
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Approximate Unification in the
Description Logic FL0

Franz Baader Pavlos Marantidis Alexander Okhotin

LTCS-Report 16-04

Submitted to Jelia 16

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Approximate Unification in the
Description Logic FL0

Franz Baader1?, Pavlos Marantidis1??, and Alexander Okhotin2
firstname.lastname@tu-dresden.de, alexander.okhotin@utu.fi

1 Theoretical Computer Science, TU Dresden, Germany
2 Chebyshev Laboratory, St. Petersburg State University, Russia

Abstract. Unification in description logics (DLs) has been introduced as a novel infer-
ence service that can be used to detect redundancies in ontologies, by finding different
concepts that may potentially stand for the same intuitive notion. It was first investigated
in detail for the DL FL0, where unification can be reduced to solving certain language
equations. In order to increase the recall of this method for finding redundancies, we
introduce and investigate the notion of approximate unification, which basically finds
pairs of concepts that “almost” unify. The meaning of “almost” is formalized using dis-
tance measures between concepts. We show that approximate unification in FL0 can be
reduced to approximately solving language equations, and devise algorithms for solving
the latter problem for two particular distance measures.

1 Introduction

Description logics [1] are a well-investigated family of logic-based knowledge representation
formalisms. They can be used to represent the relevant concepts of an application domain
using concept descriptions, which are built from concept names and role names using certain
concept constructors. In this paper, we concentrate on the DL FL0, which offers the constructors
conjunction (u), value restriction (∀r.C), and the top concept (>).

Unification in DLs has been introduced as a novel inference service that can be used to detect
redundancies in ontologies, and was first investigated in detail for FL0 [4]. For example, assume
that one developer of a medical ontology defines the concept of a patient with severe head injury
as

Patient u ∀finding.(Head_injury u ∀severity.Severe), (1)

whereas another one represents it as

Patient u ∀finding.(Severe_finding u Injury u ∀finding_site.Head). (2)

Formally, these two concept descriptions are not equivalent, but they are nevertheless meant
to represent the same concept. They can obviously be made equivalent by treating the con-
cept names Head_injury and Severe_finding as variables, and substituting the first one by
Injury u ∀finding_site.Head and the second one by ∀severity.Severe. In this case, we say that
the descriptions are unifiable, and call the substitution that makes them equivalent a unifier.
Intuitively, such a unifier proposes definitions for the concept names that are used as vari-
ables: in our example, we know that, if we define Head_injury as Injuryu∀finding_site.Head and
Severe_finding as ∀severity.Severe, then the two concept descriptions (1) and (2) are equivalent
w.r.t. these definitions.
? Supported by the Cluster of Excellence ‘Center for Advancing Electronics Dresden’.

?? Supported by DFG Graduiertenkolleg 1763 (QuantLA).

2

Of course, this example was constructed such that a unifier providing sensible definitions for
the concept names used as variables actually exists. It is based on the assumption that both
knowledge engineers had the same definition of the concept patient with severe head injury in
mind, but have modelled certain subconcepts on different levels of granularity. Whereas the
first knowledge engineer used Head_injury as a primitive (i.e., not further defined) concept, the
other one provided a more detailed definition for head injury ; and the other way round for
severe finding. But what if there are more differences between the two concepts, maybe due to
small modelling errors? For example, assume that a third knowledge engineer has left out the
concept name Severe_finding from (2), based on the assumption that all injuries with finding
site head are severe:

Patient u ∀finding.(Injury u ∀finding_site.Head). (3)

The concept descriptions (1) and (3) cannot be unified if only Head_injury is used as a variable.
Nevertheless, the substitution that replaces Head_injury by Injury u ∀finding_site.Head makes
these two descriptions quite similar, though not equivalent. We call such a substitution an
approximate unifier.

The purpose of this paper is to introduce and investigate the notion of approximate unification
for the DL FL0. Basically, to formalize approximate unification, we first need to fix the notion
of a distance between FL0 concept descriptions. An approximate unifier is then supposed
to make this distance as small as possible. Of course, there are different ways of defining the
distance between concept descriptions, which then also lead to different instances of approximate
unification. In this paper, we consider two such distance functions, which are based on the idea
that differences at larger role depth (i.e., further down in the nesting of value restrictions) are
less important than ones at smaller role depth. The first distance considers only the smallest
role depth ` where the difference occurs (and then uses 2−` as distance), whereas the second
one “counts” all differences, but the ones at larger role depth with a smaller weight. This idea is
in line with work on nonstandard inferences in DLs that approximate least common subsumers
and most specific concepts by fixing a bound on the role depth [8].

Exact unification in FL0 was reduced in [4] to solving certain language equations, which in
turn was reduced to testing certain tree automata for emptiness. We show that this approach
can be extended to approximate unification. In fact, by linking distance functions on concept
descriptions with distance functions on languages, we can reduce approximate unification in FL0

to approximately solving language equations. In order to reduce this problem to a problem for
tree automata, we do not employ the original construction of [4], but the more sophisticated
one of [5]. Using this approach, both the decision variant (is there a substitution that makes
the distance smaller than a threshold) and the computation variant (compute the infimum of
the achievable distances) of approximate unification can be solved in exponential time, and are
thus of the same complexity as exact unification in FL0.

2 Unification in FL0

We will first recall syntax and semantics of FL0 and describe the normal form of FL0 concept
descriptions that is based on representing value restrictions as finite languages over the alphabet
of role names. Then, we introduce unification in FL0 and recall how it can be reduced to solving
language equations.

3

Syntax and semantics

The concept descriptions C of the DL FL0 are built recursively over a finite set of concept
names Nc and a finite set of role names Nr using the following syntax rules:

C ::= > | A | C u C | ∀r.C, (4)

where A ∈ Nc and r ∈ Nr. In the following, we assume that Nc = {A1, . . . , Ak} and Nr =
{r1, . . . , rn}.

The semantics of FL0 is defined in the usual way, using the notion of an interpretation I =
(∆I , ·I), which consists of a nonempty domain∆I and an interpretation function ·I that assigns
binary relations on ∆I to role names and subsets of ∆I to concept names. The interpretation
function ·I is extended to FL0 concept descriptions as follows: >I := ∆I , (CuD)I := CI∩DI ,
and (∀r.C)I := {d ∈ ∆I | for all e ∈ ∆I : if (d, e) ∈ rI , then e ∈ CI}.

Equivalence and normal form

Two FL0 concept descriptions C,D are equivalent (written C ≡ D) if CI = DI holds for all
interpretations I.

As an easy consequence of the semantics of FL0, we obtain that value restrictions (∀s.·) dis-
tribute over conjunction (u), i.e., ∀s.(CuD) ≡ ∀s.Cu∀s.D holds for all FL0 concept descriptions
C,D. Using this equivalence from left to right, we can rewrite every FL0 concept description into
a finite conjunction of descriptions ∀s1. · · · ∀sm.A, where m ≥ 0, s1, . . . , sm ∈ Nr, and A ∈ Nc.
We further abbreviate ∀s1. · · · ∀sm.A as ∀(s1 . . . sm).A, where s1 . . . sm is viewed to be a word
over the alphabet of all role names Nr, i.e., an element of N∗r . For m = 0, this is the empty
word ε. Finally, grouping together value restrictions that end with the same concept name,
we abbreviate conjunctions ∀w1.A u . . . u ∀w`.A as ∀{w1, . . . , w`}.A, where {w1, . . . , w`} ⊆ N∗r
is viewed to be a (finite) language over Nr. Additionally we use the convention that ∀∅.A is
equivalent to >. Then, any FL0 concept description C (over Nc = {A1, . . . , Ak} and Nr =
{r1, . . . , rn}) can be rewritten into the normal form ∀L1.A1 u . . . u ∀Lk.Ak, where L1, . . . Lk
are finite languages over the alphabet Nr. For example, if k = 3, then the concept description
A1 u ∀r1.(A1 u ∀r1.A2 u ∀r2.A1) has the normal form ∀{ε, r1, r1r2}.A1 u ∀{r1r1}.A2 u ∀∅.A3.
Using this normal form, equivalence of FL0 concept descriptions can be characterized as follows
(see [4] for a proof).

Lemma 1. Let C = ∀L1.A1 u . . . u ∀Lk.Ak and D = ∀M1.A1 u . . . u ∀Mk.Ak be FL0 concept
descriptions in normal form. Then

C ≡ D iff L1 =M1, . . . , Lk =Mk.

Consider the head injury example from the introduction, where for brevity we replace the
concept and role names by single letters: (1) thus becomes A u ∀r.(X u ∀s.B) and (2) becomes
A u ∀r.(Y uD u ∀t.E). The normal forms of these two concept descriptions are

∀{ε}.A u ∀{rs}.B u ∀∅.D u ∀∅.E u ∀{r}.X u ∀∅.Y,
∀{ε}.A u ∀∅.B u ∀{r}.D u ∀{rt}.E u ∀∅.X u ∀{r}.Y.

(5)

Unification

In order to define unification in FL0, we need to introduce an additional set of concept names
Nv, whose elements we call concept variables. Intuitively, Nv contains the concept names that

4

have possibly been given another name or been specified in more detail in another concept
description describing the same notion. From a syntactic point of view, concept variables are
treated like concept names when building concepts. We call expressions built using the syntax
rules (4), but with A ∈ Nc∪Nv, concept patterns, to distinguish them from concept descriptions,
where only A ∈ Nc is allowed. The difference between elements of Nc and Nv is that concept
variables can be replaced by substitutions.

A substitution σ is a function that maps every variable X ∈ Nv to a concept description σ(X).
This function can be extended to concept patterns, by setting σ(A) := A for A ∈ Nc ∪ {>},
σ(C uD) := σ(C) u σ(D), and σ(∀r.C) := ∀r.σ(C). We denote the set of all substitutions as
Sub.

Definition 1 (Unification). The substitution σ is a unifier of the two FL0 concept patterns
C,D if σ(C) ≡ σ(D). If C,D have a unifier, then we call them unifiable. The FL0 unification
problem asks whether two given FL0 concept patterns are unifiable or not.

In [4] it is shown that the FL0 unification problem is ExpTime-complete. The ExpTime upper
bound is proved by a reduction to language equations, which in turn are solved using tree
automata. Here we sketch the reduction to language equations. The reduction to tree automata
will be explained in Section 4. Without loss of generality, we can assume that the input patterns
are in normal form (where variables are treated like concept names), i.e.,

C = ∀S0,1.A1 u . . . u ∀S0,k.Ak u ∀S1.X1 u . . . u ∀Sm.Xm,

D = ∀T0,1.A1 u . . . u ∀T0,k.Ak u ∀T1.X1 u . . . u ∀Tm.Xm,
(6)

where S0,i, T0,i, Sj , Tj are finite languages over Nr. The unification problem for C,D can be
reduced to (independently) solving the language equations

S0,i ∪ S1 ·X1,i ∪ . . . ∪ Sm ·Xm,i = T0,i ∪ T1 ·X1,i ∪ . . . ∪ Tm ·Xm,i (7)

for i = 1, . . . , k, where “·” stands for concatenation of languages. A solution σi of such an
equation is an assignment of languages (over Nr) to the variables Xj,i such that S0,i ∪ S1 ·
σi(X1,i)∪ . . .∪Sm ·σi(Xm,i) = T0,i∪T1 ·σi(X1,i)∪ . . .∪Tm ·σi(Xm,i). This assignment is called
finite if all the languages σi(Xj,i) are finite. We denote the set of all assignments as Ass and
the set of all finite assignments as finAss.

As shown in [4], C,D are unifiable iff the language equations of the form (7) have finite solutions
for all i = 1, . . . , k. In fact, given finite solutions σ1, . . . , σk of these equations, a unifier of C,D
can be obtained by setting

σ(Xi) := ∀σi(Xi,1).A1 u . . . u ∀σi(Xi,k).Ak, (8)

and every unifier of C,D can be obtained in this way. Of course, this construction of a substi-
tution from a k-tuple of finite assignments can be applied to arbitrary finite assignments (and
not just to finite solutions of the equations (7)), and it yields a bijection ρ between k-tuples of
finite assignments and substitutions.

Coming back to our example (5), where we now view X,Y as variables, the language equations
for the concept names A and B are

{ε} ∪ {r} ·XA ∪ ∅ · YA = {ε} ∪ ∅ ·XA ∪ {r} · YA,
{rs} ∪ {r} ·XB ∪ ∅ · YB = ∅ ∪ ∅ ·XB ∪ {r} · YB .

Among others, the first equation has XA = YA = ∅ as a solution, and the second XB = ∅
and YB = {s}. The equations for D,E are built in a similar way, and XD = {ε}, YD = ∅
and XE = {t}, YE = ∅ are solutions of these equations. Using (8), but leaving out the value
restrictions for ∅, these solutions yield the unifier σ with σ(X) = ∀{ε}.D u ∀{t}.E ≡ D u ∀t.E
and σ(Y) = ∀{s}.B ≡ ∀s.B.

5

3 Approximate unifiers and solutions

As motivated in the introduction, it makes sense to look for substitutions σ that are actually
not unifiers, but come close to being unifiers, in the sense that the distance between σ(C) and
σ(D) is small. We call such substitutions approximate unifiers. In the following, we will first
recall some definitions regarding distances from metric topology [14,11]. Subsequently, we will
first introduce approximate unification based on distances between concept descriptions, and
then approximately solving language equations based on distances between languages. Next,
we will show how distances between languages can be used to define distances between concept
descriptions, and that approximate unification for distances obtained this way can be reduced
to approximately solving language equations.

Metric topology

Given a set X, a metric (or distance) on X is a mapping d : X ×X → [0,∞) that satisfies the
properties:

(M1) d(a, b) = 0 ⇐⇒ a = b
(M2) d(a, b) = d(b, a)
(M3) d(a, c) 6 d(a, b) + d(b, c)

In this case, (X, d) is called a metric space. A useful metric on Rk (that will be used later) is
the Chebyshev distance, d∞, which for x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk is defined as

d∞(x,y) = max
i=1,...,k

|xi − yi|.

Given a metric space (X, d), a sequence (an) of elements of X is said to converge to a ∈ X

(written an
d−→ a) if for every ε > 0 there is an n0 ∈ N s.t. d(an, a) < ε for every n > n0.

For a sequence ((an1 , . . . , a
n
k)) of elements of Rk, we have that (an1 , . . . , a

n
k)

d∞−→ (a1, . . . , ak) iff
ani

d−→ ai for every i = 1, . . . , k. A sequence (an) is called a Cauchy sequence, if for every ε > 0,
there exists an n0 ∈ N, s.t. for every m,n > n0 it holds that d(an, am) < ε. A metric space
(X, d) is called complete, if every Cauchy sequence converges to a point in X. It is well known
that the metric space (Rk, d∞) is complete [11].

Definition 2. Given a metric space (X, d) a function f : X → X is called a contraction, if
there is a λ ∈ (0, 1) such that d(f(x), f(y)) 6 λd(x, y) for any x, y ∈ X.

Theorem 1 (Banach’s Fixed Point Theorem [7,11]). Let (X, d) be a complete metric
space and a function f : X → X be a contraction. Then there exists a unique p ∈ X such that
f(p) = p.

Furthermore, let (X, d), (Y, d′) be metric spaces. A function f : X → Y is called continuous, if
for every sequence (an) of X, it holds that

an
d−→ a =⇒ f(an)

d′−→ f(a).

Finally, we provide the formal definition of the infimum of a set of real numbers, which will be
needed in the proofs.

Definition 3. Given a set of real numbers S, we say that p is the infimum of S, and denote
this by p = inf S if the following two conditions hold:

6

(a) p 6 s for all s ∈ S, i.e. p is a lower bound of S,
(b) for all ε > 0, there is an s ∈ S such that s < p+ ε.

Note that this means that if p = inf S, there exists a sequence (sn) of elements of S, s.t.
sn

d∞−→ p. Furthermore, if f : Rn → Rm

Approximate unification

In order to define how close σ(C) and σ(D) are, we need to use a function that measures the
distance between these two concept descriptions. We say that a function that takes as input a
pair of FL0 concept descriptions and yields as output an element of [0,∞) is a concept distance
for FL0 if it satisfies the following three properties:

– equivalence closedness: m(C,D) = 0 ⇐⇒ C ≡ D,
– symmetry: m(C,D) = m(D,C),
– equivalence invariance: C ≡ D =⇒ m(C,E) = m(D,E).

Note that equivalence closedness corresponds to (M1) and symmetry to (M2) in the definition
of a metric. Equivalence invariance ensures that m can be viewed as operating on equivalence
classes of concept descriptions.

Definition 4 (Approximate unification). Given a concept distance m, FL0 concept pat-
terns C,D, and a substitution σ, the degree of violation of σ is defined as vm(σ,C,D) :=
m(σ(C), σ(D)). For p ∈ Q, we say that σ is a p-approximate unifier of C,D if 2−p > vm(σ,C,D).

Equivalence closedness of m yields that vm(σ,C,D) = 0 iff σ is a unifier of C,D.

The decision problem for approximate unification asks, for a given threshold p ∈ Q, whether
C,D have a p-approximate unifier or not. In addition, we consider the following computation
problem: compute infσ∈Sub vm(σ,C,D). The following lemma, which is immediate from the
definitions, shows that a solution of the computation problem also yields a solution of the
decision problem.

Lemma 2. Let m be a concept distance and C,D FL0 concept patterns. Then C,D have a
p-approximate unifier iff 2−p > infσ∈Sub vm(σ,C,D).

Proof. By definition, if C,D have a p-approximate unifier, then there exists a substitution
σ ∈ Sub, s.t. p > vm(σ,C,D), and thus p > infσ∈Sub vm(σ,C,D).

Suppose now that p > infσ∈Sub vm(σ,C,D). By the definition of infimum, for every ε > 0,
there exists a σε ∈ Sub s.t. vm(σε, C,D) 6 infσ∈Sub vm(σ,C,D) + ε. Thus, for ε < p −
infσ∈Sub vm(σ,C,D) we have the required result. ut

The reduction of the decision problem to the computation problem obtained from this lemma
is actually polynomial. In fact, though the size of a representation of the number 2−p may be
exponential in the size of a representation of p, the number 2−p need not be computed. Instead,
we can compare p with log2 infσ∈Sub vm(σ,C,D), where for the comparison we only need to
compute as many digits of the logarithm as p has.

7

Approximately solving language equations

Following [5], we consider a more general form of language equations than the one given in (7).
Here, all Boolean operators (and not just union) are available. Language expressions are built
recursively over a finite alphabet Σ using union, intersection, complement, and concatenation
of regular languages from the left, as formalized by the following syntax rules:

φ ::= L | X | φ ∪ φ | φ ∩ φ | ∼φ | L · φ, (9)

where L can be instantiated with any regular language over Σ and X with any variable. We
assume that all the regular languages occurring in an expression are given by finite automata.
Obviously, the left- and the right-hand sides of (7) are such language expressions. As before, an
assignment σ ∈ Ass maps variables to languages over Σ. It is extended to expressions in the
obvious way (where ∼ is interpreted as set complement). The assignment σ solves the language
equation φ = ψ if σ(φ) = σ(ψ). For finite solvability we require the languages σ(X) to be finite,
i.e., σ should be an element of finAss.

In order to define approximate solutions, we need the notion of distances between languages. A
function d : 2Σ

∗ × 2Σ
∗ → [0,∞) satisfying (M1), (M2), and (M3) is called a language distance.

Definition 5 (Approximate solutions). Given a language distance d, language expressions
φ, ψ, and an assignment σ, the degree of violation of σ is defined as vd(σ, φ, ψ) := d(σ(φ), σ(ψ)).
For p ∈ Q, we say that σ is a p-approximate solution of φ ≈ ψ if 2−p > vd(σ, φ, ψ).

The decision and the computation problem for approximately solving language equations are
defined analogously to the case of unification. In addition, the analog of Lemma 2 also holds in
this case, and thus the decision problem can be reduced to the computation problem.

Recall that unification in FL0 is reduced to finite solvability of language equations. The above
definition of approximate solutions and of the decision and the computation problem can also
be restricted to finite assignments, in which case we talk about finite approximate solvability.
However, we will show that finite approximate solvability can actually be reduced to approxi-
mate solvability. For this to be the case, we need the language distance to satisfy an additional
property (M4). Given a natural number `, we call two languages K,L ⊆ Σ∗ equal up to length
` (and write K ≡` L) if K and L coincide on all words of length at most `.

(M4) Let L be a language and (Ln) a sequence of languages over Σ.
Then, Ln ≡n L for all n ≥ 0 implies Ln

d−→ L.

If (M4) is satisfied for d, then the computation problem for finite assignments has the same
solution as for arbitrary assignments.

Lemma 3. Let d be a language distance satisfying (M4) and φ, ψ language expressions. Then,

inf
σ∈finAss

vd(σ, φ, ψ) = inf
σ∈Ass

vd(σ, φ, ψ).

Proof. Obviously,
inf

σ∈finAss
vd(σ, φ, ψ) > inf

σ∈Ass
vd(σ, φ, ψ).

Set p = infσ∈Ass vd(σ, φ, ψ). This means that there exists a sequence of assignments σ1, σ2, . . . ,
s.t. vd(σn, φ, ψ)

d∞−→ p. By (M4), for each σi, there exists a sequence of finite assignments

8

σ
(1)
i , σ

(2)
i , . . . , s.t. vd(σ

(n)
i , φ, ψ)

d∞−→ vd(σi, φ, ψ) We will construct a sequence of finite assign-
ments τ1, τ2, . . . , s.t. vd(σ

(n)
i , φ, ψ)

d∞−→ p. This implies that infσ∈finAss vd(σ, φ, ψ) 6 p, and the
proof is complete.

By definition of convergence, we have that for every n ∈ N:

– there exists σin s.t. d∞(vd(σin , φ, ψ), p) <
1
2n ,

– there exists σjnin s.t. d∞(vd(σ
jn
in
, φ, ψ), vd(σin , φ, ψ)) <

1
2n .

Thus, by the triangle inequality, we get that d∞(vd(σ
jn
in
, φ, ψ), p) < 1

n . Set τn = σjnin and we
have the required sequence. ut

Before showing that language distances can be used to construct concept distances, we give two
concrete examples of language distances satisfying (M4).

Two language distances satisfying (M4)

The following two mappings from 2Σ
∗ × 2Σ

∗
to [0,∞) are defined by looking at the words in

the symmetric difference K4L := (K \ L) ∪ (L \K) of the languages K and L:

d1(K,L) := 2−` where ` = min {|w| | w ∈ K4L}, 1

d2(K,L) := µ(K4L) where µ(M) = 1
2

∑
w∈M (2|Σ|)−|w|.

The intuition underlying both functions is that differences between the two languages are less
important if they occur for longer words. The first function considers only the length ` of the
shortest word for which such a difference occurs and yields 2−` as distance, which becomes
smaller if ` gets larger. The second function also takes into account how many such differences
there are, but differences for longer words count less than differences for shorter ones. More
precisely, a difference for the word u counts as much as the sum of all differences for words uv
properly extending u.

Now we show that these functions satisfy the required properties.

Lemma 4. The functions d1, d2 are language distances satisfying (M4).

Proof. In order to show that they are language distances, we have to show that they satisfy
(M1), (M2) and (M3). (M1) and (M2) are obvious. Regarding the triangle inequality (M3)
d(K,L) 6 d(K,M) + d(M,L):
Initially note that for languages K,L,M it holds that K4L ⊆ K4M ∪ M4L. Indeed, if
x ∈ K \ L then either x 6∈M , implying x ∈ K4M , or x ∈M , implying x ∈M4L.

For d1, if d1(K,L) = 0 then (M3) holds trivially. Suppose that d1(K,L) = 2−n, where
n = |w| for some w ∈ K4L. Without loss of generality, suppose that w ∈ K4M . Thus
n > min { |w| : w ∈ K4M } and consequently d1(K,M) > 2−n. Consequently, d1(K,L) 6
d1(K,M) + d1(M,L).

For d2, since K4L ⊆ K4M ∪M4L, summing over these sets, we get that

∑
w∈K4L

(2|Σ|)−|w| 6
∑

w∈K4M∪M4L

(2|Σ|)−|w| 6
∑

w∈K4M

(2|Σ|)−|w| +
∑

w∈M4L

(2|Σ|)−|w|

1 As usual, we assume that min ∅ = ∞ and 2−∞ = 0.

9

and thus d2(K,L) 6 d2(K,M) + d2(M,L).

For requirement (M4):

The assumption that Ln ≡ L mod Σ6n implies that d1(Ln, L) 6 2−(n+1) and d2(Ln, L) =
1
2

∑
w∈Ln4L(2|Σ|)

−|w| 6 1
2

∑
w∈Σ∗\Σ6n(2|Σ|)−|w| = 1

2n+1 . Thus Ln
d1−→ L and also Ln

d2−→ L.
ut

From language distances to concept distances

Based on the normal form of FL0 concept descriptions introduced in Section 3, we can use
a language distance d to define a concept distance. Basically, given FL0 concept descriptions
C = ∀L1.A1 u . . . u ∀Lk.Ak and D = ∀M1.A1 u . . . u ∀Mk.Ak in normal form, we can use
the distances ei = d(Li,Mi) to define a distance between C and D. For this, we need an
appropriate function that combines the k values e1, . . . , ek into a single value. We say that the
function f : [0,∞)k → [0,∞) is a combining function if it is

– commutative: f(a1, . . . , ak) = f(aπ(1), . . . , aπ(k)) for all permutations π of the indices 1, . . . , k,
– monotone: a1 6 b1, . . . , ak 6 bk =⇒ f(a1, . . . , ak) 6 f(b1, . . . , bk),
– zero closed: f(a1, . . . , ak) = 0 ⇐⇒ a1 = · · · = ak = 0,
– and continuous.

The following are simple examples of combining functions:

– max(a1, . . . , ak),
– sum(a1, . . . , ak) = a1 + · · ·+ ak,
– avg(a1, . . . , ak) =

∑k
i=1 ai/k.

Given a language distance d and a combining function f , the concept distance md,f induced
by d, f is defined as follows. If C,D are FL0 concept descriptions with normal forms C ≡
∀L1.A1 u . . . u ∀Lk.Ak and D ≡ ∀M1.A1 u . . . u ∀Mk.Ak, then we set

md,f (C,D) := f
(
d(L1,M1), . . . , d(Lk,Mk)

)
.

Using one of the language distances d1, d2 introduced above in this setting means that differences
between the concepts C,D at larger role depth count less than differences at smaller role depth.

Lemma 5. Let d be a language distance and f be a combining function. Then the concept
distance induced by f, d is indeed a concept distance, i.e., it is equivalence closed, symmetric,
and equivalence invariant.

Proof. Let C = ∀L1.A1 u · · · u ∀Lk.Ak, D = ∀M1.A1 u · · · u ∀Mk.Ak and E = ∀N1.A1 u · · · u
∀Nk.Ak be concept descriptions. All properties can be proved with simple computations.
Equivalence closedness:

md,f (C,D) = 0 ⇐⇒ f(d(L1,M1), . . . , d(Lk,Mk)) = 0

⇐⇒ d(L1,M1) = · · · = d(Lk,Mk)) = 0

⇐⇒ L1 =M1, . . . , Lk =Mk ⇐⇒ C ≡ D

Symmetry:

md,f (C,D) = f(d(L1,M1), . . . , d(Lk,Mk))

= f(d(M1, L1), . . . , d(Mk, Lk)) = md,f (D,C)

10

Equivalence invariance:
C ≡ D Lemma 1

=⇒ Li =Mi for i = 1, . . . , k

md,f (C,E) = f(d(L1,W1), . . . , d(Lk,Wk))

= f(d(M1,W1), . . . , d(Mk,Wk)) = md,f (D,E)

ut

Reducing approximate unification to approximately solving language equations

In the following, we assume that d is a language distance, f a combining function, and md,f

the concept distance induced by f, d. Let C,D be FL0 concept patterns in normal form, as
shown in (6), and (7) the corresponding language equations, for i = 1, . . . , k. We denote the
left- and right-hand sides of the equations (7) with φi and ψi, respectively. The following lemma
shows that the degree of violation transfers from finite assignments σ1, . . . , σk to the induced
substitution ρ(σ1, . . . , σk) as defined in (8).

Lemma 6. Let σ1, . . . , σk be finite assignments. Then f(vd(σ1, φ1, ψ1), . . . , vd(σk, φk, ψk)) =
vmd,f

(ρ(σ1, . . . , σk), C,D).

Proof. Consider the concept patterns

C = ∀S0,1.A1 u . . . u ∀S0,k.Ak u ∀S1.X1 u . . . u ∀Sn.Xn

D = ∀T0,1.A1 u . . . u ∀T0,k.Ak u ∀T1.X1 u . . . u ∀Tn.Xn

Set Li,j := σj(Xi) for i = 1, . . . , n, j = 1, . . . , k. Recall that ρ is the bijection between tuples
of assignments and substitutions described in 8, and in the following abbreviate ρ(σ1, . . . , σk)
by σ.

Then we have that

σ(C) =

kl

i=1

∀(S0,i ∪ S1L1,i ∪ · · · ∪ SnLn,i)Ai

σ(D) =

kl

i=1

∀(T0,i ∪ T1L1,i ∪ · · · ∪ TnLn,i)Ai

and

σi(ϕi) =S0,i ∪ S1L1,i ∪ · · · ∪ SnLn,i
σi(ψi) =T0,i ∪ T1L1,i ∪ · · · ∪ TnLn,i.

Thus

vmd,f
(σ,C,D) =md,f (σ(C), σ(D))

=f(d(S0,1 ∪ S1L1,1 ∪ · · · ∪ SnLn,1, T0,1 ∪ T1L1,1 ∪ · · · ∪ TnLn,1),
. . . , d(S0,k ∪ S1L1,k ∪ · · · ∪ SnLn,k, T0,k ∪ T1L1,k ∪ · · · ∪ TnLn,k))

=f(d(σ1(ϕ1), σ1(ψ1)), . . . , d(σk(ϕk), σk(ψk)))

=f(vd(σ1, ϕ1, ψ1), . . . , vd(σk, ϕk, ψk))

ut

11

Since the combining function is continuous, the equality stated in this lemma is preserved under
building the infimum. In addition, Lemma 3 shows that the restriction to finite assignments
can be dispensed with if d satisfies (M4).

Lemma 7. Assume that d satisfies (M4). Then,

inf
σ∈Sub

vmd,f
(σ,C,D) =

= f

(
inf

σ1∈finAss
vd(σ1, φ1, ψ1), . . . , inf

σk∈finAss
vd(σk, φk, ψk)

)
= f

(
inf

σ1∈Ass
vd(σ1, φ1, ψ1), . . . , inf

σk∈Ass
vd(σk, φk, ψk)

)
.

In case f is computable (in polynomial time), this lemma yields a (polynomial time) reduction
of the computation problem for approximate FL0 unification to the computation problem for
approximately solving language equations. In addition, we know that the decision problem can
be reduced to the computation problem. Thus, it is sufficient to devise a procedure for the
computation problem for approximately solving language equations.

In our example, the normal forms of the abbreviated concept descriptions (1) and (3) are

∀{ε}.A u ∀{rs}.B u ∀∅.D u ∀∅.E u ∀{r}.X,
∀{ε}.A u ∀∅.B u ∀{r}.D u ∀{rt}.E u ∀∅.X.

It is easy to see that the language equations for the concept names A,D,E are solvable, and thus
these solutions contribute distance 0 to the overall concept distance. The language equation for
the concept name B is {rs} ∪ {r} ·XB = ∅ ∪ ∅ ·XB , and the assignment XB = ∅ leads to the
smallest possible symmetric difference {rs}, which w.r.t. d1 yields the value 2−2 = 1/4. It is
easy to see that this is actually the infimum for this equation. If we use the combining function
avg, then this gives us the infimum 1/16 for our approximate unification problem.

4 Approximately solving language equations

In the following, we show how to solve the computation problem for the language distances d1
and d2 introduced above. Our solution uses the automata-based approach for solving language
equations introduced in [5].

The first step in this approach is to transform the given system of language equations into a
single equation of the form φ = ∅ such that the language expression φ is normalized in the
sense that all constant languages L occurring in φ are singleton languages {a} for a ∈ Σ ∪ {ε}.
This normalization step can easily be adapted to approximate equations, but in addition to a
normalized approximate equation φa ≈ ∅ it also generates a normalized strict equation φs = ∅.

Lemma 8. Let φ, ψ be language expressions. Then we can compute in polynomial time nor-
malized language expressions φa and φs such that the following holds for d ∈ {d1, d2}:

{vd(σ, φ, ψ) | σ ∈ Ass} = {vd(σ, φa, ∅) | σ ∈ Ass ∧ σ(φs) = ∅}.

Proof. In [5] (Lemma 1) it is shown how a given system of language equations can be trans-
formed into a single normalized language equation such that there is a one-to-one correspon-
dence between the solutions of the original system and the solutions of the normal form. Given
an approximate equation φ ≈ ψ, we first abstract the left- and right-hand side of this equation

12

with new variables X,Y , and add strict equations that say that X must be equal to φ and Y
must be equal to ψ, i.e., we consider the approximate equation X ≈ Y together with the strict
equations X = φ and Y = ψ. We then apply the normalization approach of [5] to the two strict
equations. Basically, this approach introduces new variables and equations that express the reg-
ular languages occurring in φ and ψ, using the fact that regular languages can be expressed as
unique solutions of language equations in solved form (see [5] for details). The resulting system
of strict equations can then be expressed by a single strict equation φs = ∅ using the facts that

– M = N iff M4N = ∅;
– M = ∅ and N = ∅ iff M ∪N = ∅.

Though it is not explicitely stated in [5], it is easy to see that this transformation is such that,
for any assignment σ, there is a solution θ of φs = ∅ such that θ(X) = σ(ψ) and θ(Y) = σ(ψ).
Conversely, any solution θ of φs = ∅ satisfies θ(X) = σ(ψ) and θ(Y) = θ(ψ). Consequently, we
have

{(σ(φ), σ(ψ)) | σ ∈ Ass} = {(θ(X), θ(Y)) | θ ∈ Ass ∧ θ(φs) = ∅}.

If we now define φa := X4Y , then the lemma is an easy consequence of the above identity and
the fact that both d1 and d2 consider the symmetric difference of the input languages. ut

This lemma shows that, to solve the computation problem for φ ≈ ψ, we must solve the
computation problem for φa ≈ ∅, but restrict the infimum to assignments that solve the strict
equation φs = ∅.

In a second step, [5] shows how a normalized language equation can be translated into a tree
automaton working on the infinite, unlabeled n-ary tree (where n = |Σ|). The nodes of this tree
can obviously be identified with Σ∗. The automata considered in [5] are such that the state in
each successor of a node is determined independently of the choice of the states in its siblings.
These automata are called looping tree automata with independent transitions (ILTA).

Definition 6. An ILTA is of the form A = (Σ,Q,Q0, δ), where Σ is a finite alphabet, Q is
a finite set of states, with initial states Q0 ⊆ Q, and δ : Q × Σ → 2Q is a transition function
that defines possible successors of a state for each a ∈ Σ. A run of this ILTA is any function
r : Σ∗ → Q with r(ε) ∈ Q0 and r(wa) ∈ δ(r(w), a) for all w ∈ Σ∗ and a ∈ Σ.

According to this definition, ILTAs do not have a fixed set of final states. However, by choosing
any set of states F ⊆ Q, we can use runs r of A to define languages overΣ as follows: Lr(A,F) :=
{w ∈ Σ∗ | r(w) ∈ F}.

Given a normalized language equation φ = ∅ with variables {X1, . . . , Xm}, it is shown in [5]
how to construct an ILTA Aφ = (Σ,Qφ, Qφ0 , δ

φ) and subsets F, F1, . . . , Fm ⊆ Qφ such that the
following holds:

Proposition 1. If r is a run of Aφ, then the induced assignment σr with σr(Xi) := Lr(A
φ, Fi),

for i = 1, . . . ,m, satisfies σr(φ) = Lr(A
φ, F). In addition, every assignment is induced by some

run of Aφ.

The size of this ILTA is exponential in the size of φ. In order to decide whether the language
equation φ = ∅ has a solution, one thus needs to decide whether Aφ has a run in which no
state of F occurs. This can easily be done by removing all states of F from Aφ, and then
checking the resulting automaton Aφ−F for emptiness. In fact, as an easy consequence of the
above proposition we obtain that there is a 1–1-correspondence between the runs of Aφ−F and
the solutions of φ = ∅ (Proposition 2 in [5]).

13

This approach can easily be adapted to the situation where we have an approximate equation
φa ≈ ∅ and a strict equation φs = ∅. Basically, we apply the construction of [5] to φa ∪
φs, but instead of one set of states F we construct two sets Fa and Fs such that σr(φa) =
Lr(A

φa∪φs , Fa) and σr(φs) = Lr(A
φa∪φs , Fs) holds for all runs r of Aφa∪φs . By removing all

states of Fs from Aφa∪φs , we obtain an automaton whose runs are in 1–1-correspondence with
the assignments that solve φs = ∅. In addition, we can make this automaton trim2 using the
polytime construction in the proof of Lemma 2 in [5].

Theorem 2. Given an approximate equation φa ≈ ∅ and a strict equation φs = ∅, we can
construct in exponential time a trim ILTA A = (Σ,Q,Q0, δ) and sets of states Fa, F1, . . . , Fm ⊆
Q such that every run r of A satisfies σr(φa) = Lr(A,Fa) and σr(φs) = ∅. In addition, every
assignment σ with σ(φs) = ∅ is induced by some run of A.

The measure d1

Using Lemma 8, Theorem 2, and the definition of d1, it is easy to see that the computation
problem for an approximate language equation φ ≈ ψ can be reduced to solving the following
problem for the trim ILTA A = (Σ,Q,Q0, δ) of Theorem 2: compute supr run ofAmin{|w| |
r(w) ∈ Fa}. More formally, we have the following lemma.

Lemma 9. If ` = supr run ofAmin{|w| | r(w) ∈ Fa} then infσ∈Ass vd1(σ, φ, ψ) = 2−`.

In order to compute this supremum, it is sufficient to compute, for every state q ∈ Q, the length
lpr(q) of the longest partial run of A starting with q that does not have states of Fa at non-leaf
nodes. More formally, we define:

Definition 7. Let Σ6` denote the set of all words over Σ of length at most `. Given a trim
ILTA A = (Σ,Q,Q0, δ), a partial run of A of length ` from a state q ∈ Q is a mapping
p : Σ6` → Q such that p(ε) = q and p(wa) ∈ δ(p(w), a) for all w ∈ Σ6`−1 and a ∈ Σ. The
leaves of p are the words of length `. Finally, for every q ∈ Q we have that

lpr(q) := sup{` | ∃p : Σ6` → Q s.t. p(ε) = q ∧ ∀w ∈ Σ6`−1(p(wa) ∈ δ(p(w), a) ∧ p(w) /∈ Fa)}.

Lemma 10. The function lpr : Q→ N ∪ {∞} can be computed in time polynomial in the size
of A.

Proof. In order to compute lpr , we use an iteration similar to the emptiness test for looping
tree automata [6].

If q ∈ Fa, then clearly lpr(q) = 0 and otherwise q has an appropriate partial run of length > 0
(recall that A is trim). For this reason, we start the iteration with

Q(0) := Fa.

Next, for i ≥ 0, we define

Q(i+1) := Q(i) ∪ {q ∈ Q | ∃a ∈ Σ : δ(q, a) ⊆ Q(i)}.

We have Q(0) ⊆ Q(1) ⊆ Q(2) ⊆ . . . ⊆ Q. Since Q is finite, there is an index j ≤ |Q| such that
Q(j) = Q(j+1), and thus the iteration becomes stable.
2 An ILTA (Σ,Q,Q0, δ) is trim if every state is reachable from an initial state and δ(q, a) 6= ∅ for all
q ∈ Q, a ∈ Σ.

14

It is easy to show that

lpr(q) =

{
min{i | q ∈ Q(i)} if q ∈ Q(j)

∞ if q 6∈ Q(j)

To prove the above, the following claim is enough.

Claim. It holds that q /∈ Q(i) iff there is a partial run of length i+ 1 of A starting with q that
does not have states of Fa at non-leaf nodes.

Proof (Claim). By induction on i:
For i = 0, q /∈ Q(i) iff q /∈ Fa iff there is a partial run of length 1 of A starting with q that does
not have states of Fa at non-leaf nodes (i.e. at the root).
For i > 1, if q /∈ Q(i) then for every a ∈ Σ, it holds that δ(q, a) 6⊆ Q(i−1), i.e., for every a ∈ Σ
there exists a qa ∈ δ(q, a) \ Q(i−1). By the induction hypothesis, for every such qa there is a
partial run of length i of A starting with qa that does not have states of Fa at non-leaf nodes,
thus we can construct such a run of length i+1 for q. If q ∈ Q(i), then there exists an a ∈ Σ, s.t.
δ(q, a) ⊆ Q(i−1). By the induction hypothesis, there is no partial run of length i of A starting
with p for any p ∈ δ(q, a) that does not have states of Fa at non-leaf nodes. Thus, there is no
such run of lenth i+ 1 starting with q, and this completes the proof of the claim.

If q /∈ Q(j), note that the claim implies that there are such runs for every n ∈ N, and thus
lpr(q) =∞.

Since the number of iterations is linear in |Q| and every iteration step can obviously be performed
in polynomial time, this completes the proof. ut

The function lpr can now be used to solve the computation problem as follows:

sup
r run ofA

min{|w| | r(w) ∈ Fa} = max{lpr(q) | q ∈ Q0}.

If this maximum is ∞, then the measure d1 yields value 0 and the approximate equation was
actually solvable as a strict one.

Theorem 3. For the distance d1 and a polytime computable combining function, the compu-
tation problem (for approximate FL0 unification and for approximately solving language equa-
tions) can be solved in exponential time, and the decision problem is ExpTime-complete.

Proof. The ExpTime-upper bounds follow from our reductions and the fact that the automaton
A can be computed in exponential time and is thus of at most exponential size. Hardness can
be shown by a reduction of the strict problems, which are known to be ExpTime-complete [4,5].
In fact, the proof of Lemma 10 shows that d1 either yields the value 0 = 2−∞ (in which case the
strict equation is solvable) or a value larger than 2−(|Q|+1) (in which case the strict equation
is not solvable). In other words, for a threshold smaller than 2−(|Q|+1) the decision problem is
equivalent to the classical solvability problem. ut

The measure d2

Recall that the value of d2 is obtained by applying the function µ to the symmetric difference
of the input languages. In case one of the two languages is empty, its value is thus obtained by
applying µ to the other language. It is easy to show that the following lemma holds.

15

Lemma 11. The value µ(L) for L ⊆ Σ∗ satisfies the recursive equation:

µ(L) =
1

2
χL(ε) +

1

2|Σ|
∑
a∈Σ

µ(a−1L), (10)

where a−1L := {w ∈ Σ∗ | aw ∈ L} and χL is the characteristic function of the language L.

Proof.

µ(L) =
1

2

∑
w∈L

(2|Σ|)−|w|

=
1

2
(2|Σ|)−|ε|χL(ε) +

1

2

∑
w∈L\{ε}

(2|Σ|)−|w|

=
1

2
χL(ε) +

1

2

∑
a∈Σ

∑
aw∈L

(2|Σ|)−(1+|w|)

=
1

2
χL(ε) +

1

2

∑
a∈Σ

∑
w∈a−1L

(2|Σ|)−1(2|Σ|)−|w|

=
1

2
χL(ε) +

1

2|Σ|
∑
a∈Σ

1

2

∑
w∈a−1L

(2|Σ|)−|w|

=
1

2
χL(ε) +

1

2|Σ|
∑
a∈Σ

µ(a−1L)

ut

Using Lemma 8, Theorem 2, and the definition of d2, it is easy to see that the computation prob-
lem for an approximate language equation φ ≈ ψ w.r.t. d2 can be reduced to solving the following
problem for the trim ILTA A = (Σ,Q,Q0, δ) of Theorem 2: compute infr run ofA µ(Lr(A,Fa)).
In fact, this is the exact value that answers the computation problem, as can be seen from the
following lemma.

Lemma 12. It holds that

inf
r run ofA

µ(Lr(A,Fa)) = inf
σ∈Ass

vd2(σ, φ, ψ).

In the following, we are only interested in languages defined by runs of A with set of final states
Fa, thus for ease of notation we will write Lr instead of Lr(A,Fa).

Using (10), we now show that this infimum can be computed by solving a system of recursive
equations that is induced by the transitions of A. Given an arbitrary (not necessarily initial)
state q ∈ Q, we say that r : Σ∗ → Q is a q-run of A if r(ε) = q and r(wa) ∈ δ(r(w), a) for all
w ∈ Σ∗ and a ∈ Σ. We denote the set of all q-runs of A with RA(q). Since each run of A is a
q0-run for some q0 ∈ Q0, we have

inf
r run ofA

µ(Lr) = min
q0∈Q0

inf
r∈RA(q0)

µ(Lr).

For all q ∈ Q, we define µ(q) := infr∈RA(q) µ(Lr). The identity above shows that we can solve the
computation problem for approximate language equations w.r.t. d2 if we can devise a procedure
for computing the values µ(q) ∈ R for all q ∈ Q. The identity (10) can now be used to show the
following lemma.

16

Lemma 13. For all states q ∈ Q we have

µ(q) =
1

2
χFa

(q) +
1

2|Σ|
∑
a∈Σ

min
p∈δ(q,a)

µ(p),

where χFa
denotes the characteristic function of the set Fa.

Proof. Given a run r ∈ RA(q), for every a ∈ Σ a unique run ra ∈ RA(r(a)) is defined as
ra(w) = r(aw). Obviously, r(a) ∈ δ(q, a). Conversely, given a run ra ∈ RA(qa), for every a ∈ Σ,
such that qa ∈ δ(q, a), a unique run r0 ∈ RA(q) can be derived, as

r0(w) =

{
q if w = ε

ra(u) if w = au

Hence, there is a bijection between the set of q-runs RA(q) and the set of “successor” runs
SR(q) :=

⋃
p1∈δ(q,a1)RA(p1)× · · · ×

⋃
pn∈δ(q,an)RA(pn).

Given a run r ∈ R(q), it holds that

Lr = ε(q) ∪
⋃
a∈Σ

aLra

where

ε(q) =

{
{ε} if q ∈ Fa
∅ otherwise

For the measure µ and disjoint sets of words A and B it holds that µ(A∪̇B) = µ(A) + µ(B).
Additionally, for a ∈ Σ and A ⊆ Σ∗, it holds µ(aA) = 1

2|Σ|µ(A).

Thus, given a run r ∈ RA(q) it holds

µ(Lr) = µ(ε(q) ∪
⋃
a∈Σ

aLra)

= µ(ε(q)) +
∑
a∈Σ

µ(aLra)

=
1

2
χFa

(q) +
1

2|Σ|
∑
a∈Σ

µ(Lra).

17

Thus it can be inferred that

µ(q) = inf
r∈RA(q)

µ(Lrq)

= inf
r∈RA(q)

(
µ(ε · χFa(q)) +

1

2|Σ|
∑
a∈Σ

µ(Lra)

)

=
1

2
χFa

(q) +
1

2|Σ|
inf

r∈RA(q)

n∑
i=1

µ(Lrai
)

=
1

2
χFa

(q) +
1

2|Σ|
inf

(ra1
,...,ran)∈SR(q)

n∑
i=1

µ(Lrai
)

=
1

2
χFa(q) +

1

2|Σ|
min

(p1,...,pn)∈
δ(q,a1)×···×δ(q,an)

inf
(r1,...,rn)∈

R(p1)×···×R(pn)

n∑
i=1

µ(Lri)

=
1

2
χFa(q) +

1

2|Σ|
min

(p1,...,pn)∈
δ(q,a1)×···×δ(q,an)

n∑
i=1

inf
r∈R(pi)

µ(Lr)

=
1

2
χFa

(q) +
1

2|Σ|

n∑
i=1

min
p∈δ(q,ai)

inf
r∈R(p)

µ(Lr)

=
1

2
χFa

(q) +
1

2|Σ|
∑
a∈Σ

min
p∈δ(q,a)

µ(p).

ut

By introducing variables xq (for q ∈ Q) that range over R, we can rephrase this lemma by
saying that the values µ(q) yield a solution to the system of equations

xq =
1

2
χFa

(q) +
1

2|Σ|
∑
a∈Σ

min
p∈δ(q,a)

xp (q ∈ Q). (11)

Thus, to compute the values µ(q) for q ∈ Q it is sufficient to compute a solution of (11).

Next, we use Banach’s fixed point theorem to show that the system has a unique solution in
R. In particular, we will transform the system of equations to a contraction in Rk that has as
a fixed point the solution of (11).

For every equation (11) corresponding to a state qi ∈ Q, we represent the right-hand side as a
function fi : Rk → R, defined by

fi(x1, . . . , xk) =
1

2
χFa

(qi) +
1

2|Σ|
∑
a∈Σ

min
qj∈δ(qi,a)

xj

Next, the right-hand sides of the entire system are denoted by a vector function f : Rk → Rk,
with

f(x1, . . . , xk) = (f1 (x1, . . . , xk) , . . . , fk (x1, . . . , xk))

Proposition 2. A vector x = (x1, . . . , xk) is a solution of the system of equations of the form
(11) iff it is a fixed point of f .

Before proving that f is a contraction, we provide a technical lemma that will be useful in the
proof of the next one.

18

Lemma 14. Given a finite set of indices I and a set {J(i) ⊆ I | i ∈ I}, it holds that

max
i∈I

∣∣∣∣ min
j∈J(i)

xj − min
j∈J(i)

yj

∣∣∣∣ 6 max
i∈I
|xi − yi| .

Proof. For every i ∈ I we have

min
j∈J(i)

xj = xki for some ki ∈ J(i)

min
j∈J(i)

yj = y`i for some `i ∈ J(i).

Then, for every i ∈ I we get ∣∣∣∣ min
j∈J(i)

xj − min
j∈J(i)

yj

∣∣∣∣ = |xki − y`i |
(∗)
= xki − y`i
6 x`i − y`i
6 max

i∈I
|xi − yi|.

For equality (∗) suppose without loss of generality, xki > y`i . If xki 6 y`i , the exact symmetric
argument can be used.

Finally, we have that

max
i∈I

∣∣∣∣ min
j∈J(i)

xj − min
j∈J(i)

yj

∣∣∣∣ 6 max
i∈I

max
i∈I
|xi − yi|

= max
i∈I
|xi − yi|.

ut

The following lemma provides the last condition for Theorem 1.

Lemma 15. The function f defined above is a contraction in (Rk, d∞).

Proof. Let x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk. Then

d∞(f(x),f(y)) = max
i=1,...,k

|fi(x)− fi(y)|

= max
i=1,...,k

∣∣∣∣∣12χFa
(qi) +

1

2|Σ|
∑
a∈Σ

min
qj∈δ(qi,a)

xj −

(
1

2
χFa

(qi) +
1

2|Σ|
∑
a∈Σ

min
qj∈δ(qi,a)

yj

)∣∣∣∣∣
= max
i=1,...,k

∣∣∣∣∣ 1

2|Σ|
∑
a∈Σ

(
min

qj∈δ(qi,a)
xj − min

qj∈δ(qi,a)
yj

)∣∣∣∣∣
6

1

2|Σ|
∑
a∈Σ

max
i=1,...,k

∣∣∣∣(min
qj∈δ(qi,a)

xj − min
qj∈δ(qi,a)

yj

)∣∣∣∣
(∗)
6

1

2|Σ|
∑
a∈Σ

max
i=1,...,k

|xi − yi|

=
1

2|Σ|
|Σ| max

i=1,...,k
|xi − yi|

=
1

2
max

i=1,...,k
|xi − yi|

where inequality (∗) holds because of Lemma 14. ut

19

Finally, since (Rk, d∞) is complete, from Theorem 1 and Proposition 2 we get the following.

Lemma 16. The system of equations (11) has a unique solution.

In order to actually compute this, we can use Linear Programming [15].

A Linear Programming problem or LP problem is a set of restrictions along with an objective
function. In its most general form, an LP problem looks like this:

objective : min/max z = c1x1 + . . .+ cnxn

restrictions : a1,1x1 + . . .+ a1,nxn T b1

...

am,1x1 + . . .+ am,nxn T bm

where ai,j , bi, cj are rational numbers.

The feasible region of the LP problem consists of all the tuples (x1, . . . , xn) that satisfy the
restrictions. The answer to an LP problem is a tuple in the feasible region that maximizes the
objective function and “no” if the feasible region is empty.

It is well known that LP problems are solvable in polynomial time in the size of the problem.[15]

From the above system of equations 11 we can derive an LP problem. The only non-trivial
step in this translation is to express the minimum operator. For this, we introduce additional
variables yq,a, which intuitively stand for minp∈δ(q,a) xp. Then (11) is transformed into

xq =
1

2
χFa

(q) +
1

2|Σ|
∑
a∈Σ

yq,a (q ∈ Q). (12)

To express the intuitive meaning of the variables yq,a, we add the inequalities

yq,a ≤ xp for all q ∈ Q and p ∈ δ(q, a) (13)

as well as the objective to maximize the values of these variables:

z = max
∑
q∈Q

∑
a∈Σ

yq,a. (14)

Lemma 17. The LP problem consisting of the equations (12), the inequations (13), and the
objective (14) has the unique solution

{xq 7→ µ(q) | q ∈ Q} ∪ {yq,a 7→ min
p∈δ(q,a)

µ(p) | p ∈ Q, a ∈ Σ}.

Proof. Initially, observe that the above vector is in the feasible region, since it satisfies the
restrictions (12) and (13). Next, we procede to show that it is indeed the only point that
maximizes the objective function. First, we need the following claim.

Claim. If x is a solution that maximizes the objective function then, for every q ∈ Q and every
a ∈ Σ, at least one of the inequalities (13) holds as an equality.

20

Proof (Claim). Suppose on the contrary that x is a solution that maximizes z, but for some
q ∈ Q and a ∈ Σ, inequalities xq,a 6 µp are strict for all p ∈ δ(q, a). This would mean that
the value of xq,a can be increased, until it actually becomes equal to minp∈δ(q,a) µp, and all
inequalities would still hold. The only restriction that would be hurt, is the one of the form
(12) for the state q. This can be easily mended by setting µq to be equal to the right-hand
side. This change will not affect any of the other restrictions. Thus, a new point x′ has been
produced, that satisfies all the restrictions of the LPP and additionally gives a larger value for
the objective function. This is a contradiction to our initial assertion about x. This completes
the proof of the claim.

As a result, any points that are solutions to the LP problem, satisfy the condition yq,a =
minp∈δ(q,a) xp for all q, a. Given that they also satisfy the equality constraints (12) (since they
are in the feasible region), they correspond to solutions of the system of equations (11).

Finally, since there is a unique such solution, the solution of the LP problem is this unique
solution. ut

Since LP problems can be solved in polynomial time and the size of the LP problem in the above
lemma is polynomial in the size of A, we obtain an ExpTime-upper bound for the computation
problem and the decision problem. ExpTime-hardness can again be shown by a reduction of
the strict problem.

Even though the main idea is the same, the formal proof is quite more technical in this case.
Initially note that solving (11) induces a “best” q-run of the automaton for every q; in every step,
pick the state with the minimum value among all possible. Given such a best run of the automa-
ton, we say that p is a descendant of q at depth d, if there are states q0 := q, q1, . . . , qd−1, qd := p,
and a word a1 . . . , ad s.t. qi = argminq∈δ(qi−1,ai) µ(q) for i = 1, . . . , d. A bad descendant of a
state q is a state p ∈ Fa that is a descendant of q. Note that, if q ∈ Fa, then µ(q) > 1

2 and if
q 6∈ Fa, then µ(q) 6 1

2 .

Lemma 18. For a state q it holds that µ(q) > 0 if and only if q has a bad descendant.

Proof. If q has a bad descendant p, say at depth d, then there is a branch with nodes labeled
q, q1, . . . , p and thus µ(q) > 1

2|Σ|µ(q1) > · · · > (1
2|Σ|)

dµ(p) > (1
2|Σ|)

d 1
2 > 0.

Conversely, suppose that q has no bad descendant. Thus q /∈ Fa and the same holds for all its
descendants. Then it holds that

µ(q) =
1

2
χFa(q) +

1

2|Σ|
∑
a∈Σ

min
p∈δ(q,a)

µ(p)

6
1

2|Σ|
∑
a∈Σ

max
a∈Σ

min
p∈δ(q,a)

µ(p)

=
1

2
µ(p)

for some child p of q. Iterating this for d steps, we get that µ(q) 6 (12)
dµ(p′) for some descendant

p′ of q. But since p′ /∈ Fa, µ(p′) 6 1
2 and thus µ(q) 6 (12)

d+1. Since this holds for every d, it
can be concluded that µ(q) = 0.

Lemma 19. If q has a bad descendant, then q has a bad descendant at depth at most |Q|.

Proof. Set k = |Q|. Suppose that there exists a q0 ∈ Q with no bad descendants up to depth k.
It will be proved that there is a q0-run with no states from Fa, i.e. q0 has no bad descendants.

21

No bad descendants up to depth k implies that there is a partial run of length k of A starting
with q0 that does not have state of Fa. For a branch of length k, the nodes are labelled with
states q0, q1, . . . , qk. Since there are only k states, there are indices i < j 6 k such that qi = qj .
The tree having as root the node labeled with qi has bigger length than the one labeled with
qj . Replace the latter tree with the former one. Then, all branches passing through the node
labeled with qj have length at least k + 1. Iterating this procedure for all branches, a partial
run of length at least k + 1 is derived. Every time the above is repeated, a longer partial run
is derived. We conclude that a partial run of infinite length, i.e. a q0-run of A can be derived
that has no states from Fa. Thus q0 has no bad descendants. ut

Lemma 20. For the distance d2, the decision problem for approximately solving language equa-
tions is ExpTime-hard.

Proof. If µ(q) > 0, then q has a bad descendant at depth at most |Q|. Thus µ(q) > (1
2|Σ|)

|Q|· 12 =:

t. We conclude that the decision problem with threshold t has a positive answer for the equation
φ ≈ ∅ iff the equation φ = ∅ has a solution. Since the latter problem is ExpTime-complete, we
get an ExpTime-hardness result for our problem as well.

Theorem 4. For the distance d2 and a polytime computable combining function, the compu-
tation problem (for approximate FL0 unification and for approximately solving language equa-
tions) can be solved in exponential time, and the decision problem is ExpTime-complete.

For this theorem to hold, the exact definition of the distance d2 is actually not important. Our
approach works as long as the distance induces a system of equations similar to (11) such that
Banach’s fixed point theorem ensures the existence of a unique solution, which can be found
using linear programming.

As an example, we can consider a weighted version of d2, where different letters have dif-
ferent weights (degrees of importance). Given a weight function wt : Σ → [0, 1], such that∑
a∈Σ wt(a) = 1, extend this to a function over Σ∗, by setting wt(u) =

∏k
i=1 wt(ai) for

u = a1 . . . ak ∈ Σ∗. Then, for ν, λ ∈ [0, 1], define

µ′(L) = ν
∑
u∈L

λ|u|wt(u).

The condition that a difference for the word u counts as much as the sum of all differences for
words uv properly extending u holds if we set λ = 1

2 . Furthermore, note that for ν = λ = 1
2 ,

wt(a) = 1
|Σ| for every a ∈ Σ, we get the function µ defined for d2.

5 Conclusion

We have extended unification in DLs to approximate unification in order to enhance the recall
of this method of finding redundancies in DL-based ontologies. For the DL FL0, unification can
be reduced to solving certain language equations [4]. We have shown that, w.r.t. two particular
distance measures, this reduction can be extended to the approximate case. Interesting topics
for future research are considering approximate unification for other DLs such as EL [3]; differ-
ent distance measures for FL0 and other DLs, possibly based on similarity measures between
concepts [13,16]; and approximately solving other kinds of language equations [12].

Approximate unification has been considered in the context of similarity-based Logic Program-
ming [9], based on a formal definition of proximity between terms. The definition of proximity

22

used in [9] is quite different from our distances, but the major difference to our work is that [9]
extends syntactic unification to the approximate case, whereas unification in FL0 corresponds
to unification w.r.t. the equational theory ACUIh (see [4]). Another topic for future research
is to consider unification w.r.t. other equational theories. First, rather simple, results for the
theory ACUI , which extend the results for strict ACUI -unification [10], can be found in [2].

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)

2. Baader, F., Marantidis, P., Okhotin, A.: Approximately solving set equations. In: Ghilardi,
S., Schmidt-Schauß, M. (eds.) Proceedings of the 30th International Workshop on Unification
(UNIF’16). Porto, Portugal (2016)

3. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods in Computer
Science 6(3) (2010)

4. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of Symbolic Com-
putation 31(3), 277–305 (2001)

5. Baader, F., Okhotin, A.: On language equations with one-sided concatenation. Fundamenta Infor-
maticae 126(1), 1–35 (2013)

6. Baader, F., Tobies, S.: The inverse method implements the automata approach for modal satisfia-
bility. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001). Lecture Notes in
Artificial Intelligence, vol. 2083, pp. 92–106. Springer-Verlag (2001)

7. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations inté-
grales. Fundamenta Mathematicae 3(1), 133–181 (1922)

8. Ecke, A., Peñaloza, R., Turhan, A.Y.: Computing role-depth bounded generalizations in the descrip-
tion logic ELOR. In: Timm, I.J., Thimm, M. (eds.) Proceedings of the 36th German Conference
on Artificial Intelligence (KI 2013). Lecture Notes in Artificial Intelligence, vol. 8077, pp. 49–60.
Springer-Verlag, Koblenz, Germany (2013)

9. Iranzo, P.J., Rubio-Manzano, C.: Proximity-based unification theory. Fuzzy Sets and Systems 262,
21–43 (2015)

10. Kapur, D., Narendran, P.: Complexity of unification problems with associative-commutative oper-
ators. J. Automated Reasoning 9, 261–288 (1992)

11. Kreyszig, E.: Introductory Functional Analysis With Applications. Wiley Classics Library, John
Wiley & Sons (1978)

12. Kunc, M.: What do we know about language equations? In: Harju, T., Karhumäki, J., Lepistö,
A. (eds.) Proc. of the 11th International Conference on Developments in Language Theory (DLT
2007). Lecture Notes in Computer Science, vol. 4588, pp. 23–27. Springer-Verlag (2007)

13. Lehmann, K., Turhan, A.: A framework for semantic-based similarity measures for ELH-concepts.
In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) Proc. of the 13th European Conference on Logics
in Artificial Intelligence (JELIA 2012). Lecture Notes in Computer Science, vol. 7519, pp. 307–319.
Springer-Verlag (2012)

14. Munkres, J.: Topology. Featured Titles for Topology Series, Prentice Hall (2000)
15. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete

Mathematics and Optimization, John Wiley & Sons (1999)
16. Tongphu, S., Suntisrivaraporn, B.: On desirable properties of the structural subsumption-based

similarity measure. In: Supnithi, T., Yamaguchi, T., Pan, J.Z., Wuwongse, V., Buranarach, M.
(eds.) Proc. of the 4th Joint International Conference on Semantic Technology (JIST 2014). Lecture
Notes in Computer Science, vol. 8943, pp. 19–32. Springer-Verlag (2015)

	Approximate Unification in the Description Logic FL0

