff σa does not solve Σa.

2. Given {a}-assignments σa for all a ∈ B, define the B-assignment σ as

σ(X) =
⋃
a∈B

σa(X) for all X ∈ X.

Then we have σa = σa for all a ∈ B.

3. There is a B-assignment σ such that at most ` of the elements of B violate
Σ w.r.t. σ iff at most ` of the systems of set equations Σa (a ∈ B) are not
solvable.

Proof. 1. Assume that a violates Σ w.r.t. σ. Then, a violates at least one
equation w.r.t. σ, i.e.,

a ∈ (K ∪ σ(X1) ∪ . . . ∪ σ(Xm)) ∆(L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)).

Thus,

a ∈ ((K∩{a})∪σ(X1)∩{a}∪. . .∪σ(Xm)∩{a}) ∆((L∩{a})∪σ(Y1)∩{a}∪. . .∪σ(Yn)∩{a}),

which is exactly

a ∈ ((K∩{a})∪σa(X1)∪ . . .∪σa(Xm)) ∆((L∩{a})∪σa(Y1)∪ . . .∪σa(Yn)).

4 MINIMIZING THE NUMBER OF VIOLATIONS 10

Thus, σa does not solve Σa.

For the opposite direction, assume that σa does not solve Σa. Then, there
exists an equation of the form (1), such that

a ∈ ((K∩{a})∪σa(X1)∪ . . .∪σa(Xm)) ∆((L∩{a})∪σa(Y1)∪ . . .∪σa(Yn)).

The definition of σa implies that

a ∈ (K ∪ σ(X1) ∪ . . . ∪ σ(Xm)) ∆(L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)),

and thus a violates Σ w.r.t. σ.

2. σa(X) =
(⋃

a′∈B σa′(X)
)
∩ {a} =

⋃
a′∈B (σa′(X) ∩ {a}) = σa(X) ∩ {a} =

σa(X).

3. Suppose that there is a B-assignment σ such that at most ` of the elements
of B violate Σ w.r.t. σ. This means that at least k − ` of B do not violate
Σ w.r.t. σ, and thus, by (1), the corresponding k − ` systems are solvable.
Equivalently, at most ` systems are not solvable.

For the opposite direction, suppose that at most ` of the systems Σa are not
solvable. Solvability of systems Σa is independant for different elements a ∈
B. For every a ∈ B, if Σa is solvable, consider the {a}-assignment σa that
solves it, or any {a}-assignment otherwise. Then σ(X) =

⋃
a∈B σa(X) for allX ∈

X is a B-assignment such that at most ` of the elements of B violate Σ
w.r.t. σ.

Thus, to check whether Σ ∈ MinVEl-SetEq(`), it is sufficient to check which of
the systems of set equations Σa for a ∈ B are solvable. This can obviously be
done in polynomial time.

Theorem 2. MinVEl-SetEq is in P.

4 Minimizing the number of violations

A disadvantage of the measure used in the previous section is that it does not
distinguish between elements that violate only one equation and those violating
many equations. To overcome this problem, we count for each violating element
how many equations it actually violates. We say that a ∈ B violates the system of
set equations Σ p times w.r.t. σ if it violates p equations in Σ w.r.t. σ. Further,
we say that σ violates Σ q times if q =

∑
a∈B pa where, for each a ∈ B, the

element a violates Σ pa times w.r.t. σ.

4 MINIMIZING THE NUMBER OF VIOLATIONS 11

Given a base set B, a set of variables X = {Z1, . . . , ZN}, a system Σ of k equa-
tions, and a positive integer `, we now ask whether there is an assignment σ that
violates Σ at most ` times. We call this decision problem MinV-SetEq. For a
given `, MinV-SetEq(`) consists of all systems of set equations for which there is
a B-assignment σ such that σ violates Σ at most ` times.

It is easy to adapt the approach used in Section 2 to solve MinVEq-SetEq to this
new problem. Basically, we now introduce Boolean variables good(i, a) (instead
of simply good(i)) to characterize whether the element a ∈ B violates the ith
equation. We conjoin good(i, a) to the left-hand side of each of the Horn clauses
derived from the ith equation for a. Furthermore, we add the Horn clauses
> → good(i, a).

Following the earlier notation, we obtain k′ + k|B| Horn clauses in this modified
reduction, and again use ϕΣ to denote the obtained Horn formula.

Continuing Example 1, completely similarly to the MinVEq-SetEq case, from Σ
we can derive the following Horn clauses:

good(1) ∧ p(a,X1) ∧ p(a,X2)→ ⊥ > → good(1, a)

good(1)→ p(b,X1) > → good(1, b)

good(1)→ p(b,X2) > → good(1, c)

good(1)→ p(c,X1) > → good(2, a)

good(1)→ p(c,X2) > → good(2, b)

good(2) ∧ p(a,X2)→ p(a,X3) > → good(2, c)

good(2) ∧ p(a,X3)→ p(a,X2) > → good(3, a)

good(2) ∧ p(c,X3)→ ⊥ > → good(3, b)

good(3)→ p(a,X1) > → good(3, c)

good(3)→ p(a,X3)

good(3)→ p(b,X1)

good(3)→ p(b,X3)

good(3) ∧ p(c,X1) ∧ p(c,X3)→ ⊥

The following lemma implies that MinV-SetEq is in NP.

Lemma 4. Let Σ be a system of set equations over the base set B, consisting
of k equations and generating k′ clauses in the reduction introduced in Section 1.
Denote with ϕΣ = C1 ∧ · · · ∧ Ck′+k|B| the Horn formula derived by the modified
reduction. Then we have

Σ ∈ MinV-SetEq(`) iff ϕΣ ∈ Max-HSAT((k′ + k|B|)− `).

Proof. Let Σ ∈ MinV-SetEq(`). This means that there exists an assignment σ
of sets to variables such that σ violates Σ at most ` times. Suppose that a does

5 CONCLUSION 12

not violate the ith equation w.r.t σ. Then, set good(i, a) to true, and for every
variable Z appearing in the ith equation, set p(a, Z) to true iff a /∈ σ(Z). This
assignment makes all clauses corresponding to the ith equation and the element
a valuate to true, plus the > → good(i, a) clause.

If a violates the jth equation w.r.t. σ, set good(j, a) to false. Then all clauses
corresponding to the jth equation valuate to true. Thus all original k′ equations
valuate to true, plus at least k|B| − ` of the > → good(i, a) clauses. We conclude
that ϕΣ ∈ Max-HSAT((k′ + k|B|)− `).

For the opposite direction, let ϕΣ ∈ Max-HSAT((k′ +k|B|)−`). This means that
there is a truth assignment v and a set of indices I ⊆ {1, . . . , k′ + k|B|}, |I| >
k′ + k|B| − ` such that

∧
i∈I Ci = 1. Observe that, since every element of B can

violate Σ at most k times, k|B| > `. Thus, if at least k′ +k|B|− ` clauses valuate
to true, this implies that h of the > → good(i, a) clauses (and thus good(i, a)s)
valuate to true, with k|B| > h > k|B| − `.

Suppose that good(i, a) is set to true. If all clauses corresponding to the ith
equation and a ∈ B valuate to true, we can derive an assignment that does not
violate the ith equation by setting a ∈ σ(Z) iff p(a, Z) is set to false. If not all
clauses corresponding to the ith equation and a valuate to true, consider a new
valuation, where good(i, a) is set to false. This makes all clauses corresponding to
the ith equation and a valuate to true. Thus, at least as many clauses as before
valuate to true. We can continue this procedure until all original k′ clauses
valuate to true, while at least k|B| − ` of the good(i, a)s are set to true. Thus
Σ ∈ MinV-SetEq(`).

For base sets of cardinality 1, MinV-SetEq coincides with MinVEq-SetEq, which
we have shown to be NP-hard even in this restricted setting. This shows that the
complexity upper bound of NP is optimal.

Theorem 3. MinV-SetEq is NP-complete.

5 Conclusion

Our investigation of how to approximately solve set equations was motivated by
unification modulo the equational theory ACUI. We have shown that, depending
on how we measure violations, the complexity of the problem may stay in P
or increase to NP. As further work, we have started to look at approximate
unification modulo the equational theory ACUIh. Since ACUIh-unification can be
reduced to solving certain language equations [?], we thus need to investigate
approximately solving language equations. In this setting, the elements of the
sets are words, i.e., structured objects, and measures for violations should take
this structure into account.

REFERENCES 13

References

