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Abstract. Defeasible Description Logics (DDLs) extend Description Logics with defea-
sible concept inclusions. Reasoning in DDLs often employs rational or relevant closure
according to the (propositional) KLM postulates. If in DDLs with quantification a de-
feasible subsumption relationship holds between concepts, this relationship might also
hold if these concepts appear in existential restrictions. Such nested defeasible subsump-
tion relationships were not detected by earlier reasoning algorithms—neither for rational
nor relevant closure. In this report, we present a new approach for EL⊥ that alleviates
this problem for relevant closure (the strongest form of preferential reasoning currently
investigated) by the use of typicality models that extend classical canonical models by
domain elements that individually satisfy any amount of consistent defeasible knowledge.
We also show that a certain restriction on the domain of the typicality models in this
approach yields inference results that correspond to the (weaker) more commonly known
rational closure.

1 Introduction

Description Logics (DLs) are usually decidable fragments of First Order Logic. In DLs concepts
describe groups of objects by means of other concepts (unary FOL predicates) and roles (binary
relations). Such concepts can be related to other concepts as sub- and super-concepts in the
TBox which is essentially a theory constraining the interpretation of the concepts. One of the
main reasoning problems in DLs is to compute subsumption relationships between two given
concepts, i.e., decide whether all instances of one concept must be necessarily instances of the
other (w.r.t. the TBox).

While classical DLs allow only for monotonic reasoning, defeasible DLs admit a form of non-
monotonic reasoning and have been intensively studied in the last years [6,7,8,4,5,9]. Most
defeasible DLs allow to state relationships between concepts by defeasible concept inclusions
(DCIs), which characterise typical instances of a concept and can be overwritten by more specific
information that would otherwise cause an inconsistency. Often the semantics of defeasible DLs
is based on a translation of propositional preferential and (the stronger) rational reasoning
for conditional knowledge bases introduced by Kraus, Lehmann and Magidor (KLM) in [11]
to DLs. Recent studies on DDLs investigate different semantics, such as a typicality operator
under preferential model semantics in [9], a syntactic materialisation-based approach in [6,5],
characterised with a different kind of preferential model semantics in [4], and extensions of
rational reasoning to the inferentially stronger lexicographic and relevant closure in [5,8].

We consider here an extension of the lightweight DL EL. In this DL complex concepts are built
by conjunctions and existential restrictions, which are a form of quantification and clearly not
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expressible by propositional logic. It is well-known that the DL EL enjoys good computational
properties: subsumption can be computed in polynomial time [3]. Despite its moderate expres-
sivity, many applications rely on EL, predominantly the bio-medical domain and semantic web
applications using on the web ontology language and its OWL 2 EL profile. In contrast to EL,
its extension EL⊥ can express disjointness of concepts and thus inconsistencies. The ability to
express inconsistencies renders reasoning in its defeasible variant non-trivial. We consider in
this report non-monotonic subsumption in defeasible EL⊥ under two kinds of closures: relevant
and rational closure. We develop our reasoning algorithm for the stronger relevant closure and
then can treat the rational closure as a special case.

In [6] Casini et al. showed that the complexity of non-monotonic subsumption coincides with
the complexity of classical reasoning of the underlying DL and devise reasoning algorithms for
defeasible subsumption under rational and relevant closure. Their algorithm uses a reduction to
classical reasoning and thereby allows to employ highly optimised classical DL reasoners for the
reasoning task. Their reduction uses materialisation, where the idea is to encode one consistent
subset of the defeasible statements in one concept which is then used in the classical subsumption
query as an additional constraint for the (potential) sub-concept in the query. Essentially, the
algorithms for the two types of closure differ in the subsets of DCIs from the knowledge base
they use for reasoning. While rational closure utilises only a single sequence of decreasing subsets
of DCIs, the stronger relevant closure admits any such subset during reasoning. Thus relevant
reasoning is done w.r.t. a lattice of DCI sets which include more combinations of DCIs and can
potentially lead to more fine-grained entailments. However, neither of the resulting algorithms
in [5,6,8] is complete in the sense that not all expected subsumption relationships are inferred.
The reason is, that defeasible knowledge is not propagated to concepts nested in existential
restrictions and thus even un-defeated knowledge is omitted during reasoning.

The goal of this report is to devise a reduction algorithm for reasoning under relevant closure
for EL⊥ that derives defeasible knowledge for concepts nested in existential restrictions. To
this end, we introduce a kind of canonical model that is able to represent concept instances of
differing typicality, i.e. instances of the same concept that satisfy different sets of DCIs. These
so-called typicality models are an extension of the well-known canonical models for classical
DLs of the EL family where the interpretation domain consists of elements representing the
concepts occurring in the TBox. Now, typicality models have representatives for each pair of a
concept occurring in the TBox and a set of defeasible statements. Thus, for the case of relevant
closure such typicality models are built over a lattice-shaped domain according to the lattice
of DCI subsets. For a simple form of these typicality models we show that it results in the
same entailments as the materialisation-based approach [5] for relevant closure. We extend the
simple typicality models to remedy the mentioned shortcoming regarding existential restrictions.
The main idea is, to admit in this kind of model differing “amounts” of consistent defeasible
information for different occurrences of the same nested concept.

The semantics of the resulting closure actually depends on which subsets of DCIs are considered.
The relevant closure requires the whole powerset, i.e. the full lattice of subsets, while for the
rational closure a (particular) sequence of decreasing subsets of the set of DCIs is sufficient.
Therefore we present the technical results on the more general approach for relevant closure
using the DCI lattice first. Then we treat the special case that uses a sequence of decreasing
subsets of the set of DCIs to obtain rational reasoning in the second part of this report. Results
presented here are individually published for relevant [13] and rational closure [12], respectively.

This report is structured as follows: the next section introduces the basic notions of (D)DLs and
EL⊥. Section 3 recalls the materialisation-based approach for rational and relevant closure and
investigates their shortcomings. Section 4 introduces minimal typicality models over a lattice
domain and shows that the same subsumption relationships under relevant closure can be
inferred as by the materialisation-based approach from [5]. In Section 5 we extend these models
to maximal typicality models over a lattice domain and show that these allow to obtain the
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formerly omitted entailments. We present a specialisation of the approach for relevant reasoning
for rational reasoning in [12] and illustrate how the more general results shown in Sections 4
and 5 apply to the weaker form of reasoning in Section 6. The report ends with conclusions and
an outlook to future work.

2 Preliminaries

We introduce here the basic notions of (defeasible) DLs and their inferences. Starting from the
two disjoint sets NC of concept names and NR of role names, complex concepts can be defined
inductively. Let C and D be EL-concepts and r ∈ NR, then (complex) EL-concepts are:

– named concepts A (A ∈ NC),
– the top-concept >,
– conjunctions C uD, and
– existential restrictions ∃r.C.

The DL EL⊥ extends EL by the bottom-concept ⊥, which can be used in conjunctions and
existential restrictions. We occasionally also use the concepts negation ¬C and disjunction
C tD.

The semantics of concepts is given by means of interpretations. An interpretation I = (∆I , ·I)
consists of an interpretation domain ∆I and a mapping function that assigns subsets of the
domain ∆I to concept names and binary relations over ∆I to role names. The top-concept is
interpreted as the whole domain (>I = ∆I) and the bottom-concept as the empty set (⊥I = ∅).
The complex concepts are interpreted as follows:

– (C uD)I = CI ∩DI ,
– (¬C)I = ∆I \ CI ,
– (C tD)I = CI ∪DI , and
– (∃r.C)I = {d ∈ ∆I | ∃e.(d, e) ∈ rI and e ∈ CI}.

If in an interpretation I (d, e) ∈ rI holds, then e is called a role successor of d.

DL ontologies can state (monotonous) relationships between concepts. Let C andD be concepts.
A general concept inclusion axiom (GCI) is of the form: C v D. A TBox T is a finite set of
GCIs. A concept C is satisfied by an interpretation I iff CI 6= ∅. A GCI C v D is satisfied
in an interpretation I, iff CI ⊆ DI (written I |= C v D). An interpretation I is a model
of a TBox T , iff I satisfies all GCIs in T (written I |= T). Based on the notion of a model,
DL reasoning problems are defined. A concept is consistent w.r.t. a TBox T iff some model
of T satisfies the concept. A concept C is subsumed by a concept D w.r.t. a TBox T (written
C vT D) iff CI ⊆ DI holds in all models I of T . Two TBoxes T1 and T2 are equivalent, iff
I |= T1 ⇐⇒ I |= T2 holds for all interpretations I.

As a side note, we shall use =⇒, ⇐= and ⇐⇒ as propositional implications (equivalence) in
proofs or explanations to improve the overall readability of this report.

Several proofs in this report use product interpretations and the closure property of product
models.

Definition 1. Given two interpretations I and J . The product interpretation of I and J is
defined as I × J = (∆I ×∆J , ·I×J ), where
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– AI×J = AI ×AJ (A ∈ NC)
– rI×J = {((a, b), (c, d)) | (a, c) ∈ rI ∧ (b, d) ∈ rJ } (r ∈ NR).

Lemma 2. The set of models of a given EL⊥ TBox T is closed under product.

Proof. Let I and J be models of T . As a stepping stone in this proof we show

CI × CJ = CI×J (1)

by induction on the structure of EL⊥ concepts C. The base case for C = Y with Y ∈ {A,>,⊥}
(A ∈ NC) is trivial by Definition 1. The induction hypothesis is XI × XJ = XI×J for X ∈
{D,E}. For the case C = D u E, we obtain

(D u E)I × (D u E)J = (DI ∩ EI)× (DJ ∩ EJ )
= (DI ×DJ ) ∩ (EI × EJ )
= DI×J ∩ EI×J

= (D u E)I×J .

For the case C = ∃r.D,

(∃r.D)I × (∃r.D)J

= {d ∈ ∆I | ∃e ∈ ∆I .(d, e) ∈ rI ∧ e ∈ DI} × {d′ ∈ ∆J | ∃e′ ∈ ∆J .(d′, e′) ∈ rJ ∧ e′ ∈ DJ }
= {(d, d′) ∈ ∆I ×∆J | ∃e ∈ ∆I , e′ ∈ ∆J .(d, e) ∈ rI ∧ (d′, e′) ∈ rJ ∧ e ∈ DI ∧ e′ ∈ DJ }
= {(d, d′) ∈ ∆I ×∆J | ∃(e, e′) ∈ ∆I×J .((d, d′), (e, e′)) ∈ rI×J ∧ (e, e′) ∈ DI×J }
= (∃r.D)I×J .

Now it is not hard to show that for any two interpretations I,J and an EL⊥ TBox T ,

I|=T ∧ J |=T =⇒ I × J |=T .

For a GCI C v D ∈ T , CI ⊆ DI and CJ ⊆ DJ directly implies CI × CJ ⊆ DI ×DJ , which
by (1) implies CI×J ⊆ DI×J , thus I × J |= T . ut

We fix some notation to access parts of knowledge bases or concepts. Let X denote a concept
or a TBox, then sig(X) denotes the signature of X. We define sigNC

(X) = sig(X) ∩ NC and
sigNR

(X) = sig(X)∩NR. We also define the set Qc(X) of quantified concepts inX as F ∈ Qc(X)
iff ∃r.F syntactically occurs in X for some r ∈ NR.

In extensions of EL that are in the Horn fragment of DLs, canonical models are widely used for
reasoning [3]. For an EL⊥-TBox T , the canonical model IT = (∆, ·IT) of T with ∆ = {dF | F ∈
Qc(T )} has the mapping function satisfying the conditions:

– dF ∈ AIT iff F vT A and
– (dF , dG) ∈ rIT iff F vT ∃r.G.

Once the canonical model is computed, subsumption relationships between concepts can be
directly read-off from it [3,1].

In defeasible DLs it can be stated that a concept is subsumed by another concept as long as there
is no contradicting information. A defeasible concept inclusion (DCI) is of the form C @∼ D and
states that C usually entails D. A DBox D is a finite set of DCIs. A defeasible knowledge base
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(DKB) K = (T ,D) consists of a TBox T and a DBox D. The definitions for sig(X), sigNC
(X),

sigNR
(X) and Qc(X) extend to DBoxes or DKBs in the obvious way. A materialisation of a

DBox D is the concept D =
d
E@∼F∈D

(¬E t F ).

The semantics of DBoxes differ from the ones for TBoxes, since DCIs need not hold at each
element in the model whereas GCIs do. The satisfaction of DCIs for d ∈ ∆I is captured by
I, d |= D iff ∀G @∼ H ∈ D.d ∈ GI =⇒ d ∈ HI . Usually, the semantics of DBoxes is given
by means of ranked/ordered interpretations—called preferential model semantics [4,9]. Instead
of using these, we define a new kind of model for DKBs (in Sect. 4) that extends canonical
models for EL⊥. The main idea is to use several copies of the representatives, such as dF , for
each existentially quantified concept, where each copy satisfies a different set of DCIs from the
powerset of the DBox.

We want to develop a decision procedure for (defeasible) subsumption relationships between
concepts, say C and D, w.r.t. a given DKB K under relevant closure. For the remainder of the
report we make two simplifying assumptions for the sake of ease of presentation. We assume
w.l.o.g. that

1. concepts C and D appear syntactically in Qc(T) which can be achieved by adding ∃r.E v >
with E ∈ {C,D} to T and

2. all quantified concepts in K are consistent i.e., ∀F ∈ Qc(K).F 6vT ⊥ and thus ⊥ /∈ Qc(K).

To motivate our approach for reasoning under relevant closure in defeasible EL⊥, we discuss
first earlier approaches for this task and identify their main shortcoming.

3 Minimal Relevant Closure by Materialisation

We recall the reduction algorithms for reasoning by Casini et al. from [5]. Rational entailment
in [5] uses materialisation of DCIs to decide defeasible subsumptions C @∼ D w.r.t. a given DKB
K = (T ,D). Since C might be inconsistent w.r.t. the materialisation of the entire DBox D, the
algorithm needs to determine a subset D′ ⊆ D whose materialisation is consistent with C and
T in order to decide whether D′ u C vT D holds. To obtain D′, D is iteratively reduced to
that subset containing all DCIs whose left-hand sides are inconsistent in conjunction with the
materialisation of the current DBox:

E(D) = {C @∼ D ∈ D | T |= D u C v ⊥}.

They define E1(D) = E(D) and Ej(D) = E(Ej−1(D)) (for j > 1). Using E(), the DCIs in D can
be ranked according to their level of exceptionality, i.e., rK(G @∼ H) = i− 1, for the smallest i
s.t. G @∼ H 6∈ E

i(D), or rK(G @∼ H) =∞ if no such i exists. A DKB K = (T ,D) is well-separated
if no DCI in D has an infinite rank of exceptionality [4]. We assume w.l.o.g. that all DKBs
are well-separated: any DKB K = (T ,D) can be transformed into a well-separated DKB K′ by
testing a quadratic number of subsumptions in the size of D:

K′ =
(
T ∪ {C v ⊥ | rK(C @∼ D) =∞}, D \ {C @∼ D | rK(C @∼ D) =∞}

)
.

Based on the level of exceptionality rK(), the algorithm from [5] partitions the DBox D into
(E0, E1, . . . , En) where Ei = {G @∼ H ∈ D | rK(G @∼ H) = i}, i.e. D =

⋃n
i=0Ei. To find the

maximal (w.r.t. cardinality) subset D′ of D, whose materialisation is consistent with C and T
the procedure starts with D′ = D. If D′ uC vT ⊥, then Ei is removed from D′ for the smallest
not yet used i. This test and removal is done iteratively until a subset of D is reached whose
materialisation is consistent with C and T .
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While rational closure treats inconsistencies with the granularity of the partitions Ei, relevant
closure uses a more fine-grained treatment. To illustrate this, let G @∼ H ∈ E0 and assume that
C is only consistent with D \ E0 (or its subsets). In this situation

(¬G tH) u D \ E0 u C vT ⊥

need not hold, since the inconsistency may be due to other DCIs in E0. Still G @∼ H is never
used for reasoning about C. This effect is called inheritance blocking, as it might be possible
to include G @∼ H for reasoning about C, but other DCIs induce some inconsistency and so
block the inheritance of property G @∼ H for C. Relevant closure disregards only DCIs that
are relevant for the inconsistency of C, thereby averting inheritance blocking. General relevant
closure and two specific constructions (basic and minimal relevant closure) are introduced in
[5] in terms of justification.

Definition 3. Let K = (T ,D) be a DKB, J ⊆ D, and C a concept. J is a C-justification
w.r.t. K iff J u C vT ⊥ and J ′ u C 6vT ⊥ for all J ′ ⊂ J .

Let justifications(K, C) = (J1, . . . ,Jm) be the function that returns all C-justifications w.r.t.
K that are of minimal set cardinality. This set can be computed in exponential time [10].

To present a simplified (but equivalent) version of the algorithm from [5] for computing entail-
ment of defeasible subsumptions under minimal relevant semantics, we need to define theD′ ⊆ D
that is consistent with C and ultimately used for deciding D′ u C vT D. Let partition(D) =
(E0, . . . , En) be a function that computes the above defined partitioning of DBoxes and let
J ⊆ D. Then min(partition(D),J ) returns Ei for the smallest i, s.t. J ∩ Ei 6= ∅. Given
K = (T ,D) and the subsumption query C @∼ D, we define the rank-minimal part of all C-
justifications w.r.t. K as (M1, . . . ,Mm) for (J1, . . . ,Jm) = justifications(K, C), where Mi =
Ji ∩ min(partition(D),Ji), for 1 ≤ i ≤ m. In order to obtain a subset of D that is consis-
tent with C, at least one statement from every justification has to be removed from D. By a
preference of exceptionality rank1, the removed statements shall be the rank-minimal2 parts of
all justifications, i.e. D′ = D \ (

⋃m
i=1Mi). We denote non-monotonic entailments obtained by

minimal relevant closure and materialisation as |=relm and define it as

K |=relm C @∼ D iff D′ u C vT D

for K = (T ,D) and D′ as defined above.

The following example illustrates the problem of inheritance blocking caused by rational closure,
but not by minimal relevant closure.

Example 4. Let Kex1 = (Tex1,Dex1) with:

Tex1 = {Boss vWorker, Boss u ∃superior.Worker v ⊥},
Dex1 = {Worker @∼ ∃superior.Boss, Worker @∼ Productive,

Boss @∼ Responsible}, and
partition(Dex1) =

(
E0 = {Worker @∼ ∃superior.Boss, Worker @∼ Productive},
E1 = {Boss @∼ Responsible}

)
.

Rational closure detects the inconsistency Dex1uBoss vTex1 ⊥, but Dex1 \ E0uBoss 6vTex1 ⊥
holds. Thus Boss @∼ Worker uResponsible is entailed from Kex1, while Boss @∼ Productive is

1One could consider more refined preferences such as a quantitative ranking of DCIs, for instance.
2Removing only the rank-minimal parts characterises minimal relevant closure, for a slightly differ-

ent technique for the basic relevant closure see [5].
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not, even though the DCI Worker @∼ Productive does not cause the inconsistency of Boss. For
minimal relevant closure, J1 = {Worker @∼ ∃superior.Boss} is the only Boss-justification w.r.t.
Kex1. Therefore, the largest consistent DBox subset of Dex1 for reasoning about the concept
Boss is D′ = {Worker @∼ Productive, Boss @∼ Responsible} and providing the consequence
D′ uBoss vTex1

Productive.

Example 4 also illustrates the issue caused by employing materialisation that is addressed in this
report. Materialising the DCI Worker @∼ Productive to ¬Worker tProductive in conjunction
with ∃superior.Worker yields a concept that is not subsumed by ∃superior.Productive. The
defeasible information is unjustly disregarded when reasoning about quantified concepts yielding
uniformly non-typical role successors. Hence, in Example 4, both rational and relevant closure
(based on materialisation) are oblivious to the conclusion Worker @∼ ∃superior.Responsible.

4 Typicality Models for Propositional Relevant Entailment

In order to achieve relevant entailment also for quantified concepts, DCIs need to hold for con-
cepts in (nested) existential restrictions. A naive idea to extend the materialisation approach
is to enrich all concepts in existential restrictions with materialisations of the DBox. How-
ever, for Example 4, enriching the concept ∃superior.Boss with Worker @∼ ∃superior.Boss to
∃superior.(Boss u (¬Worker t ∃superior.Boss)) leads to infinitely many such enriching steps
(due to Boss v Worker). Instead, our approach is to extend the canonical models for the
classical members of the EL-family to DDLs. Our new kind of models captures varying numbers
of DCIs from a DKB to be satisfied by role successors. Their interpretation domain essentially
consist of copies of the domain of a classical canonical model for each set of DCIs. How many
such copies are introduced for the domain of a typicality model, or equivalently, how many sets
of DCIs are considered in the model can determine the semantics and thus the strength of the
resulting reasoning. For instance, in order to capture and satisfy any subset of DCIs from the
DBox, an exponential number of copies (in the size of the DBox) of the classical domain is
required. The shape of the domain containing these copies can be viewed as a lattice over the
subsets of the DBox. To develop the semantics for reasoning under nested relevant entailment
and an appropriate reasoning procedure we proceed in two steps:

1. We introduce minimal typicality models over a lattice domain where all domain elements
have non-typical role successors only, i.e., no role successor needs to satisfy any DCI. We
show that these minimal typicality models yield exactly the same subsumption relationships
as the materialisation-based relevant entailment in [5].

2. We extend minimal typicality models to maximal typicality models, where each role succes-
sor required by K is chosen such that it satisfies a subset of DCIs from D that is of maximal
cardinality while not causing an inconsistency. We define subsumption under nested relevant
entailment based on maximal typicality models over a lattice domain and show that these
models then yield more subsumption relationships than the materialisation-based relevant
entailment.

To devise an algorithm that computes the same entailments as materialisation-based relevant
entailment, we use the same subsets of the DBox based on justifications as Casini et al. in [5]
(and as discussed in Section 3). To decide the entailment of C @∼ D w.r.t. K = (T ,D), the
subset D′ of D is constructed by removing rank-minimal parts of all justifications relevant for
the inconsistency of C. Since we need to distinguish the subsets obtained from C-justifications
for different concepts C, we denote from now on, D′ = D \ (

⋃m
i=1Mi) as DC (e.g. for DX ⊆ D,

use X-justifications w.r.t. K).
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In order to infer all the undefeated facts for a concept F , the representative domain element of
F in a model needs to satisfy the largest subset of D that is still satisfiable together with the
TBox. If minimal relevant closure is used, this subset is obviously DF . Now, in EL⊥-concepts
a syntactical sub-concept F can occur in multiple existential restrictions, causing several role
successors in a model. These in turn might be able to satisfy any subset of DCIs of D “up to” DF
each. To be able to capture elements satisfying any such set of DCIs, typicality interpretations
(potentially) need a representative domain element for each subset of the given DBox D. To this
end we introduce typicality domains, where each domain element is associated with a concept
and a set of DCIs from D.

Definition 5. Let K = (T ,D) be a DKB. The domain ∆ is a typicality domain over K if the
domain elements are of the form dUF , where

– F ∈ Qc(K),
– U ⊆ D, and
– {d∅F | F ∈ Qc(K)} ⊆ ∆.

The set of represented subsets of D in ∆ is Γ (∆) = {U ⊆ D | ∃dUF ∈ ∆}. The shape of a
typicality domain is that of a

– sequence, if Γ (∆) is totally ordered by ⊆,
– lattice, if no further restrictions are imposed on Γ (∆).

Using the notion of differently shaped typicality domains, we can characterise different kinds of
typicality models, depending on the strength of reasoning we want to obtain. For the main part
of this report we consider relevant reasoning and therefore a lattice-shaped typicality domain
(or “lattice domain” for short).

Definition 6. An interpretation over a typicality domain is called a typicality interpretation.

Typicality interpretations are characterised by the elements of its domain being associated
with a set of DCIs and a concept, e.g. d∅F or dUC for U ⊆ D. Such an association is only
possible because a typicality domain is directly linked with a defeasible knowledge base, hence
we use: ∆ over the DKB K. As opposed to the classical case, our typicality interpretations are
therefore also directly associated with such a DKB. In particular, it does not make sense to
check whether a typicality interpretation I with the typicality domain ∆I over the DKB K
satisfies a different DKB K′ 6= K as the following definition reveals. Observe that a typicality
domain always contains representatives for each concept (occurring in existential restrictions)
that are associated with the empty set of DCIs. If in this report the shape of the underlying
typicality domain is not explicitly specified in the claims or proofs, the result applies to all
shapes. Typicality interpretations over a lattice domain are the basis for our relevant reasoning
semantics and we define under which conditions a DKB is satisfied in such interpretations.

Definition 7 (model of K). Let K = (T ,D) be a DKB. A typicality interpretation I =
(∆I , ·I) is a model of K (written I |= K) iff

1. I |= T and
2. I, dUF |= U for all dUF ∈ ∆I .

This definition ensures that a model of a DKB satisfies the TBox at each element and it satisfies
a subset U of the DBox at all elements associated with this subset. As stated before, typical-
ity models extend classical canonical models. As such, we want to characterise subsumption
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entailment by a typicality model in a similar way as for canonical models, where, in order to
determine C @∼T D, the representative domain element dC is checked for containment in DIT .
The main difference is, of course, that typicality models do not have one representative of a
concept C but several representatives, satisfying different sets of defeasible statements. Hence,
the resulting semantics of defeasible subsumption do not only depend on the shape of the under-
lying domain, but also on the representative element that is selected for extracting information
about subsumptions. Intuitively, this element should satisfy as many DCIs as possible. However,
for a lattice domain, there might be several domain elements satisfying sets of DCIs with the
same cardinality such that no representative satisfying a set of DCIs with higher cardinality is
consistent (and therefore exists in the interpretation). Nevertheless, for lattice shaped typicality
domains, we shall still select the unique representative dDC

C , satisfying the consistent set of DCIs
DC as constructed in [5] for minimal relevant closure. The reason for doing so is our aim to
recreate the same entailment as in [5], before extending this result to consider role successors
satisfying as many DCIs as possible.

Definition 8. Let I be a typicality interpretation over a lattice domain. Then I satisfies a
defeasible subsumption C @∼ D (written I |= C @∼ D) iff dDC

C ∈ DI .

In order to reduce this reasoning problem to a classical one, we construct a model for K by
means of a TBox. We use auxiliary concept names from the set Naux

C ⊆ NC \sig(K) to introduce
representatives for all F ∈ Qc(K) for each subset of the given DBox.

Definition 9 (extended TBox). Given concept F and DBox D, we use FD ∈ Naux
C to define

the extended TBox of F w.r.t. D:

TD(F ) = T ∪ {FD v F} ∪ {FD uG v H | G @∼ H ∈ D}. (2)

In this definition {FD v F} ensures that all constraints on F hold for the auxiliary concept as
well. The last set of GCIs in Eq. (2) ensures that every element in F ID (for I |= TD(F )) satisfies
the DCIs in D.

To simplify upcoming proofs, we introduce the notion of witness models and show some of their
properties. The idea of a witness model is that it instantiates each named concept by a given
element.

Definition 10 (witness model). Let I = (∆I , ·I) be an interpretation, CD ∈ Naux
C , and let

o ∈ ∆I . The interpretation I(CD, o) = (∆I , ·I(CD,o)) with

– C
I(CD,o)
D = {o},

– ∀A ∈ NC \Naux
C .AI(CD,o) = AI , and

– rI(CD,o) = rI for all r ∈ NR.

is the witness model of I with o for CD. The element o is the witness element of I(CD, o).

The following proposition characterises the relation between witness models and their basis (i.e.
for I(CDi

, o), the basis is I) with regard to their property of being a model for a TBox T and
extended TBoxes T∅(C) and TDi

(C).

Proposition 11. For an EL⊥ TBox T with sig(T)∩Naux
C = ∅, DBox D with sig(D)∩Naux

C = ∅,
a concept C with sig(C) ∩ Naux

C = ∅, a (typicality) interpretation I and the concept name
CD ∈ Naux

C , the following holds
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1. o ∈ CI ∧ I |= T =⇒ I(C∅, o) |= T∅(C)
2. o ∈ CID ∧ I |= TD(C) =⇒ I(CD, o) |= TD(C)

Proof. In either case I |= T obviously implies I(CD, o) |= T since left- and right-hand sides of
GCIs in T clearly have the same extensions under both interpretations.

Claim 1 is easy to see, since T∅(C) = T ∪ {C∅ v C} and o ∈ CI implies CI(C∅,o)∅ ⊆ CI(C∅,o),
hence I(C∅, o) |= T∅(C).

For 2, we only need to show that all GCIs G v H ∈ TD(C) \ T are satisfied by I(CD, o). Since
CD /∈ sig(H), HI(CD,o) = HI and CI(CD,o)D = {o} ⊆ CID implies GI(CD,o) ⊆ GI in EL⊥.

Using the notion of witness models we can show that the auxiliary concept F∅ introduced in
the extended TBox T∅(F ) and the concept F from T have the same subsumers.

Proposition 12. Let T be a TBox and F,G be concepts with sig(G) ∩Naux
C = ∅.

Then F vT G iff F∅ vT∅(F ) G.

Proof. Note that T∅(F ) = T ∪ {F∅ v F}.

The direction F vT G =⇒ F∅ vT∅(F ) G follows by monotonicity of EL⊥ and transitivity of
subsumption, since F∅ v F ∈ T∅(F ). We show the other direction by contraposition. Assume
F 6vT G, i.e. there exists a model I of T s.t. F I 6⊆ GI . Let d ∈ F I and d /∈ GI . By 1 of
Proposition 11 it is clear, that I(F∅, d) |= T∅(F ) with d ∈ F

I(F∅,d)
∅ \GI(F∅,d). ut

To use typicality interpretations for reasoning under materialisation-based relevant entailment,
the DCIs from U ⊆ D need to be satisfied at the elements dUF representing F ∈ Qc(K), but not
(necessarily) for the role successors of these elements. In fact, it suffices to construct a typicality
interpretation of minimally typical role successors, i.e. to use only the TBox for reasoning about
role successors induced by existential restrictions. Such interpretations can be defined for general
typicality domains.

Definition 13. Let K = (T ,D) be a DKB and U ⊆ D. A minimal typicality model IK of K
consists of a typicality domain ∆IK with the property

dUF ∈ ∆IK ⇐⇒ FU 6vTU (F ) ⊥ (∗)

and an interpretation mapping that satisfies the following conditions for all dUF ∈ ∆IK :

– dUF ∈ AIK iff FU vTU (F ) A, for A ∈ sigNC
(K) and

– (dUF , d
∅
G) ∈ rIK iff FU vTU (F ) ∃r.G, for r ∈ sigNR

(K).

For a minimal typicality model IK we can show that dDC

C ∈ DIK (Definition 8) is equivalent to
reasoning with the extended TBox, i.e. deciding CDC

vTDC
(C) D as follows.

Proposition 14. For a given well–separated DKB K = (T ,D) and a minimal typicality model
IK over a typicality domain ∆IK , the following holds for all dUF ∈ ∆IK :

1. dUF ∈ F
IK
U

2. dUF ∈ GIK iff FU vTU (F ) G
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Proof. Claim 1 is trivial since FU ∈ NC and by Property (∗) in Definition 13, dUF ∈ ∆IK ⇐⇒
FU 6vTU (F ) ⊥.

We show 2 by induction on the structure of G. The base case, where G = A (A ∈ NC) follows
by Definition 13 as FU ∈ NC . The cases for G = > and G = ⊥ are both trivial. Assume the
property holds for two concepts D and E, the case of the induction step where G = D u E
follows quickly from the semantics of intersection and the induction hypothesis. It remains to
show the induction step for G = ∃r.E under the hypothesis dU

′

X ∈ EIK ⇐⇒ XU ′ vTU′ (X) E for
any dU

′

X ∈ ∆IK . dUF ∈ GIK implies ∃d∅X ∈ ∆IK .(dUF , d∅X) ∈ rIK ∧ d∅X ∈ EIK . By Definition 13
this implies FU vTU (F ) ∃r.X. By IH, d∅X ∈ EIK ⇐⇒ X∅ vT∅(X) E and thus, by Proposition
12 X vT E for a well–separated K. Thus T ⊆ TU (F ) implies FU vTU (F ) ∃r.E. For the other
direction, let FU vTU (F ) ∃r.E, 1 directly implies that dUF ∈ F

IK
U and thus dUF ∈ (∃r.E)IK = GIK .

ut

Proposition 14 is the main ingredient for showing that a minimal typicality model IK from
Definition 13 is in fact a model of the given DKB K according to Definition 7.

Lemma 15. Let K = (T ,D) be a DKB. Then, a minimal typicality model IK over a typicality
domain ∆IK over K is a model of K.

Proof. We need to show that 1 and 2 of Definition 7 hold for IK.

1. For all GCIs G v H ∈ T and any dUF ∈ ∆IK , dUF ∈ GIK iff FU vTU (F ) G by Proposition 14
and T ⊆ TU (F ) implies FU vTU (F ) H, which again by Proposition 14 holds iff dUF ∈ HIK .

2. For 2 of Definition 7 we can use a similar argument. For all dUF ∈ ∆IK and G @∼ H ∈ U we
need to show dUF ∈ GIK =⇒ dUF ∈ HIK . dUF ∈ GIK is equivalent to FU vTU (F ) G due to
Proposition 14, which implies FU ≡TU (F ) FU uG. G @∼ H ∈ U implies FU uG v H ∈ TU (F ),
thus FU vTU (F ) H which is again equivalent to dUF ∈ HIK by Proposition 14. ut

Using this result and Prop. 12, it is not hard to show that a minimal typicality model, restricted
to elements regarding the empty set of DCIs, yields the classical canonical model for the EL⊥
TBox T .

In order to recreate relevant (or rational) reasoning by materialisation using typicality interpre-
tations, we need to define our entailment semantics. We can achieve this with different results
by fixing the typicality domain of a minimal typicality model to a specific structure.

Definition 16. Let K = (T ,D) be a DKB. A minimal relevant typicality model LK is a minimal
typicality model over the lattice domain ∆LK = {dUF | F ∈ Qc(K),U ⊆ D, FU 6vTU (F ) ⊥}.

LK is well-defined, as ∆LK is clearly a lattice shaped typicality domain, due to the initial
assumption F 6vT ⊥ (for all F ∈ Qc(K)), which implies that all d∅F exist in ∆LK by Prop. 12.
Also,∆LK obviously satisfies property (∗) of Definition 13. Therefore Proposition 14 and Lemma
15 apply to LK and we can deduce that LK satsfies K according to Definition 7. The minimal
relevant typicality model need not use the complete lattice domain of 2|D|∗|Qc(K)| elements due
to inconsistent combinations of the represented concept F , U and T . We use LK to characterise
relevant entailment.

Example 17 (Minimal typicality model). Consider again the DKB Kex1 from Example 4 with the
consistent subsets of the DBox DWorker = Dex1, and DBoss = {Worker @∼ Productive, Boss @∼
Responsible} w.r.t. Worker and Boss, respectively. The subset-lattice of Dex1 and LKex1 are
illustrated in Figure 1 using obvious abbreviations and omitting labels for clarity. Note, that
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B @∼ R
W @∼ P ,
W @∼ ∃s.B,

B @∼ R
W @∼ P ,

B @∼ R
W @∼ ∃s.B,

W @∼ P
W @∼ ∃s.B,

B @∼ R W @∼ P W @∼ ∃s.B

∅

DW

W

DB

W B W W

W B W B W

∅
W B

Fig. 1: a Subset lattice of Dex1 and b LKex1

the domain elements are grouped in grey boxes according to the subset-lattice indicating which
DBox subsets are satisfied by which domain elements.

According to Definition 8, LKex1
|= Worker @∼ ∃superior.Boss, as well as LKex1

|= Boss @∼
ResponsibleuProductive, because dDWorker

Worker and dDBoss

Boss satisfy DWorker and DBoss, respectively.

We want to characterise different entailment relations based on different kinds of typicality
models for a given DKB K which vary in the defeasible information admitted for required role
successors. We use the minimal relevant typicality model over a lattice domain to characterise
relevant entailment of propositional nature |=relp .

Definition 18. Let K be a DKB. K propositionally entails a defeasible subsumption relation-
ship C @∼ D under relevant closure (written K |=relp C @∼ D) iff LK |= C @∼ D.

This form of entailment is called propositional since all role successors are uniformly non-typical
and since DCIs are neglected for quantified concepts. Next, we investigate the relationship
between |=relm (Sec. 3) and |=relp . Our approach to decide propositional entailments based on the
extended TBox for a concept F , coincides with enriching F with the materialisation of the given
DBox. Note that the following is a very general result, detached from the notion of typicality
models.

Lemma 19. Let T be a TBox T, D a DBox, and C, D be concepts, with sig(X) ∩ Naux
C = ∅

(for X ∈ {T ,D, C,D}). Then D u C vT D iff CD vTD(C) D.

Proof. We show this lemma by induction on the size of D. The base case for D = ∅ is already
shown in Proposition 12.

Assume the following hypothesis holds for any C and DBox with |D| = k (k ≥ 0).

D u C vT D iff CD vTD(C) D (IH)

For the induction step, we need to show that

D′ u C vT D iff CD′ vTD′ (C) D (IS)

holds for the DBox D′ extending D by one defeasible statement, i.e. |D′| = k+1. For sig(H)∩
Naux
C = ∅, let D′ = D∪{G @∼ H} and therefore TD′(C) is equivalent to TD(C)∪{CD uG v H}

up to the renaming of CD′ , hence we show

(¬G tH) u D u C vT D iff CD vTD(C)∪{CDuGvH} D. (IS’)
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We consider two cases for the influence of the newly introduced DCI G @∼ H. In both cases we
are able to reduce the left- and right-hand side of the “iff ” in (IS’) to the induction hypothesis
respectively. We denote the left-hand side of (IH), (IS) and (IS’) as the materialisation side and
the right-hand side as the extension side.

Case 1: D u C vT G
By (IH) this case is equivalent to CD vTD(C) G. For the materialisation side,

D u C vT G =⇒ (¬G tH) u D u C vT H

and thus

(¬G tH) u D u C ≡T (¬G tH) u D u C uH
≡T (¬G u D u C uH) t (H u D u C uH).

Due to the condition for this case (D u C vT G), ¬G u D u C u H is equivalent to ⊥, which
means

(¬G u D u C uH) t (H u D u C uH) ≡T ⊥ tD u C uH
≡T D u C uH.

On the extension side, CD vTD(C) G =⇒ CD ≡TD(C) CDuG. Therefore TD(C)∪{CDuG v H}
is equivalent to TD(C)∪ {CD v H}, which is equivalent to TD(C uH) (containing (CuH)D v
C uH) up to the renaming of (CuH)D ∈ Naux

C .

Combining both sides yields Du (C uH) vT D iff (CuH)D vTD(CuH) D, which holds by (IH).

Case 2: D u C 6vT G
By (IH) this case is equivalent to CD 6vTD(C) G. Again, we investigate D′ = D ∪ {G @∼ H}. For
the extension side, TD′(C) is equivalent to TD(C)∪ {CD uG v H} up to the renaming of CD′ .
Thus we need to show that:

CD vTD(C) D ⇐⇒ CD vTD(C)∪{CDuGvH} D.

“ =⇒ ” is again trivial. We show “ ⇐= ” by contraposition and assume that CD 6vTD(C) D,
i.e. there exists an interpretation I |= TD(C) s.t. there is a d ∈ CID with d /∈ DI and another
interpretation J |= TD(C), which, due to the condition for this case (CD 6vTD(C) G) satisfies
e ∈ CJD \GJ for some e ∈ ∆J . By Lemma 2, I×J |= TD(C) and (d, e) ∈ CI×JD \(DI×J ∪GI×J )
by Definition 1. Let I ′ denote the witness model (I × J )(CD, (d, e)) with the witness element
(d, e) for CD. Claim 2 of Proposition 11 implies I ′ |= TD(C). Furthermore, (CD uG)I

′
= ∅ and

thus I ′ |= TD(C) ∪ {CD uG v H} with (d, e) ∈ CI′D \DI
′
.

For the materialisation side, we need to show a similar statement, where D u C 6vT G implies

D u C vT D ⇐⇒ (¬G tH) u D u C vT D.

“ =⇒ ” holds obviously. For the other direction we proceed by contraposition. Assume DuC 6vT
D holds, i.e. there exists an interpretation I |= T with d ∈ (DuC)I \DI and by the condition
of this case (D uC 6vT G) a J |= T with e ∈ (D uC)J \GJ . The product of I and J satisfies
T by Lemma 2 and has (d, e) ∈ (DuC)I×J \ (GI×J ∪DI×J ), i.e. (d, e) ∈ (¬G)I×J . Therefore
(d, e) ∈ ((¬G tH) u D u C)I×J \DI×J .

To sum up, both subsumptions in (IS’) were shown to be equivalent to the subsumptions in
(IH) under two covering case assumptions. This concludes the induction proof. ut

Although the entailment relations |=relm as introduced in [5] and |=relp are defined in different
ways and are based on distinct semantics, they yield the same consequences (for subsumption)
w.r.t. DKBs.
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∅
W B

Fig. 2: Increasing typicality of role successors

Theorem 20. K |=relp C @∼ D iff K |=relm C @∼ D.

Proof. K |=relp C @∼ D is defined as LK |= C @∼ D, i.e. dDC

C ∈ DLK which is equivalent
to CDC

vTDC
(C) D by Proposition 14. This subsumption in turn is equivalent to deciding

DC uC vT D by Lemma 19, which is precisely the definition of K |=relm C @∼ D (from Section 3).
ut

In addition, this result shows that entailments based on minimal relevant typicality models
also bear the shortcomings for defeasible reasoning regarding nested existential restrictions—a
nuisance which we want to alleviate next.

5 Maximal Typicality Models for Relevant Entailment

We illustrate by continuing on Example 17 how defeasible information is disregarded for nested
existential restrictions and our proposed countermeasure.

Example 21. Consider again the DKB Kex1 from Example 17, with LKex1 (as depicted in Fig-
ure 1). No defeasible information is used for reasoning over the superior successors of the
element dDWorker

Worker and thus LK 6|= Worker @∼ ∃superior.Responsible. However, the defeasible
statement Boss @∼ Responsible remains undefeated for d∅Boss.

Instead of satisfying Boss @∼ Responsible at the element d∅Boss, we can “upgrade” the existing
superior relationship to another representative of Boss, that satisfies the DCI. For instance,
we could upgrade from (dDWorker

Worker , d
∅
Boss) to (dDWorker

Worker , d
{Boss@∼Responsible}
Boss )—as illustrated in

Figure 2 by the dashed arrows.3 Our method upgrades typicality of role successors as much
as possible, i.e., it picks representatives of the same concept that satisfy more and more DCIs
as long as it does not result in inconsistencies. Here, this method even yields the conclusion
Worker @∼ ∃superior.Productive.

Upgrading the typicality of a role successor depends on the information present in the model.
Different orders of such upgrade steps can yield different models of increased typicality. In order
to handle sets of models over the same typicality domain ∆ over the same DKB K, we need the
notions of intersection and inclusion of models.

3 Note that Figure 2 depicts only an excerpt of LKex1 for comprehensibility.
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Definition 22. For two interpretations I,J over the same domain ∆ we define

– I ∩ J = (∆, ·I∩J ) with
– AI∩J = AI ∩AJ (for A ∈ NC) and
– rI∩J = rI ∩ rJ (for r ∈ NR)

– I ⊆ J iff ∀A ∈ NC .AI ⊆ AJ and ∀r ∈ NR.rI ⊆ rJ.

Using this definition we can formalise the notion of “upgrading the typicality” of a typicality
interpretation, i.e. introduce copies of role edges that point to elements that represent the same
concept, but satisfy more defeasible statements.

Definition 23. Let I be a typicality interpretation for K = (T ,D). The set of more typical
role edges for a given role r is defined as

TRI(r) = {(dXG , dU
′

H ) ∈ ∆I×∆I \ rI | ∃ U ⊆ D.(dXG , dUH) ∈ rI ∧ U ⊂ U ′ ⊆ DH}.

Let I and J be typicality interpretations. J is a typicality extension of I iff

1. ∆J = ∆I ,
2. AJ = AI (for A ∈ NC),
3. rJ = rI ∪R, where R ⊆ TRI(r) (for r ∈ sigNR

(K)), and
4. ∃r ∈ sigNR

(K). rI ⊂ rJ .

The set of all typicality extensions of a typicality interpretation I is typ(I).

Observe that a typicality interpretation cannot be a typicality extensions of itself. With typ-
icality extensions at hand we can transform typicality interpretations into a set of more typ-
ical interpretations. Unfortunately, this operation does not preserve the property of being
a typicality model. Let us demonstrate this by Example 21, let Kex2 = (Tex2,Dex1), and
Tex2 = Tex1∪{∃superior.Responsible v ∃coworker.Worker}. Since the minimal relevant typi-
cality model LKex2

coincides with the minimal relevant typicality model LKex1
, Figure 2 depicts

a typicality extension of LKex2
according to Definition 23. However, the extension in Figure 2

is no longer a model of Tex2, as the newly introduced GCI

∃superior.Responsible v ∃coworker.Worker

is no longer satisfied for dDWorker. It can be extended to a model by introducing a coworker suc-
cessor for dDWorker that belongs to Worker. In order not to introduce unwanted inconsistencies,
the successor in this new relationship needs to be picked such that it only contains the informa-
tion strictly required by K, i.e. d∅Worker is picked. In general, the neccessary role-successors are
drawn from the least typical domain elements, those where no DCIs need to hold. We formalise
the particular model completions that we are interested in.

Definition 24. Let K = (T ,D) be a DKB and ∆ a typicality domain over K. A typicality
interpretation I = (∆, ·I) is a model completion of a typicality interpretation J = (∆, ·J ) iff

1. J ⊆ I,
2. I |= K, and
3. ∀E ∈ Qc(K).dUF ∈ (∃r.E)I =⇒ (dUF , d

∅
E) ∈ rI (for any F ∈ Qc(K) and U ⊆ D).

The set of all model completions of J is denoted as mc(J ).



16 Maximilian Pensel and Anni-Yasmin Turhan

Note that K is an important parameter to compute mc(J ) and K gives rise to the underly-
ing typicality domain of J . Additionally, mc(J ) is finite due to the unique domain of model
completions of J (∆J ) and the fact that only concept and role names in sig(K) need to be
considered.

An interpretation that is a model completion to itself is called a safe model and obviously
satisfies the properties of Definition 24. So, for any typicality interpretation J , all interpretations
in mc(J ) are safe models. The following proposition shows that it is no restriction to consider
model extensions of I that belong to mc(I), because if mc(I) = ∅ then I cannot be completed
into any model.

Proposition 25. For a DKB K, a typicality domain ∆ over K, and a typicality interpretation
I = (∆, ·I),

∃J .(I ⊆ J ∧ J |= K) =⇒ mc(I) 6= ∅.

Proof. Since the premise of this implication requires J to satisfy Condition 1 and 2 of Definition
24, it suffices to show that we can extend J to also satisfy Condition 3 without violating the
other two. Given J , create J ′ = (∆, ·J ′) with

– AJ
′
= AJ (A ∈ sigNC

(K)) and
– rJ

′
= rJ ∪ {(dUF , d∅D) | dUF ∈ (∃r.D)J , D ∈ Qc(K)} (r ∈ sigNR

(K)).

We show that the extension of all concepts C with Qc(C) ⊆ Qc(K) under J ′ is equivalent
to their extension under J , i.e. CJ = CJ

′
by induction on concepts C. C = > and C = ⊥

are obvious. The case C = A for A ∈ sigNC
(K) follows from the definition of J ′. The case of

C = D u E is also fairly easy to see.

For the case C = ∃r.D, (∃r.D)J ⊆ (∃r.D)J
′
is easy to see since J ′ clearly extends J without

removing anything that holds in J . We show (∃r.D)J
′ ⊆ (∃r.D)J . For any dUF ∈ (∃r.D)J

′

it follows that there exists some dU
′

G ∈ ∆ such that (dUF , d
U ′
G ) ∈ rJ

′
and dU

′

G ∈ DJ
′
. Either

(dUF , d
U ′
G ) ∈ rJ , in which case the induction hypothesis implies dUF ∈ (∃r.D)J , or G = D and

U ′ = ∅, which is the case if dUF ∈ (∃r.D)J by the definition of J ′.

Using the just shown equivalence of the extensions, it is easy to see that every left- and right-
hand side of DCIs and GCIs in K is extended to the same set of domain elements under J and
J ′, hence J |= K =⇒ J ′ |= K. Clearly I ⊆ J ⊆ J ′ and by the definition of J ′, Condition 3
of Definition 24 is also satisfied for J ′. Therefore, J ′ ∈ mc(I). ut

Note that if J |= K, then J does not necessarily belong to mc(J ), however by the construction
in the proof of Proposition 25, at least J ′ ∈ mc(J ).

Since model completions introduce minimal typical role successors they may necessitate further
typicality extensions. So, typicality extensions and model completions need to be applied alter-
natingly until a maximum is reached. Maximality for typicality extensions is characterised in
the following way: a typicality interpretation

I is typicality extensible iff ∃J ∈ typ(I).mc(J ) 6= ∅.

Intuitively, a typicality interpretation is typicality extensible if it admits to some typicality
extension that is, or can be completed to a safe model. Therefore, a typicality interpretation
is maximal iff it is not typicality extensible. To formalise the process of increasing typicality
and completing to a model until reaching maximal typicality, we introduce some notation and
an upgrade operator. Given a typicality domain ∆ over the DKB K, define the set of all safe
models over a typicality domain ∆ over the DKB K as

P (∆) = {J | J = (∆, ·J ) ∧ J ∈ mc(J )}.
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Definition 26. The typicality upgrade operator T : 2P (∆) → 2P (∆) is defined for S ⊆ P (∆)
as:

1. T (S) = S \ {I} ∪
⋃
J∈typ(I)mc(J ), if I ∈ S is typicality extensible,

2. T (S) = S, otherwise.

For a given set of model completions S ⊆ P (∆), the fixpoint of T is Tm(S) if Tm(S) = Tm+1(S)
with

1. T0(S) = S and
2. Ti(S) = T (Ti−1(S)) (i > 0).

The set of maximal typicality extensions of the typicality models in S is typmax(S) = Tm(S).

Observe that the operator T replaces a model by another model (case 1), thus T does not
change the cardinality of the set and |typmax(S)| = |S| holds.

It is clear that neither typicality extensions (Definition 23) nor model completions (Defini-
tion 24) supply a unique typicality extension or model completion in every case. Thus the
typicality upgrade operator is defined over sets of typicality interpretations. Applying the op-
erator T to {I} easily leads to an exponential number of typicality interpretations in the size
of the domain ∆I . Nevertheless the fixpoint of T will always be reached.

Proposition 27. For a finite set of model completions S ⊆ P (∆), typmax(S)

1. is finite, and
2. can be computed in finite time.

Proof. We prove Claim 1 by showing that the typicality operator T can never produce models
outside of P (∆) and that P (∆) must be finite. It follows that the fixpoint of T , typmax(S),
can also not exceed P (∆) (if it exists). Since models of K = (T ,D) only need to satisfy axioms
contained in K, it is enough to consider interpretations using only concept and role names
occurring in sig(K), which is finite. Any typicality domain ∆ over a DKB K is finite due to
finite sets Qc(K) and D. Therefore, the set P (∆) of all safe models over ∆ is finite w.r.t.
sig(K). Since S ⊆ P (∆) and the first case in the definition of T (S) only adds safe models for
each removed element of S, T (S) ⊆ P (∆) as well, contradicting that the fixpoint of T can be
infinite (if it exists), thus proving Claim 1.

To show that the fixpoint of T always exists, we prove Claim 2 with a standard technique
for showing termination, called well-founded set orders (cf. [2] pp. 21–25). Using a particular
well-founded set-order we show that one application of T on S produces a a set of safe models
from P (∆) that is strictly smaller than S w.r.t. to the set-order. Well-foundedness of this order
then implies that continuous applications of T must eventually result in a fixpoint. The set
order we use measures typicality interpretations over a typicality domain ∆ (of a DKB K) by
the number of “unused” role connections (w.r.t. ∆ and sig(K)). While the cardinality of T (S)
might be larger than the cardinality of S, the added interpretations have less “unused” role
connections than the removed interpretation. Let ρ = |∆×∆| ∗ |sigNR

(K)| be the total number
of distinct role edges possible over the domain ∆ and let |I|NR

=
∑
r∈(sigNR

(K)) |rI | be the
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number of role edges used in interpretations I ∈ P (∆). Note that for all I ∈ P (∆), |I|NR
≤ ρ

holds. For a given typicality domain ∆ let

σ : P (∆)→ N with σ(I) = ρ− |I|NR

be the function that provides the number of unused role relationships for a safe model.

We define the relation � ⊆ P (∆)×P (∆) as an ordering over interpretations in P (∆) according
to the number of unused role relationships, that is I1 � I2 iff σ(I1) > σ(I2). Since |I|NR

has ρ
as an upper bound, it is easy to see that (P (∆),�) is well-founded, i.e. there cannot be a chain
I1 � I2 � . . . that is infinitely descending.

Let �set be the extension of � to sets over P (∆), by [2] �set is well-founded if � is well-founded.
Note that for any S ⊆ P (∆), T (S) is well-defined as in the definition of the typicality operator
(Definition 26) either Condition (1) holds for some I ∈ S or Condition (2) holds. Obviously, as
soon as Condition (2) holds, T (S) = S, resulting in a fixpoint of T . Hence, we only need to show
that for every S with S 6= T (S), S �set T (S) holds, i.e. for every interpretation I ∈ T (S) \ S
there is some interpretation I ′ ∈ S \ T (S) such that I ′ � I. Observe that the following holds
for any typicality interpretation I and thus also for I ∈ P (∆)

J ∈ typ(I) =⇒ σ(J ) < σ(I) and thus
∀J ∈ typ(I).J ′ ∈ mc(J ) =⇒ σ(J ′) < σ(I). (3)

Let now I ∈ S be the chosen interpretation in Condition (1) of Definition 26, then I /∈ T (S) and
for all J ′ ∈

⋃
J∈typ(I)mc(J ) =⇒ I � J ′ by Observation (3). This shows that S �set T (S)

and together with the well-foundedness of the relation �set this implies that Condition (1) from
Definition 26 can only hold a finite number of times for repeated applications of T to one input
set S ⊆ P (∆). Thus typmax(S) can be computed in finite time. ut

Remark 28. Obviously all interpretations in typmax(S) are safe models (c.f. Definition 24),
regardless of the chosen S ⊆ P (∆).

The following example illustrates that this typicality extension can quickly lead to multiple
different maximal typicality interpretations, starting from a single interpretation.

Example 29. We extend the DKB from Example 17 to DKB Kex3 = (Tex3,Dex1) with the TBox

Tex3 = Tex1 ∪ {∃superior.∃superior.Responsible v ⊥}.

Let the role edge (dDWorker, d
∅
Worker) ∈ superiorLKex3 be upgraded to (dDWorker, d

D
Worker) and

likewise (dDWorker, d
∅
Boss) ∈ superiorLKex3 to (dDWorker, d

DBoss

Boss ). If both of these upgrades exist in
the same typicality extension J , it does not admit to a model completion, as an inconsistency
would be caused by dDWorker ∈ (∃superior.∃superior.Responsible)J . The typicality upgrade
(dDWorker, d

{Worker@∼Productive}
Boss ), however, is “allowed” to occur in a typicality extension, leading

to the entailment of Worker @∼ ∃superior.(Boss u Productive). This shows that inheritance
blocking can be remedied even for quantified concepts when upgrading typicality of successors
in a lattice domain.

It is clear that, given an arbitrary typicality model I with a typicality domain ∆I over a DKB
K, the above described process leads to a variety of maximal typicality models in typmax(I).
Recall the overall structure of our approach, where we want to

1. replicate materialisation-based relevant entailment by means of typicality interpretations
(Theorem 20) and
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2. directly extend this result to obtain nested relevant entailment.

To this end we are using maximal typicality models of the unique minimal typicality model
LK to define our inference semantics. There are several options to obtain inferences from a set
of models. Since in classical DL reasoning entailment considers all models, we pick semantics
closely related to cautious reasoning here. To this end we build a single model that is canonical
in the sense that it is the biggest model (w.r.t. ⊆) contained in all maximal typicality models
obtained from the minimal relevant typicality model LK (Definition 16). Since the domain of
LK is large enough to support relevance based inferences, this strategy provides nested relevant
entailment.

Definition 30. Let K be a DKB. The relevant canonical model is REK =
⋂
I∈typmax({LK}) I.

Note that the intersection over all maximal typicality models is well-defined as typmax({LK})
is finite and since LK is a safe model (i.e. LK ∈ mc(LK)) it is not empty, as shown in the
following. First, we show that the intersection of any set of safe models for a DKB K remains
a safe model for K.

Proposition 31. Let K be a DKB and let M ⊆ P (∆) such that ∀J ∈ M.J |= K, as well as
I∗ =

⋂
J∈M J . It holds that

1. CI
∗
=

⋂
J∈M

CJ for Qc(C) ⊆ Qc(K), and

2. I∗ |= K

Proof. We prove Claim 1 by induction on the structure of C, where the base case follows
immediately from the definition of intersections of interpretations (Def. 22). For C = D u E:

(D u E)I
∗ Def.
= DI

∗
∩ EI

∗

IH
=
⋂
J∈M

DJ ∩
⋂
J∈M

EJ

Def.
=

⋂
J∈M

(D u E)J

For C = ∃r.D:

(∃r.D)I
∗ Def.
= {d ∈ ∆ | ∃e ∈ ∆.(d, e) ∈ rI

∗
∧ e ∈ DI

∗
} (4)

Def.
= {d ∈ ∆ | ∃e ∈ ∆.

∧
J∈M

(d, e) ∈ rJ ∧ e ∈ DI
∗
} (5)

IH
= {d ∈ ∆ | ∃e ∈ ∆.

∧
J∈M

(d, e) ∈ rJ ∧ e ∈
⋂
J∈M

DJ } (6)

Def.
=

⋂
J∈M

{d ∈ ∆ | ∃e ∈ ∆.(d, e) ∈ rJ ∧ e ∈ DJ } (7)

Def.
=

⋂
J∈M

(∃r.D)J (8)

While the inclusion “⊆” from (6) to (7) is easy to see, we inspect the “⊇” inclusion more closely.
Element d in {d ∈ ∆ | ∃e ∈ ∆.(d, e) ∈ rJ ∧ e ∈ DJ } for any J ∈ M implies d ∈ (∃r.D)J ,
which implies (d, d∅D) ∈ rJ by 3. of Definition 24. Therefore and by Proposition 14, the set
{d ∈ ∆ | ∃e ∈ ∆. (d, e) ∈ rJ ∧ e ∈ DJ } is equivalent to {d ∈ ∆ | (d, d∅D) ∈ rJ ∧ d∅D ∈ DJ },
making it easy to see that the inclusion holds.



20 Maximilian Pensel and Anni-Yasmin Turhan

Claim 2 is easily proven using Claim 1. Since all J ∈M are models of K, it holds for every GCI
C v D ∈ T that CJ ⊆ DJ . Therefore,

⋂
J∈M CJ ⊆

⋂
J∈MDJ holds and Claim 1 implies

that I∗ |= T . Condition 2 in the Definition of models (Def 7) is equivalent to

G @∼ H ∈ U =⇒ GJ ∩ {dXF ∈ ∆J | X = U} ⊆ HJ ∩ {dXF ∈ ∆J | X = U} for U ⊆ D. (∗)

and (∗) holds for all J ∈ M. This way, it is not hard to see that, as before, Claim 1 implies
I∗, dUF |= U for all F ∈ Qc(K) and U ⊆ D.

Since all J ∈ M satisfy Property 3 in the definition of model completions (Definition 24), it
is easy to see that Claim 1 implies that I∗ also satisfies Property 3 of Definition 24 and is
therefore a safe model. ut

Lemma 32. The relevant canonical model REK is a model of the DKB K.

Proof. Follows immediately from REK being well-defined and Proposition 31. ut

The main reason for Lemma 32 to hold is that the intersection of models of any set S ⊆ P (∆)
yields another model already contained in P (∆). This result is ensured by Condition 3 in the
definition of model completions. The relevant canonical model REK is used to define (and later
on decide) nested relevant entailment of the form C @∼K D, which requires to propagate DCIs
to concepts occurring in existential restrictions. We capture this stronger and quantifier-aware
relevant entailment.

Definition 33. Let K be a DKB. A defeasible subsumption relationship C @∼ D holds under
nested relevant entailment (written K |=relq C @∼ D) iff REK |= C @∼ D.

We are ready to state our main result: nested relevant entailment allows for strictly more
inferences than the materialisation-based relevant entailment from [5] to compute the relevant
closure.

Theorem 34. For two EL⊥ concepts C, D and an EL⊥ DKB K the following holds:

1. K |=relm C @∼ D =⇒ K |=relq C @∼ D, and
2. K |=relm C @∼ D 6⇐= K |=relq C @∼ D

Proof. Claim 1 follows from the fact that the minimal typicality model LK is included (according
to Definition 22) in all maximal typicality models of LK, i.e. J ∈ typmax({LK}) =⇒ LK ⊆ J
and thus LK ⊆ REK and Claim 2 can be shown using Example 17 as a counter-example. In
preparation to do so, let s denote the role superior, and W , B, R denote the concepts Worker,
Boss and Responsible respectively, also let K = Kex1, T = Tex1 and D = Dex1 for brevity and
recall that DW = D. It needs to be verified, that

∀J∈typmax({LK}).(dDW , d
DB

B ) ∈ sJ (i)
=⇒ (dDW , d

DB

B ) ∈ sREK (ii)
=⇒ REK |=W @∼ ∃s.R.

Implication (i) follows from the definition of the relevant canonical model (Definition 30) and
implication (ii) follows from the definition of when a typicality interpretation satisfies a defea-
sible subsumption relationship (Definition 8) and the fact that dDB

B ∈ RLK .

In order to show that ∀J ∈ typmax({LK}).(dDW , d
DB

B ) ∈ sJ holds , we proceed by contradiction
and assume that ∃I ∈ typmax({LK}).(dDW , d

DB

B ) /∈ sI , then an interpretation I ′, coinciding with
I in everything but sI

′
, where sI

′
= sI ∪ {(dDW , d

DB

B )} is clearly in typ(I) where XI = XI
′

for every left- and right-hand side X of inclusion statements in T and D, i.e. I ′ |= K, hence
I ′ ∈ mc(I ′), i.e. mc(I ′) 6= ∅. Therefore case (i) of Definition 26 applies to I, contradicting that
I ∈ typmax({LK}). ut
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Our presented approach for deciding defeasible subsumption relationships under (nested) rel-
evant entailment mends a deficit in the materialisation approach and computes strictly more
entailments than materialisation-based relevant entailment. Since relevant closure is stronger
than rational closure, the reduction presented here preserves all merits for rational closure from
[12] and eliminates remaining problems such as inheritance blocking.

In this part of the report we showed technical results that alleviate the deficit of relevant
reasoning in defeasible description logics. Next we describe how these results can be utilized to
devise an analogous approach for the weaker nested rational entailment. The main difference is,
as we shall see, that for rational reasoning it suffices to consider a sequence of decreasing DBox
subsets to gain consistency for domain elements, whereas (nested) relevant entailment needs to
consider the whole lattice of subsets of the DBox. The use of a sequence of decreasing DBox
subsets in the domain of the typicality interpretations promises a smaller domain size and thus
lower complexity for rational reasoning.

6 Rational Reasoning with Typicality Models

Originally, we introduced typicality models for reasoning in defeasible DLs to allow defeasible
information to be propagated to quantified concepts based on rational closure semantics. We
lifted these results [12] which considered a specific sequence of DBox subsets as in the original
approach [6] by Casini et al., to consider any subset of defeasible information from the DBox.
This more general setting allows for a lattice-shaped domain as the basis for typicality models
in order to obtain relevant reasoning, as shown in Sections 4 and 5. The domain of a typicality
model containing only representatives for a fixed set of DBox subsets is included in the full
lattice shaped domain from Definition 5.

For illustration consider again Example 4 and recall that Kex1 = (Tex1,Dex1) with the partition
of Dex1 into E0 and E1. Rational closure by materialisation considers the sequence of DBox
subsets D0 = Dex1, D1 = D0\E0 and D2 = D1\E1. Given the query C @∼ D, the materialisation-
based procedure finds the smallest i, s.t. Di u C 6vT ⊥ and return the answer to Di u C vT D.
Now, in the typicality model approach this means that one representative for every quantified
concept in Qc(K) needs to (potentially) exist for each DBox subset in the sequence of DBox
subsets considered by rational closure. Therefore, the resulting typicality domain is a sequence
and called a sequence domain. This is illustrated in Figure 3, where a depicts the minimal
typicality model LKex1

, highlighting the subdomain parts w.r.t. D0,D1,D2 drawn with thick
borders. This subdomain is extracted and rearranged in part b of Figure 3 (the neat structure
of the sequence domain allows for labelling the domain elements again in the figure).

Since the results from Sections 4 and 5 consider any subset of defeasible statements from the
DBox, they still apply in principle when restricting the typicality domain to the sequence shape.
Nevertheless, we consider the special case of rational closure in detail and discuss its differences
to the general approach in the following.

First of all, we use the same sequence of DBox subsets as constructed in [6]. The algorithm
from [5] was described in Section 3, including the partition of D = (E0, E1, . . . , En−1). To
formally capture the sequence of DBox subsets we use a partition function sequence. We define
sequence(D) = (D0,D1, . . . ,Dn), with D0 = D and Di+1 = Di \ Ei for 0 ≤ i < n. Obviously,
D0 ⊇ D1 ⊇ . . . ⊇ Dn and for well-separated DKBs Dn = ∅ holds.

The definition of a typicality domain (Definition 5) already covers the case of the sequence
domain: the set Γ (∆), collecting the represented subsets of the given DBox, has to be totally
ordered by ⊆, thus inducing the sequence shape. The conditions for a typicality interpretation
satisfying a DKB (Definition 7) are independent of the shape of the underlying typicality do-
main. Thus, entailment of individual defeasible subsumption relationships (Definition 8) is “read
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W W W

B,W,R
B,W

Fig. 3: a Lattice domain (left) with highlighted subdomain that is extracted as sequence domain
b (right).

off” from an interpretation as one would do from a canonical model. The most typical domain
element of those representing the same concept in a typicality interpretation over a sequence
domain is the element satisfying as many DCIs as possible.

Definition 35. Let I = (∆I , ·I) be a typicality interpretation over a sequence domain for DKB
K = (T ,D), with sequence(D) = (D0,D1, . . . ,Dn). Then I satisfies a defeasible subsumption
C @∼ D (written I |= C @∼ D) iff dDi

C ∈ DI for the smallest i ∈ {0, . . . , n} s.t. dDi

C ∈ ∆I .

The definition of the extended TBox of F w.r.t. D, i.e., TDi(F ) (Definition 9) as well as the
Propositions 11 and 12 are independent of the shape of a typicality interpretation and therefore
hold for sequence domains as well. Analogous to the case of relevant reasoning, we can make
use of minimal typicality models to characterise our rational semantics by fixing the underlying
domain.

Definition 36. Let K = (T ,D) be a DKB and sequence(D) = (D0,D1, . . . ,Dn). The minimal
rational typicality model SK is a minimal typicality model with the sequence domain ∆SK =
{dDi

F | F ∈ Qc(K), FDi 6vTDi
(F ) ⊥, 0 ≤ i ≤ n}.

Again, ∆SK is clearly a typicality domain and it satisfies Property (∗), which essentially admits
only representatives of concepts not causing an inconsistency in the domain, of minimal typi-
cality models (Definition 13). In addition Propositions 11 and 12 hold for SK. Therefore SK
is well-defined and satisfies K by Lemma 15. We review Example 17 in the context of rational
closure: the illustration of SKex1

is part b in Figure 3. Deciding entailments according to Defi-
nition 35, means to check containment of the most typical (in part b of Figure 3 the left-most)
domain element, representing the left-hand side of a subsumption query.

Model SKex1
gives evidence for subsumption relationships such as Worker @∼ ∃superior.Boss

and Boss @∼ Responsible. However, neither Boss @∼ Productive (inheritance blocking), nor
Worker @∼ ∃superior.Responsible (neglecting quantified concepts), nor the combination of
both Worker @∼ ∃superior.Productive are entailed. The advantage of considering the weaker
rational reasoning lies in the reduced size of the typicality model, which is quadratic as opposed
to the exponential lattice domain and thus leads potentially to lower computational complexity.

Next we recreate rational reasoning by materialisation by characterising propositional entail-
ment (under rational semantics) of a DKB K. The following definition and theorem are anal-
ogous to the definition of propositional entailment of a defeasible subsumption relationship
under relevant closure (Definition 18) and Theorem 20. Still, the former are specific to relevant
semantics and need to be slightly adjusted.
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Worker

Boss

W W W

B,W,R
B,W

Fig. 4: Upgraded role successor edge in SKex1
.

Definition 37. Let K be a DKB. K propositionally entails a defeasible subsumption relationship
C @∼ D with rational semantics (written K |=ratp C @∼ D) iff SK |= C @∼ D.

Since Lemma 19 is independent of typicality interpretations, it can be used it to prove the
analogous version for rational semantics of main Theorem 20, which shows equivalence to the
materialisation-based approach.

Theorem 38. K |=ratp C @∼ D iff K |=ratm C @∼ D

Proof. Let K = (T ,D). In order to decide K |=ratm C @∼ D, the algorithm in [6] picks the
smallest j ∈ {0, . . . , n} for sequence(D) = (D0, . . . ,Dn) s.t. Dj uC 6vT ⊥ and returns the result
for Dj u C vT D. Definition 35 also selects the smallest i ∈ {0, . . . , n} s.t. dDi

C ∈ ∆SK . We
need to show that Di = Dj , because Lemmas 14 and 19 then immediately imply equivalence of
both entailment semantics. Since both semantics use the same sequence(D), Di = Dj iff i = j.
Assume to the contrary that i < j, thus Dj being selected by the materialisation algorithm
implies DiuC vT ⊥ which is equivalent to CDi vTDi

(C) ⊥ by Lemma 19. Thus from Definition
36 it follows that dDi

C 6∈ ∆SK , contradicting that Di was chosen in Definition 35. For i > j

the same argument holds in reverse, when assuming dDi

C ∈ ∆SK was selected in Definition 35,
then d

Dj

C 6∈ ∆SK , which implies by Definition 36 and Lemma 19 that Dj u C vT ⊥ holds,
contradicting that Dj was chosen by the materialisation algorithm. ut

The next step in alleviating the shortcoming of neglecting quantification in rational defeasible
subsumption is to upgrade role successor typicality of the minimal rational typicality model.
The procedure for upgrading is analogous to the one described in Section 5. Most of the results
in Section 5 are independent of the shape of the underlying typicality domain and therefore
apply to the present case in the same way. We recall Example 21. Using SKex1 , we cannot obtain
conclusions such as Worker @∼ ∃superior.Responsible, even though Worker @∼ ∃superior.Boss
is entailed and Boss @∼ Responsible remains undefeated for the successor elements in general.
An upgrade of (dD0

W , d∅B) ∈ sSKex1 to (dD0

W , dD1

B ) with s yields the desired entailment in the
resulting upgraded interpretation according to Definition 35, as illustrated in Figure 4.

The technique for upgrading works exactly as in the relevant case: typicality extensions (Def-
inition 23), model completions (Definition 24) and the fixpoint operator T (Definition 26) are
entirely independent of the shape of the underlying typicality domain. Thus, the results follow-
ing these notions (Propositions 25, 27, and 31) remain valid for upgrading the minimal rational
typicality model as well. We define the rational canonical model that is used to decide nested
rational entailment in an analogous way to the relevant canonical models (Definition 30).

Definition 39. The rational canonical model is RAK =
⋂
I∈typmax({SK}) I.

Naturally, we have an analogous result to Lemma 32 for RAK, i.e. RAK is a model of K by
Proposition 31. Nested rational entailment is characterised as follows.
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Definition 40. Let K be a DKB. A defeasible subsumption relationship C @∼ D holds under
nested rational entailment (written K |=ratq C @∼ D) iff RAK |= C @∼ D.

Finally, it remains to show that reasoning with the rational canonical models yields strictly
more entailments than materialisation-based rational entailment.

Theorem 41. For two EL⊥ concepts C, D and an EL⊥ DKB K the following holds

1. K |=ratm C @∼ D =⇒ K |=ratq C @∼ D, and
2. K |=ratm C @∼ D 6⇐= K |=ratq C @∼ D.

Proof. The proof works analogous to the proof of Theorem 34. Claim 1 simply follows from
Theorem 20 and the fact that SK ⊆ RAK. Claim 2 can be shown with Kex1 from Example
4. Assume I ∈ typmax(SKex1

) with (dD0

W , dD1

B ) 6∈ sI . It is easy to see that the interpretation
J with ∆J = ∆I , AJ = AI and sJ = sI ∪ {(dD0

W , dD1

B )} is a safe model of Kex1, contra-
dicting the maximality of I. Therefore all maximal typicality models J ∈ typmax(SKex1) need
to satisfy (dD0

W , dD1

B ) ∈ sJ , hence (dD0

W , dD1

B ) ∈ sRAKex1 . This means RAKex1
|= Worker @∼

∃superior.Responsible, i.e. Kex1 |=ratq Worker @∼ ∃superior.Responsible, however, as covered
before, Kex1 6|=ratm Worker @∼ ∃superior.Responsible. ut

This shows that reasoning based on minimal rational typicality models allow for reasoning in-
volving concepts nested existential restrictions and thus improves earlier approaches for deciding
subsumption relationships under rational semantics.

7 Conclusions and Future Work

In this report we have extended a new approach for reasoning in DDLs to characterise entail-
ment under relevant closure (for deciding subsumption) in the DDL EL⊥. The new approach
is motivated by the observation that earlier reasoning procedures for this problem do not treat
existential restrictions in an adequate way. The key idea is to extend canonical models such
that for each concept from the DKB, several copies representing different amounts of defeasible
concept inclusions are introduced. The new approach supports the propagation of defeasible
information to concepts nested in existential restrictions. In principle, our new approach can be
extended to more expressive settings, e.g. to more expressive DLs or to ABox reasoning. While
rational closure needs to consider only one sequence of increasing subsets of the DBox [12],
relevant closure needs (potentially) all subsets of the given defeasible information—forming
a lattice. In minimal relevant typical models (over a lattice domain) the role successors are
“a-typical” in the sense that they satisfy only the GCIs from the TBox. Such models can be
computed by a reduction to classical TBox reasoning. We showed that the obtained entailments
coincide with the ones obtained by earlier materialisation-based algorithms. We extended these
models to maximally typical models, which have role successors of “maximal typicality”. En-
tailment over these models propagates defeasible information to role successors and thus allows
for more entailments. The presented approach was shown to be more general than the analo-
gous approach for rational reasoning in having less restrictions on the shape of the underlying
typicality domain.

There are several paths for future work. Besides the extensions to more expressive DLs, an
extension to ABox reasoning, i.e., reasoning about data, would be an interesting topic to in-
vestigate. Furthermore, a completion-like algorithm as for classical EL [3,1] would be desirable
to effectively compute these models. The current definition of typicality extensions and model
completions leaves plenty of room for developing practical algorithms worth implementing.
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