

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Formal Concept Analysis and Logic

Exercise Sheet 2

Dr. Felix Distel Summer Semester 2012

Exercise 7

It remains to prove the "only if"-direction. Let $A \rightarrow B$ follow from \mathcal{L} .

We assume that there is a context (G, M, I) in which all implications from \mathcal{L} hold but $A \to B$ does not. Since $A \to B$ does not hold it follows that $A' \not\subseteq B'$, or equivalently according to the properties of Galois connections $B \not\subseteq A''$. Since $A \subseteq A''$, this means that A'' does not respect $A \to B$.

We prove that A'' respects all implications from \mathcal{L} : Let $C \to D$ be an implication from \mathcal{L} with $C \subseteq A''$. From extensivity and idempotency of \cdot'' we get

$$C'' \subseteq A'''' = A''.$$

 $C \rightarrow D$ holds in (*G*, *M*, *I*), which yields $C' \subseteq D'$ or equivalently

 $D \subseteq C''$.

We have thus shown that $D \subseteq A''$ and consequently A'' respects $C \to D$. Therefore A'' must respect all implications from \mathcal{L} which contradicts the assumption that $A \to B$ follows from \mathcal{L} .