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Abstract

We introduce a new description logic that extends the well-known logic
ALCQ by allowing the statement of constraints on role successors that are
more general than the qualified number restrictions of ALCQ. To formulate
these constraints, we use the quantifier-free fragment of Boolean Algebra
with Presburger Arithmetic (QFBAPA), in which one can express Boolean
combinations of set constraints and numerical constraints on the cardinal-
ities of sets. Though our new logic is considerably more expressive than
ALCQ, we are able to show that the complexity of reasoning in it is the
same as in ALCQ, both without and with TBoxes.

1 Introduction

Description Logics (DLs) [1] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for application domains such as biology and medicine [10]. To define the impor-
tant notions of such an application domain as formal concepts, DLs state nec-
essary and sufficient conditions for an individual to belong to a concept. These
conditions can be Boolean combinations of atomic properties required for the
individual (expressed by concept names) or properties that refer to relationships
with other individuals and their properties (expressed as role restrictions). For
example, the concept of a man (i.e., a non-female human) that has a wife and
only daughters can be formalized by the concept description

Human u ¬Female u ∃spouse.Female u ∀child.Female,

which uses the concept names Human and Female and the role names spouse
and child as well as the concept constructors conjunction (u), negation (¬),
value restriction (∀r.C), and existential restriction (∃r.C). Number restrictions

1



1 INTRODUCTION 2

can express to how many individuals, possibly with certain properties, an element
of the concept is related to for a given role. For example, the concept of a woman
that has two daughters, three sons, and no other children can be formalized as

Human u Female u (> 2 child.Female) u (> 3 child.¬Female) u (6 5 child).

The first two number restrictions in this concept description are called qualified
since they restrict the number of role successors belonging to certain concepts,
whereas the last number restriction is unqualified since it is concerned with all
role successors. Number restrictions have been used as concept constructors for
DLs for a long time, but first only in the unqualified variant [3, 12]. Qualified
number restrictions were first introduced and investigated in [11], but it took al-
most a decade before the exact complexity of reasoning in the DL ALCQ, which
has all the concept constructors introduced in the above examples, could be de-
termined [19]. In fact, the tableau-algorithm for deciding the satisfiability of an
ALCQ concept described in [11] generates n new individuals to satisfy a qualified
at-least restriction >n r.C. If we assume binary rather than unary representation
of numbers (i.e., the size of n in a number restriction is assumed to be log n rather
than n), then this clearly generates exponentially many individuals, and thus the
algorithm needs exponential space. The PSpace algorithm described in [19] does
not keep n successors in memory at the same time. Instead, it uses appropriate
book-keeping of the number of successors (represented in binary) and compar-
isons of numbers to determine a clash between at-least and at-most restrictions.
In order to improve the performance of reasoners for DLs with qualified num-
ber restrictions, also more sophisticated numerical reasoning approaches (such as
linear integer programming) have been employed (see, e.g., [9, 6, 8]).

More expressive number restrictions have been introduced in [2]. On the one
hand, that paper considers number restrictions on complex roles, i.e., roles that
are constructed from role names using operations on binary relations such as in-
tersection and composition. For example, using role composition within a number
restriction, one can express that someone has at least four grandchildren:

Human u (> 4 child ◦ child).

One the other hand, the paper introduces symbolic number restrictions, in which
variables can be used in place of explicit numbers. This allows one to express,
e.g., that someone has more daughters than sons without specifying the actual
number of them:

Human u ↓α((>α child.Female) u ¬(>α child.¬Female)),

where ↓α says that there must exist such a cardinality α. Unfortunately, both
extensions on their own already lead to undecidability of reasoning if they are
added to a DL that is closed under all Boolean operations.
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In the present paper, we propose a new DL strictly extending ALCQ, which we
call ALCSCC.1 Among other things, this DL can describe some of the concepts
expressible in the DLs introduced [2], but not in ALCQ. Nevertheless, reasoning
in our new DL is not only decidable, but of the same complexity as reasoning
in ALCQ. The basic idea underlying the definition of this logic is the following.
A DL concept expresses under what conditions an individual d belongs to the
concept. On the one hand, these conditions refer to concept names to which d
must or must not belong. On the other hand, they state conditions on the indi-
viduals that are related to d via some role. For example, the value restrictions
∀r.C says that the set of r-successors of d is contained in the set of elements
of C. Thus, such a value restriction states an inclusion constraint between sets.
Number restrictions enforce cardinality constraints on sets. For example, the
qualified number restriction >n r.C says that the cardinality of the set obtained
by intersecting the set of r-successors of d with the set of elements of C has
cardinality at least n. We now integrate into our DL a logic that can express
set constraints (such as inclusion constraints) and numerical constraints regard-
ing the cardinality of sets. This logic is called QFBAPA, which stands for the
quantifier-free fragment of Boolean Algebra with Presburger Arithmetic. Basi-
cally, the Boolean algebra part of this logic can be used to build set expressions
and the Presburger arithmetic part can state numerical constraints. Both parts
are linked by the cardinality function. It has been shown in [13] that satisfiability
of QFBAPA formulae is an NP-complete problem. Our PSpace algorithm for
deciding the satisfiability of ALCSCC concept descriptions (see Section 5) and
our ExpTime algorithm for deciding satisfiability in ALCSCC w.r.t. TBoxes (see
Section 6) use the NP decision procedure for satisfiability of QFBAPA formulae
as subprocedure.

Ohlbach and Koehler [14] have introduced a DL that also allows for Boolean
set terms and arithmetic constraints on the cardinality of role successors. The
expressiveness of their logic is somewhat different from ours (see Section 7). The
major difference to our work is, however, that Ohlbach and Koehler give only
decidability results and no complexity results. In addition, they only consider
satisfiability of concept descriptions, whereas we also consider satisfiability w.r.t.
TBoxes consisting of general concept inclusions (GCIs). In fact, we show in
Section 6 that also w.r.t. GCIs the complexity of the satisfiability problem in
ALCSCC is the same as in ALCQ, i.e., ExpTime complete. Demri and Lugiez [5]
introduce the modal logic EML, which allows for arithmetic constraints on the
cardinality of successors w.r.t. the transition relations R as well as for automata-
based constraints describing which formulae the ordered collection of R-successors
of a given world must satisfy. They show that the satisfiability problem for EML
is PSpace-complete. Since it is easy to see that ALCSCC is a syntactic variant of
EML without automata-based constraints, this yields an alternative proof for the

1The name ALCSCC for our new DL is supposed to indicate that it extends the basic DL
ALC with set and cardinality constraints rather than just qualified number restrictions.
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fact that satisfiability of ALCSCC concept descriptions is in PSpace.2 Demri and
Lugiez do not show a result corresponding to our ExpTime result for satisfiability
w.r.t. TBoxes in ALCSCC.

2 Preliminaries

Before defining ALCSCC in Section 3, we briefly introduce ALCQ and QFBAPA.

Given disjoint finite sets NC and NR of concept names and role names, respec-
tively, the set of ALCQ concept descriptions is defined inductively:

• all concept names are ALCQ concept descriptions;

• if C,D are ALCQ concept descriptions, r ∈ NR, and n is a non-negative in-
teger, then ¬C (negation), CtD (disjunction), CuD (conjunction), >n r.C
and 6n r.C (qualified number restrictions) are ALCQ concept descriptions.

An ALCQ GCI is of the form C v D where C,D are ALCQ concept descriptions.
An ALCQ TBox is a finite set of ALCQ GCIs.

The semantics of ALCQ is defined using the notion of an interpretation. An
interpretation is a pair I = (∆I , ·I) where the domain ∆I is a non-empty set,
and ·I is a function that assigns to every concept name A a set AI ⊆ ∆I and to
every role name r a binary relation rI ⊆ ∆I ×∆I . This function is extended to
ALC-concept descriptions as follows:

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI ;

• (>n r.C)I = {x ∈ ∆I | there are at least n y ∈ ∆I with (x, y) ∈ rI and
y ∈ CI};

• (6n r.C)I = {x ∈ ∆I | there are at most n y ∈ ∆I with (x, y) ∈ rI and
y ∈ CI}.

The interpretation I is a model of a TBox T if it satisfies CI ⊆ DI for all GCIs
C v D ∈ T . Given an ALCQ concept description C, we say that C is satisfiable
if there is an interpretation I such that CI 6= ∅. Analogously, C is satisfiable
w.r.t. the TBox T if there is a model I of T such that CI 6= ∅. Two ALCQ
concept descriptions C,D are equivalent (written C ≡ D) if CI = DI holds for all
interpretations I. Other inference problems such as subsumption can be reduced
to satisfiability, which is why we concentrate on it. The introduced notions (GCI,
TBox, model, satisfiability, and equivalence) can of course also be used for DLs

2The author of the present paper learned about the PSpace result in [5] only after publishing
his complexity results for ALCSCC at the conference FroCoS 2017.
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other than ALCQ, and in particular for the DL ALCSCC introduced in the next
section.

The DL ALC differs from ALCQ in that it has existential restrictions (∃r.C) and
value restrictions (∀r.C) as constructors in place of qualified number restrictions.
It is a sublogic of ALCQ since these two constructors can be expressed using
qualified number restrictions: ∃r.C ≡ > 1 r.C and ∀r.C ≡ 6 0 r.¬C.

Let us now briefly introduce the logic QFBAPA (more details can be found in
[13]). In this logic one can build set terms by applying Boolean operations (in-
tersection, union, and complement) to set variables as well as the constants ∅
and U . Set terms s, t can the be used to state inclusion and equality constraints
(s = t, s ⊆ t) between sets. Presburger Arithmetic (PA) expressions are built
from integer variables, integer constants, and set cardinalities |s| using addition
as well as multiplication with an integer constant. They can be used to form
numerical constraints of the form k = `, k < `,N dvd `, where k, ` are PA ex-
pressions, N is an integer constant, and dvd stands for divisibility. A QFBAPA
formula is a Boolean combination of set and numerical constraints.

A solution σ of a QFBAPA formula φ assigns a finite set σ(U) to U , subsets of
σ(U) to set variables, and integers to integer variables such that φ is satisfied
by this assignment. The evaluation of set terms, PA expressions, and set and
numerical constraints w.r.t. σ is defined in the obvious way. For example, σ
satisfies the numerical constraint |s ∪ t| = |s| + |t| for set variables s, t if the
cardinality of the union of the sets σ(s) and σ(t) is the same as the sum of the
cardinalities of these sets. Note that this is the case iff σ(s) and σ(t) are disjoint,
which we could also have expressed using the set constraint s∩t ⊆ ∅. A QFBAPA
formula φ is satisfiable if it has a solution.

3 Syntax and semantics of ALCSCC

Basically, the DL ALCSCC has all Boolean operations as concept constructors
and can state constraints on role successors using the expressiveness of QFBAPA.

Given a finite set of set symbols T with {∅,U} ∩ T = ∅, set terms over T are
defined inductively as follows:

• the symbols ∅ and U are set terms;

• every set symbol is a set term;

• if s, t are set terms, then so are s ∪ t, s ∩ t, and sc.

Cardinality terms over T are also defined inductively:3

3In contrast to PA expressions, we do not have integer variables here and numerical constants
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• every non-negative integer N is a cardinality term;

• if s is a set term, then |s| is a cardinality term;

• if k, ` are cardinality terms, then so are k+` and N ·` for every non-negative
integer N .

Set constraints over T are of the form s = t, s ⊆ t or their negation for set terms
s, t. Cardinality constraints over T are of the form k = `, k < `, k ≤ `, N dvd `
or their negation for cardinality terms k, ` and a non-negative integer N > 0.

Given a set ∆I and a mapping ·I that maps

• ∅ to ∅I = ∅,

• U to a finite subset UI of ∆I , and

• every symbol σ in T to a subset σI of UI ,

we extend this mapping to set terms and cardinality terms as follows:

• (s ∪ t)I = sI ∪ tI , (s ∩ t)I = sI ∩ tI , and (sc)I = UI \ sI ,

• |s|I = |sI |,

• (k + `)I = kI + `I and (N · `)I = N · `I .

This mapping satisfies

• the set constraint s = t if sI = tI , and its negation if sI 6= tI ,

• the set constraint s ⊆ t if sI ⊆ tI , and its negation if sI 6⊆ tI ,

• the cardinality constraint k = ` if kI = `I , and its negation if kI 6= `I ,

• the cardinality constraint k < ` if kI < `I , and its negation if kI ≥ `I ,

• the cardinality constraint k ≤ ` if kI ≤ `I , and its negation if kI > `I ,

• the cardinality constraint N dvd ` if there is a non-negative integer M such
that N ·M = `I , and its negation if there is no such M .

Given disjoint finite sets NC and NR of concept names and role names, respec-
tively, we define the set of ALCSCC concept descriptions by induction:

• every concept name is an ALCSCC concept description;

must be non-negative.
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• if C,D are ALCSCC concept descriptions, then so are C uD,C tD,¬C;

• if c is a set constraint or a cardinality constraint over as finite set of symbols
consisting of role names and ALCSCC concept descriptions, then succ(c) is
an ALCSCC concept description.

As usual, we will use > (top) and ⊥ (bottom) as abbreviations for A t ¬A and
A u ¬A, respectively.

An interpretation of NC and NR consists of a set non-empty ∆I and a mapping
·I that maps

• every concept name A ∈ NC to a subset AI of ∆I ;

• every role name r ∈ NR to a binary relation rI over ∆I such that every
element of ∆I has only finitely many r-successors, i.e., the set

rI(d) := {e ∈ ∆I | (d, e) ∈ rI}

is finite for all d ∈ ∆I .

The interpretation function ·I is inductively extended to ALCSCC concept de-
scriptions as follows:

• (C tD)I := CI ∪DI , (C uD)I := CI ∩DI , and (¬C)I = ∆I \ CI ;

• succ(c)I := {d ∈ ∆I | the mapping ·Id satisfies c},
where ·Id maps ∅ to ∅I = ∅, U to UI = rsI(d), where

rsI(d) :=
⋃
r∈NR

rI(d),

and the concept descriptions and role names occurring in c to subsets of UI
as follows:

CId := CI ∩ rsI(d)

for concept descriptions C occurring in c and rId := rI(d).

Note that ·Id is well-defined since we can assume by induction that CI is already
defined for concept descriptions C occurring in c. In addition, it indeed maps
U to a finite set since rsI(d) is finite due to the facts that (i) NR is finite, and
(ii) every element of ∆I has only finitely many r-successors for all role names
r ∈ NR.

Also note that top and bottom are interpreted as the whole interpretation domain
and the empty set, respectively, i.e. >I = ∆I and ⊥I = ∅.
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4 Expressive power

We claim that ALCSCC has the description logic ALCQ [11, 19] as sublogic. For
this it is sufficient to show that qualified number restrictions >n r.C and 6n r.C
can be expressed in ALCSCC.

Lemma 1 For all interpretations I we have

(>n r.C)I = succ(|C ∩ r| ≥ n)I and (6n r.C)I = succ(|C ∩ r| ≤ n)I .

As an easy consequence we obtain that reasoning (e.g., subsumption, satisfiabil-
ity) in ALCSCC is at least as complex as reasoning in ALCQ, i.e., PSpace-hard
without a TBox and ExpTime-hard w.r.t. a general TBox. The only thing to take
care of here is that the notion of interpretation defined above is more restrictive
than the one used for ALCQ since in ALCQ individuals are not required to have
only finitely many role successors. However, due to the fact that ALCQ has the
finite model property, we can assume without loss of generality that interpreta-
tions of ALCQ satisfy the finite-role-successors property required in this paper
for interpretations.

We can, however, express things in ALCSCC that cannot be expressed in ALCQ.4
For example, we can define the persons that have the same number of brothers
as sisters by writing

Person u succ(|child ∩Male| = |child ∩ Female|).

Description Logics that can express such restrictions have been introduced in [2],
but due to the use of explicit variables for cardinalities of sets of role successors
in the logic defined in [2], this logic becomes undecidable.

In [2], also number restrictions on complex role expressions are considered, but
again the high expressiveness of the corresponding logics introduced in [2] often
leads to undecidability. We can express weaker versions of such restrictions in
ALCSCC. For example,

Employer u succ(|related ∩ employs| ≤ 1)

describes employers that employ at most one relative, and

Employer u succ(2 · |related ∩ employs| < |employs|)

describes employers that employ more no-relatives than relatives. Using divisi-
bility cardinality constraints, we can for example express creatures that have an
even number of legs as

Creature u succ(2 dvd |has-limb ∩ Leg |),
4To show in a formal way that these things cannot be expressed in ALCQ we could employ

an appropriate notion of bisimulation for ALCQ [4].
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without having to specify how man legs the respective creature actually has.

As an example for an inexpressibility proof in ALCQ, we consider a simplified
version of our first example.

Lemma 2 The ALCSCC concept description succ(|r| = |s|) for distinct role
names r, s cannot be expressed in ALCQ.

Proof. Assume that C is an ALCQ concept description such that, for all inter-
pretations I, we have CI = succ(|r| = |s|)I . Let n be a non-negative integer
that is larger than the largest number occurring in a number restriction in C.
Consider an interpretation I with ∆I = {0, 1, 2, . . .} such that

rI = {(0, i) | 1 ≤ i ≤ n} and sI = {(0, n+ i) | 1 ≤ i ≤ n}.

Then 0 ∈ succ(|r| = |s|)I and thus 0 ∈ CI . We change I to I ′ by giving 0 an
additional s-successor, i.e., ∆I

′
= ∆I , rI′ = rI , and sI

′
= sI ∪ {(0, 2n + 1)}.

Then 0 6∈ succ(|r| = |s|)I′ . However, since all the numbers occurring in number
restrictions in C are smaller than n, changing the number of s-successors of 0
from n to n+ 1 has no impact on whether 0 belongs to C or not. Consequently,
we have 0 ∈ CI′ , and thus CI′ 6= succ(|r| = |s|)I′ , which yields a contradiction
to our assumption that C expresses succ(|r| = |s|). ut

5 Satisfiability of ALCSCC concept descriptions

Recall that the ALCSCC concept description C is satisfiable if there is an inter-
pretation I and an element d ∈ ∆I such that d ∈ CI . We call I a model of C
and d a witness for the satisfaction of C in I.

Since ALCSCC can express ALCQ and thus also ALC, the satisfiability problem
for ALCSCC concept descriptions is PSpace-hard [18]. In this section, we use the
ideas underlying the proof that satisfiability in QFBAPA is in NP [13] to show a
matching upper bound (assuming binary representation of numbers). For ALCQ
such an upper bound was first shown in [19].

A given ALCSCC concept description is a Boolean combination of atoms, i.e.,
concept names A and successor constraints succ(c) for set or cardinality con-
straints c. Viewing these atoms as propositional variables, we first guess which of
them are true and which are false. In case the guessed assignment does not satisfy
the propositional formula corresponding to C, we fail. Otherwise, the assignment
tells us that there is a way to assign concept names to an individual such that
the part of C that concerns atoms that are concept names is satisfied. It remains
to see whether such an individual can receive role successors such that the part
of C that concerns atoms that are successors constraints can be satisfied as well.

Before showing how this can be done in general, let us consider a simple example.
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Example 3 Let

C := (¬A t ¬succ(2 dvd |r|)) u (¬B t succ(|r| = 2 · |s|)).

If we guess that the atoms A and B should be true, then we need to guess that the
atom succ(2 dvd |r|) is false and the atom succ(|r| = 2 · |s|) is true since otherwise
the propositional formula corresponding to C would become false, leading to
failure. Consequently, we need an individual that belongs to A and B and whose
role successors satisfy the constraints ¬(2 dvd |r|) and |r| = 2 · |s|. If we replace
the concept names r and s in these constraints by set variables Xr and Xs,
respectively, then we obtain the QFBAPA formula ¬(2 dvd |Xr|)∧ |Xr| = 2 · |Xs|.
Obviously, this formula is not satisfiable since the second conjunct requires |Xr|
to be even, whereas the first one forbids this.
Now assume that we have guessed that the atom A is false and the atoms B,
succ(2 dvd |r|), and succ(|r| = 2 · |s|) are true. This yields the QFBAPA formula
2 dvd |Xr| ∧ |Xr| = 2 · |Xs|, which can be satisfied by assigning the set {d1, d2} to
Xr and the set {d2} to Xs. Thus, if we build the interpretation I with domain
{d0, d1, d2} where d0 belongs to B, but not to A, and where d1, d2 are the rI-
successors of d0 and d2 is the only sI-successors of d0, then we have d0 ∈ CI .

When building the QFBAPA formula corresponding to an assignment, we need
to take the semantics of ALCSCC into account, which says that, when evaluating
the successors constraints of a given individual d, the set U must consist of exactly
the role successors of this individual. Consequently, in addition to the conjuncts
induced by the successor constraints on the top-level of C, the QFBAPA formula
must contain the conjunct

Xr1 ∪ . . . ∪Xrn = U ,

where NR = {r1, . . . , rn}. In the above example, the presence of this conjunct
is irrelevant. The following example shows why it is in general necessary to add
this conjunct.

Example 4 Let

C := succ(|U| ≥ 1) u succ(r ⊆ ∅) u succ(|s| = 0),

where NR = {r, s}. Then C is unsatisfiable according to our semantics, but the
QFBAPA formula |U| ≥ 1 ∧ Xr ⊆ ∅ ∧ |Xs| = 0 is satisfiable. However, this
QFBAPA formula becomes unsatisfiable if we add the conjunct Xr ∪Xs = U .

Until now, we have considered examples where the successor constraints do not
contain (possibly complex) concept descriptions. If this is the case, an additional
problem needs to be solved, as illustrated by the next example, which is obtained
by modifying Example 3.
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Example 5 Let

C := (¬A t ¬succ(2 dvd |D|)) u (¬B t succ(|D| = 2 · |E|)),

where D,E are (possibly complex) ALCSCC concept descriptions. Guessing that
the atom A is false and the atoms B, succ(2 dvd |D|), and succ(|D| = 2 · |E|) are
true, we obtain the QFBAPA formula 2 dvd |XD|∧|XD| = 2·|XE|∧

⋃
r∈NR

Xr = U .
One solution of this formula is the one that assigns {d1, d2} to XD, {d2} to XE,
and {d1, d2} to all the variables Xr for r ∈ NR.
In contrast to the case considered in Example 3, the existence of such a solution
does not yet show that C is satisfiable. In fact, this solution requires d1 to belong
to D, but not to E, whereas d2 must belong to both D and E. This is only
possible if the concept descriptions D u ¬E and D u E are satisfiable. Thus,
we need recursive calls of the satisfiability procedures for ALCSCC for these two
inputs. This recursion is well-founded (with a linear recursion depth) since the
nesting depth of successor constraints in D and E (and thus in Du¬E and DuE)
is by at least one smaller than the nesting depth in C.
Now assume that these recursive calls yield the result that D u¬E is satisfiable,
but D u E is not. This does not mean that C is unsatisfiable. In fact, there is
also a solution of the above QFBAPA formula that assigns {d1, d2} to XD, {d3}
to XE, and {d1, d2, d3} to all the variables Xr for r ∈ NR. This solution requires
D u ¬E and ¬D u E to be satisfiable. Assuming that this is the case also for
the latter concept description, we can construct an interpretation I containing
an element d0 that has the individuals d1, d2, d3 as role successors for all roles
r ∈ NR. The rest of I is a disjoint union of two models of D u ¬E with a model
of ¬D u E, where the respective witnesses are identified with d1, d2, and d3. By
construction, this yields a model of C with witness d0.

Summing up, we have illustrated by the above examples that a guessed assign-
ment for the top-level atoms of C either leads to failure (if the propositional
formula corresponding to C is not satisfied by the assignment) or it yields a
QFBAPA formula corresponding to the successor constraints under this assign-
ment. Unsatisfiability of this QFBAPA formula again leads to failure. A solution
for the QFBAPA formula creates recursive calls of the satisfiability procedure,
where the inputs have a smaller nesting depth of successor constraints than C.
In case one of these recursive calls returns “unsatisfiable,” we cannot conclude
that C is unsatisfiable. In fact, it may be the case that another solution of the
QFBAPA formula creates other recursive calls, which may all yield “satisfiable.”
The remaining question is now how to find such a solution in case one exists.

A naive idea could be to add the information that a certain combination of con-
cepts (i.e., a conjunction of concepts and negated concepts) is unsatisfiable to the
QFBAPA formula. In Example 5, after finding out that D u E is unsatisfiable,
we could have added the conjunct |XD ∩ XE| = 0 to ensure that the next solu-
tion does not require D u E to be satisfiable. The problem with this approach
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is that the next solution may create another recursive call returning “unsatis-
fiable,” and thus an additional conjunct needs to be added (e.g., if ¬D u ¬E
turns out to be unsatisfiable, we need to add |Xc

D ∩ Xc
E| = 0), etc. If the top-

level successor constraints of C contain k concept descriptions, then in the worst
case a number of conjuncts that is exponential in k may need to be added to
the QFBAPA formula. Since satisfiability of QFBAPA formulae is NP-complete,
testing the resulting exponentially large QFBAPA formula for satisfiability would
require non-deterministic exponential time and representing the formula would
need exponential space.

In order to stay within PSpace, we use a result from [13], which is the main tool
used there to show that satisfiability in QFBAPA is in NP. Assume that φ is a
QFBAPA formula containing the set variables X1, . . . , Xk. A Venn region is of
the form

Xc1
1 ∩ . . . ∩X

ck
k ,

where ci is either empty or c for i = 1, . . . , k. It is shown in [13] that, given φ,
one can easily compute a number N whose value is polynomial in the size of φ
such that the following holds: φ is satisfiable iff it has a solution in which ≤ N
Venn regions are interpreted by non-empty sets. Taking a closer look at how this
result is proved in [13], one can actually strengthen it.

Lemma 6 For every QFBAPA formula φ, one can compute in polynomial time
a number N whose value is polynomial in the size of φ such that the following
holds for every solution σ of φ: there is a solution σ′ of φ such that

• |{v | v Venn region and σ′(v) 6= ∅}| ≤ N , and

• {v | v Venn region and σ′(v) 6= ∅} ⊆ {v | v Venn region and σ(v) 6= ∅}.

Proof. Consider the argument in Section 3 of [13] below Fact 1, and use as set
X the one consisting of all the vectors xβ corresponding to Venn regions β non-
empty w.r.t. σ rather than using all possible Venn regions. Applying Fact 1 in [13]
to this set X yields an appropriate number N and a subset X̃ ⊆ X of cardinality
≤ N . The elements of X̃ correspond to the non-empty Venn regions in the new
solution σ′, which assigns to all set expressions in φ the same cadinalities as σ.
The inclusion of X̃ in X yields the desired inclusion relation between non-empty
Venn regions w.r.t. σ′ and σ, respectively. ut

We can now continue with the description of our approach. Given a QFBAPA
formula φ induced by our assignment for the top-level atoms of C, we compute
the corresponding number N and then guess ≤ N Venn regions to be interpreted
as non-empty sets. For each of these Venn regions Xc1

1 ∩ . . . ∩ X
ck
k , we add the

conjunct |Xc1
1 ∩ . . .∩X

ck
k | ≥ 1 to φ. In addition, we add the conjunct that states

that the union of the guessed Venn regions is equal to U , and thus that all other
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Venn regions are empty. The resulting QFBAPA formula ψ has a size that is
polynomial in the size of φ, and thus of C. We then

1. test whether ψ is satisfiable using the NP satisfiability algorithm for QF-
BAPA;

2. for every guessed Venn region, we consider the part that consists of set
variables corresponding to concept descriptions, and recursively test the
induced concept descriptions for satisfiability.

If φ is satisfiable, then there is a solution in which ≤ N Venn regions are in-
terpreted by non-empty sets, and thus the first test is successful for one of the
guessed sets of Venn regions. Due to the construction of ψ, the corresponding
solution interprets all other Venn regions as empty sets. Consequently, it is suffi-
cient to test the concept descriptions considered in 2. for satisfiability. If all tests
are successful then we can construct a model of C as illustrated in Example 5.
Basically, this model has a witness d0 whose role successors w.r.t. all roles in NR

are determined by the solutions for the set variables corresponding to roles. These
successors are witnesses for the concept descriptions considered in 2., where the
respective models are made disjoint and reproduced as many times as needed.

Theorem 7 Satisfiability of ALCSCC concept descriptions is PSpace-complete.

Proof. Given an ALCSCC concept description C, the algorithm sketched above
proceeds as follows:

1. It views the atoms (concept names and successor constraints) on the top
level of C (i.e., atoms that are not nested within successor constraints) as
propositional variables, guesses a truth assignment for these variables, and
then checks whether this assignment satisfies the propositional formula cor-
responding to C (where the atoms are replaced by propositional variables).
If this test is negative, then this run of the algorithm fails. Otherwise, it
continues with the next step.

2. The truth assignment for the variables corresponding to successor con-
straints induces a QFBAPA formula φ, as described above. We conjoin to
this formula the set constraint Xr1∪. . .∪Xrn = U , where NR = {r1, . . . , rn}.
For the resulting formula φ′, we compute the number N that bounds the
number of Venn regions that need to be non-empty in a solution of φ′ (see
Lemma 6). Then we guess ≤ N Venn regions. For each of these Venn
regions Xc1

1 ∩ . . . ∩ X
ck
k , we add the conjunct |Xc1

1 ∩ . . . ∩ X
ck
k | ≥ 1 to φ′.

In addition, we add the conjunct that states that the union of the guessed
Venn regions is equal to U . For the resulting formula ψ, we test whether
ψ is satisfiable using the NP satisfiability algorithm for QFBAPA. If this
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test is negative, then this run of the algorithm fails. Otherwise, it continues
with the next step

3. For every guessed Venn region v, we consider the part that consists of set
variables XD corresponding to concept descriptions D. We then build a
concept description Cv that contains a conjunct for every set variables XD

occurring in v, where this conjunct is D in case v contains XD and it is
¬D in case v contains Xc

D. We then apply the algorithm recursively to Cv
for each of the guessed Venn regions v. If one of these applications fails,
then this run of the algorithm fails. Otherwise, this run of the algorithm
succeeds.

This algorithm indeed runs in PSpace since

• guessing is harmless due to Savitch’s theorem, which says that PSpace is
equal to NPSpace [7];

• the recursion stack for the recursive calls has linear depth since the nesting
of successor restrictions decreases with each call, and for each concept to
be tested, only polynomially many such calls are creates (since the values
of the numbers N are polynomial in the size of the tested concepts);

• the satisfiability test for QFBAPA formulae is in NP and applied to formulae
of polynomial size.

Regarding soundness (i.e., if the algorithm succeeds, then the input concept C
is indeed satisfiable), we have already sketched above how a model of C can be
obtained from a successful run. Indeed, if Step 1 of the algorithm succeeds, then
we create a witness d0. The truth assignment for the propositional variables
corresponding to concept names tells us, for every concept name A, whether d0
needs to belong to A or not. Regarding the role successors of d0, we consider the
solution for the QFBAPA formula ψ found in Step 2 of the algorithm. Assume
that this solution assigns the finite set {d1, . . . , dm} to the set term U . Then d0
receives the role successors d1, . . . , dm, where the assignments for the set variables
Xr for r ∈ NR tell us which roles connect d0 with these new individuals. Finally,
each di belongs to one of the guessed non-empty Venn regions v, and the recursive
call of the algorithm with input Cv was successful. By induction, we can assume
that this implies the existence of a model Iv of Cv with a witness ev. We create
a disjoint copy of Iv where the witness is replaced by di. Our interpretation I
consists of the disjoint union of these copies, for i = 1, . . . ,m, together with d0,
where d0 is linked by roles to the witnesses d1, . . . , dm as described above. A
simple induction proof over the nesting depth of successor restrictions in C can
be used to show that I is a model of C with witness d0.
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To show completeness (i.e., if C is satisfiable, then the algorithm succeeds), as-
sume that I is a model of C with witness d0. Then the membership and non-
membership of d0 in the top-level atoms of C provides us with a truth assignment
that satisfies the propositional formula corresponding to C. Thus, the first step of
the algorithm succeeds if we guess this assignment. Let d1, . . . , dm be the finitely
many role successors of d0 in I. We can use the membership of these successors
in rI(d0) for r ∈ NR and in DI for concept descriptions D occurring in successor
restrictions on the top-level of C to obtain assignments of subsets of {d1, . . . , dm}
to the set variables Xr and XD. The fact that d0 ∈ CI implies that the result-
ing assignment is a solution of the QFBAPA formula φ′ constructed in Step 2 of
the algorithm. However, this solution is not necessarily a solution of one of the
formulae ψ extending φ′ corresponding to the guesses of ≤ N non-empty Venn
regions. In fact, the assignment induced by I may make more than N Venn re-
gions non-empty. In this case, it cannot solve any of the formulae ψ constructed
in Step 2 of the algorithm. However, since φ′ is solvable, by Lemma 6 it also
has a solution that (i) makes ≤ N Venn regions non-empty, and (ii) only makes
Venn regions non-empty that are also non-empty w.r.t. the solution induced by
I. Thus, we can guess the set of Venn regions that are non-empty in such a
solution. This ensures that the corresponding formula ψ has a solution. Because
of (ii), each of the guessed Venn regions v has a satisfiable concept Cv since these
Venn regions (and the corresponding concepts) are actually populated by one of
the elements d1, . . . , dm of I. ut

6 Satisfiability in ALCSCC w.r.t. GCIs

Recall that the ALCSCC concept description C is satisfiable w.r.t. a TBox T
if there is a model I of T and an element d ∈ ∆I such that d ∈ CI . We call
I a model of C w.r.t. T and d a witness for the satisfaction of C w.r.t. T in
I. ExpTime-hardness of satisfiability in ALCSCC w.r.t. a TBox is an obvious
consequence of the fact that satisfiability w.r.t. a TBox in the sublogic ALC of
ALCSCC is already ExpTime-complete [17]. Thus, it is sufficient to show that
satisfiability w.r.t. a TBox can be decided using only exponential time.

It is well-known that one can assume without loss of generality that the TBox
consists of a single GCI of the form> v D. In fact, the TBox {C1 v D1, . . . , Cn v
Dn} has obviously the same models as the TBox {> v (¬C1tD1)u . . .u (¬Cnt
Dn)}. Thus, in the following we assume that C0 is anALCSCC concept description
and T = {> v D0} an ALCSCC TBox. We want to test whether C0 is satisfiable
w.r.t. T .

A simple approach for showing that the satisfiability problem w.r.t. a TBox in
a given DL is in ExpTime is type elimination [15, 16]. Basically, given a set of
concept descriptions S, the type of an individual in an interpretation consists
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of the elements of S to which the individual belongs. If the set S contains the
concept description D0, then the type of any individual in a model of T must
contain D0. In addition, any witness for the satisfaction of C0 w.r.t. T must
contain C0 in its type. Finally successor constraints occurring in the type of an
individual imply that there exist other individuals whose types satisfy these con-
straints. For example, if there is an individual whose type contains the constraint
succ(|r∩C| > 0), which corresponds to the existential restriction ∃r.C, then there
must be an individual in the interpretation whose type contains C. Type elimi-
nation tries to find a collection of types that are exactly the types of a model I of
C0 w.r.t. T by starting with all possible types and eliminating those that contain
successor constraints that cannot be satisfied by the still available types. For this
to work correctly, the set S must contain sufficiently many concept descriptions.
We assume in the following, that S contains all subdescriptions of C0 and D0 as
well as the negations of these subdescriptions.

Definition 8 A subset t of S is a type for C0 and T if it satisfies the following
properties:

• D0 ∈ t;

• for every concept description ¬C ∈ S, either C or ¬C belongs to t;5

• for every concept description C uD ∈ S, we have that C uD ∈ t iff C ∈ t
and D ∈ t;

• for every concept description C tD ∈ S, we have that C tD ∈ t iff C ∈ t
or D ∈ t.

Given a model I of T and an individual d ∈ ∆I , the type of d is the set

tI(d) := {C ∈ S | d ∈ CI}.

It is easy to show that the type of an individual in a model of T really satisfies
the conditions stated in the definition of a type.

Intuitively, these conditions take care of the TBox and of the semantics of the
Boolean operation. However, we must also take the successor constraints into
account. Given a type t, the (possibly negated) successor constraints in t induce a
QFBAPA formula φt in the obvious way.6 Obviously, if t = tI(d) for an individual
in a model of T , then the corresponding QFBAPA formula φt has a solution in
which the universal set U consists of all the role successors of d, and the other set

5Note the exclusive or, i.e., it is not possible that a concept description and its negation is
contained in a type.

6This is just like the QFBAPA formula φ obtained from a Boolean valuation in our PSpace
algorithm in the previous section.
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variables are assigned sets according to the interpretations of roles and concept
descriptions in the model. In order to do type elimination, however, we also
need to know which are the non-empty Venn regions in this solution. Again, it is
sufficient to look at solutions for which only a polynomial number of Venn regions
are non-empty.

To be more precise, given a type t, we consider the corresponding QFBAPA
formula φt, and conjoin to this formula the set constraint Xr1 ∪ . . . ∪ Xrn = U ,
where NR = {r1, . . . , rn}. For the resulting formula φ′t, we compute the number
Nt that bounds the number of Venn regions that need to be non-empty in a
solution of φ′t (see Lemma 6).

Definition 9 An augmented type (t, V ) for C0 and T consists of a type t for C0

and T together with a set of Venn region V such that |V | ≤ Nt and the formula
φ′t has a solution in which exactly the Venn regions in V are non-empty.

The existence of a solution of φ′t in which exactly the Venn regions in V are
non-empty can obviously be checked (within NP) by adding to φ′t conjuncts that
state non-emptiness of the Venn regions in V and the fact that the union of these
Venn regions is the universal set (see the description of the PSpace algorithm in
the proof of Theorem 7). Another easy to show observation is that there are only
exponentially many augmented types.

Lemma 10 The set of augmented types for C0 and T contains at most expo-
nentially many elements in the size of C0 and D0 and it can be computed in
exponential time.

Proof. Since the cardinality of the set S is polynomial in the size of C0 and D0,
there are only exponentially many subsets of S, and for each of these subsets it
can be tested in polynomial time whether it satisfies the conditions required for
a type. Now, for each type t we can compute the number Nt in polynomial time
and the value of this number is polynomial in the size of φ′t, and thus of the size
of C0 and D0. There are exponentially many Venn regions, and thus the set of
all sets of Venn regions has double-exponential cardinality. However, there are
only exponentially many such sets of cardinality ≤ Nt, and we can generate all
of them in exponential time. Given such a set V , we have already argued above
why we can test (in NP, and thus in exponential time) whether (t, V ) satisfies the
conditions required for an augmented type. ut

Basically, type elimination starts with the set of all augmented types, and then
successively eliminates augmented types whose Venn regions are not realized by
the currently available augmented types. To make this more precise, assume that
A is a set of augmented types and that v is a Venn region. The Venn region v
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yields a concept description Cv (see the description of the PSpace algorithm in
the proof of Theorem 7), and it is easy to see that Cv is actually a conjunction
of elements of S (modulo removal of double negation). We say that v is realized
by A if there is an augmented type (t, V ) ∈ A such that every conjunct of Cv is
an element of t.

Theorem 11 Satisfiability of ALCSCC concept descriptions w.r.t. a TBox is
ExpTime-complete.

Proof. Given an ALCSCC concept description C0 and a TBox T = {> v D0},
the type elimination algorithm for deciding satisfiability of C0 w.r.t. T proceeds
as follows:

1. Compute the set S consisting of all subdescriptions of C0 and D0 as well as
the negations of these subdescriptions, and continue with the next step.

2. Based on S, compute the set A of all augmented types for C0 and T , and
continue with the next step.

3. If the current set A of augmented types is empty, then the algorithm fails.
Otherwise, check whether A contains an element (t, V ) such that not all
the Venn regions in V are realized by A. If there is no such element (t, V )
in A, then continue with the next step. Otherwise, let (t, V ) be such an
element, and set A := A\ {(t, V )}. Continue with this step, but now using
the new current set of augmented types.

4. If A contains an augmented type (t, V ) such that C0 ∈ t, then the algorithm
succeeds. Otherwise, the algorithm fails.

This algorithm indeed runs in exponential time since

• Step 1 can obviously be performed in polynomial time;

• according to Lemma 10, Step 2 can be performed in exponential time;

• Step 3 can be iterated only an exponentially number of times since each time
one augmented type is removed, and there are only exponentially many
to start with. Every single execution of Step 3 takes exponential time
since at most exponentially many augmented types and Venn regions need
to be considered when testing whether every Venn region occurring in an
augmented type of A is realized in A;

• in Step 4, at most exponentially many augmented types need to be checked
as to whether their first component contains C0.
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Regarding soundness (i.e., if the algorithm succeeds, then C0 is indeed satisfiable
w.r.t. T ), we show how the set of augmented types A computed by a successful
run of the algorithm can be used to construct a model I of C0 w.r.t. T . This
model contains, for every augmented type (t, V ) ∈ A countably infinitely many
copies, i.e.,

∆I := {(t, V )i | (t, V ) ∈ A and i ≥ 0}.

The interpretation of the concept names A is based on the occurrence of these
names in the first component of an augmented type, i.e.,

AI := {(t, V )i ∈ ∆I | A ∈ t}.

Defining the interpretation of the role names is a bit more tricky. Obviously, it
is sufficient to define, for each role name r ∈ NR and each d ∈ ∆I , the set rI(d).
Thus, consider an element (t, V )i ∈ ∆I . Since (t, V ) is an augmented type in
A, the formula φ′t has a solution σ in which exactly the Venn regions in V are
non-empty. In addition, each Venn region v ∈ V is realized by an augmented
type (tv, V v) ∈ A. Assume that the solution σ assigns the finite set {d1, . . . , dm}
to the set term U . We consider a injective mapping π of {d1, . . . , dm} into ∆I

such that the following holds for each element dj of {d1, . . . , dm}: if dj belongs to
the Venn region v ∈ V , then π(dj) = (tv, V v)` for some ` ≥ 0. We now define

rI((t, V )i) := {π(dj) | dj ∈ σ(Xr)}.

Soundness of our algorithm is now an easy consequence of the following claim:

Claim: For all C ∈ S, (t, V ) ∈ A, and i ≥ 0 we have C ∈ t iff (t, V )i ∈ CI.

We prove the claim by induction on the size of C:

• If C = A for a concept name A, then the claim immediately follows from
the definition of AI .

• If C = ¬D, then we know by induction that D ∈ t iff (t, V )i ∈ DI . Thus
we have C ∈ t iff D 6∈ t iff (t, V )i 6∈ DI iff (t, V )i ∈ CI , where the first
equivalence follows from the definition of types, the second by induction,
and the third by the semantics of negation.

• If C = D1 u D2, then we similarly have C ∈ t iff D1 ∈ t and D2 ∈ t iff
(t, V )i ∈ D1 and (t, V )i ∈ D2 iff (t, V )i ∈ CI .

• The case C = D1 tD2 can be handled analogously.

• Now assume that C = succ(c) for a set or cardinality constraint c.

– If C ∈ t, then this constraint is part of the QFBAPA formula φ′t
obtained from t, and thus satisfied by the solution σ of φ′t used to
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define the role successors of (t, V )i. According to this definition, there
is a 1–1 correspondence between the elements of σ(U) and the role
successors of (t, V )i. This bijection π also respects the assignment of
subsets of σ(U) to set variables of the form Xr (for r ∈ NR) and XD

(for concept descriptions D) occurring in φ′t, i.e.,

(∗) dj ∈ σ(Xr) iff π(dj) ∈ rI((t, V )i) and dj ∈ σ(XD) iff π(dj) ∈ DI .

Once (∗) is shown it is clear that (t, V )i ∈ succ(c)I = CI . In fact,
the translation φc of c, where r is replaced by Xr and D by XD, is a
conjunct in φ′t and thus σ satisfies φc. Now (∗) shows that the mapping
Id for d = (t, V )i coincides with σ (modulo the replacement of r by
Xr and D by XD), and thus the fact that σ satisfies φc implies that
Id satisfies c.
For role names r, property (∗) is immediate by the definition of rI((t, V )i).
Now consider a concept descriptionD such thatXD occurs in φ′t. Then
D occurs in c, and is thus smaller than C, which means that we can
apply induction to it. If dj ∈ σ(XD), then the Venn region v to which
dj belongs contains XD positively. Consequently, Cv contains D as a
conjunct, and the augmented type (tv, V v) realizing v satisfies D ∈ tv.
By induction, we obtain π(dj) = (tv, V v)` ∈ DI . Conversely, assume
that π(dj) = (tv, V v)` ∈ DI , where v is the Venn region to which dj
belongs w.r.t. σ. By induction, we obtain D ∈ tv, and thus the Venn
region v contains XD positively. Since dj belongs to this Venn region,
we obtain dj ∈ σ(XD).

– The case where C 6∈ t can be treated similarly. In fact, in this case the
constraint ¬c is part of the QFBAPA formula φ′t obtained from t, and
we can employ the same argument as above, just using ¬c instead of
c.

This completes the last case of our induction proof, and thus finishes the
proof of the claim.

The claim can now be used to show that I is indeed a model of C0 w.r.t. T .
Firstly, since every augmented type (t, V ) ∈ A satisfies D0 ∈ t by Definition 8,
the claim yields (t, V )i ∈ DI0 for all i ≥ 0, and thus every element of ∆I satisfies
the GCI > v D0. Consequently, I is indeed a model of T . Secondly, since the
algorithm has terminated successfully, A contains an augmented type (t, V ) such
that C0 ∈ t. This implies (t, V )i ∈ CI0 for all i ≥ 0, and thus I indeed contains a
witness (actually, infinitely many) for the satisfaction of C0 in I. This completes
the proof of soundness of our algorithm.

To show completeness (i.e., if C0 is satisfiable w.r.t. T , then the algorithm suc-
ceeds), assume that I is a model of C0 with witness d0. Consider the set of all
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types of elements of I, i.e.,

t(I) := {tI(d) | d ∈ ∆I}.

Since I is a model of T , the set t(I) is indeed a set of types according to Defini-
tion 8. In addition, we have C0 ∈ tI(d0) since d0 is a witness for the satisfaction
of C0. Let us now extend the types in t(I) by adding appropriate Venn regions
as second components. Consider t := tI(d) for an element d ∈ ∆I . Then the
QFBAPA formula φ′t corresponding to t has a solution σ in which the universal
set U consists of all the role successors of d, and the other set variables are as-
signed sets according to the interpretations of roles and concept descriptions in
the model I. Let {d1, . . . , dm} = σ(U) be the set of all role successors of d, and
vi the Venn region to which di belongs w.r.t. σ. By Lemma 6, there is a solution
σ′ of φ′t such that the set V of non-empty Venn regions w.r.t. σ′ has cardinality
≤ Nt and each of these non-empty Venn regions in V is one of the Venn regions
vi, i.e., V ⊆ {v1 . . . , vm}. By construction, (t, V ) is an augmented type. Let A(I)
denote the set of augmented types obtained by extending the types in t(I) in this
way.

We claim that the Venn regions occurring in some augmented type in A(I) are
realized by A(I). Thus, let (t, V ) be an augmented type constructed from a type
t = tI(d) as described above, and let v ∈ V be a Venn region occurring in this
augmented type. Then there is a role successor di of d such that di belongs to
the Venn region v = vi w.r.t. the solution σ of φ′t used in the construction. We
know that di ∈ CIvi , and thus every conjunct of Cv = Cvi is an element of tI(di).
Since A(I) contains an augmented type with first component tI(di), this shows
that v is realized by A(I).

Using the fact that the Venn regions occurring in some augmented type in A(I)
are realized by A(I), it is easy to show that no element of A(I) can be removed
during type elimination, i.e., during the whole run of the algorithm we have
A(I) ⊆ A. Since A(I) is non-empty (due to the fact that ∆I 6= ∅) and contains
an augmented type with first component tI(d0), this shows that the algorithm
cannot fail. This completes the proof of completeness, and thus of the theorem.

ut

7 Related work and future work

The work most closely related to ours is the one by Ohlbach and Koehler [14]
and by Demri and Lugiez [5].

Demri and Lugiez introduce the modal logic EML, which allows for arithmetic
constraints on the cardinality of successors w.r.t. the transition relations R and
for automata-based constraints of the form AR(φ1, . . . , φn). Here, A is a finite
automaton on finite words, for which there is a 1–1-relationship between the
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formulae φ1, . . . , φn and the alphabet Σ = {a1, . . . , an} over which the words
are built. A world (i.e., element of a Kripke structure) satisfies the constraint
AR(φ1, . . . , φn) if the ordered collection of R-successors of this world satisfies a
pattern accepted by A. For example, if n = 2 and A accepts the regular language
a1a

∗
2a1, the world needs to have finitely many successors such that the first and

the last one satisfy φ1 and the other successors satisfy φ2.

Demri and Lugiez show that the satisfiability problem is PSpace-complete for
EML. Using the well-known connection between DLs and modal logics [17], it
is easy to see that Demri and Lugiez’s logic EML without the automata-based
constraints is equivalent to the logic introduced in the present paper. Thus,
their “in PSpace” result implies our Theorem 7; however their proof of this result
is considerably more complex than ours due to the presence of automata-based
constraints. But even disregarding the treatment of these constraints, their proof
is quite different from ours. Since this is not usually considered for modal logics,
Demri and Lugiez do not show a result corresponding to our ExpTime result for
satisfiability w.r.t. a TBox.

Like ours, the work by Ohlbach and Koehler also allows for Boolean set terms
and arithmetic constraints on the cardinality of role successors. On the one hand,
this work is more general than ours in that the authors allow also for bridging
functions other than cardinality from successors sets into the arithmetic domain.
Actually, while the authors of [14] use the cardinality function in most of their
examples, the formal problem specification (Definition 4 in [14]) only requires the
bridging functions to satisfy an additivity axiom (Definition 3 in [14]), which in
the case of cardinality says:

If x ∩ y = ∅ then |x ∪ y| = |x|+ |y|.

It is not clear whether reasoning is done w.r.t. all possible bridging functions
satisfying the additivity axiom or w.r.t. specific bridging functions such as cardi-
nality.

On the other hand, the set expressions in [14] can only contain roles and not
complex concept descriptions. However, a combination of value restrictions on
subroles and cardinality constraints on these subroles can simulate this expres-
siveness. For example, as pointed out in [14], a qualified number restriction such
as >n r.C can be expressed as succ(r′ ⊆ C) u succ(r′ ⊆ r) u succ(|r′| ≥ n),
where r′ is a newly introduced role name.7 Similarly, 6n r.C can be expressed as
succ(r′ ⊆ C)u succ(r∩ r′c ⊆ ¬C)u succ(r′ ⊆ r)u succ(|r′| ≤ n). More generally,
one can replace the concept description C within a successor constraint by the
new role name r′ if one conjoins r′ ⊆ C and r′c ⊆ ¬C to this constraint.

The major difference to our work is, however, that Ohlbach and Koehler [14] give
7Note that [14] actually uses a different syntax for cardinality restrictions on role successors.

To avoid having to introduce another syntax, we have translated this into our syntax. The
constraint succ(r′ ⊆ C) expresses the value restriction ∀r′.C.
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only decidability results and no complexity results. Due to the fact that they
consider all Venn regions and also resolve Boolean reasoning on the Description
Logic side using disjunctive normal form, the complexity of their decision proce-
dures is considerably higher than the upper bounds we show. In addition, they
do not consider GCIs in their work. Even without GCIs, the complexity of the
unoptimized procedure in [14] is probably non-deterministic-exponential since an
NP procedure solving the arithmetic constraints is applied to a potentially expo-
nentially large constraint system.

The emphasis of the current paper was on showing worst-case optimal complexity
results, and thus the algorithms as described here cannot directly be used for im-
plementation purposes. To make the PSpace algorithm more practical, guessing
would need to be replaced by SAT solving. Such an algorithm would need to
combine (similarly to SMT solvers) an efficient SAT solver with a solver for QF-
BAPA and with a recursive application of itself. Type elimination is exponential
also in the best case since it first computes an exponential number of (augmented)
types and only then starts the elimination process. Instead, one could use an al-
gorithm similar to the practically more efficient version of the PSpace algorithm
just sketched. However, due to the presence of GCIs, the recursion depth of re-
cursive calls is no longer bounded. Thus, one would need to ensure termination
by an appropriate blocking strategy, similar to what tableau-based algorithms
use. One could also try to design tablau-based satisfiability algorithms, but then
needs to be very careful to avoid the problems caused by the “naive idea” sketched
below Example 5 when backtracking.

Acknowledgment. The author thanks Viktor Kuncak for helpful discussions
regarding the proof of Lemma 6.
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