Formal Concept Analysis and Logic

Exercise Sheet 4 (Solutions)

Dr. Felix Distel
Summer Semester 2012

Exercise 13

We abbreviate each attribute by its first letter. As the order on the attributes we choose $e<i<a<0<r$.

We explain the first steps in detail. The Next-Closure algorithm for computing all pseudo-closed sets is always initialized by $P_{0}=\emptyset$ and $\mathcal{L}_{0}=\emptyset$. We need to check whether P_{0} is an intent or pseudo-intent by computing the closure. We obtain $P_{0}^{\prime \prime}=\emptyset=P_{0}$, i.e. it is an intent. In this case nothing is added to the base: $\mathcal{L}_{1}=\mathcal{L}_{0}=\emptyset$.

Next, we need to find $x_{\text {max }}$. We start with r (the largest attribute) and check whether it satisfies $r<_{r} P_{0} \oplus_{\mathcal{L}_{1}} r$. We obtain

$$
P_{0} \oplus_{\mathcal{L}_{1}} r=\mathcal{L}_{1}(\{r\})=\{r\},
$$

because \mathcal{L}_{1} is empty. Hence $x_{\max }=r$ and therefore $P_{1}=\{r\}$.
Now, the second iteration starts, ie. we need to check again whether P_{1} is closed, etc. In the following iterations we obtain

- $P_{1}=\{r\}=P_{1}^{\prime \prime}, \mathcal{L}_{2}=\mathcal{L}_{1}=\emptyset$
- $P_{2}=\{0\}=P_{2}^{\prime \prime}, \mathcal{L}_{3}=\mathcal{L}_{2}=\emptyset$
- $P_{3}=\{o, r\} \neq P_{3}^{\prime \prime}=\{e, i, a, o, r\}, \mathcal{L}_{4}=\{\{o, r\} \rightarrow\{e, i, a, o, r\}\}$ (since P_{3} is not closed it is a pseudo-intent and we need to add the corresponding implication)
- $P_{4}=\{a\}=P_{4}^{\prime \prime}, \mathcal{L}_{5}=\mathcal{L}_{4}$
- $P_{5}=\{a, r\} \neq P_{5}^{\prime \prime}=\{e, i, a, o, r\}, \mathcal{L}_{6}=\{\{o, r\} \rightarrow\{e, i, a, o, r\},\{a, r\} \rightarrow\{e, i, a, o, r\}\}$
- $P_{6}=\{a, o\} \neq P_{6}^{\prime \prime}=\{e, i, a, o, r\}$,
$\mathcal{L}_{7}=\{\{o, r\} \rightarrow\{e, i, a, o, r\},\{a, r\} \rightarrow\{e, i, a, o, r\},\{a, o\} \rightarrow\{e, i, a, o, r\}\}$
- $P_{7}=\{i\}=P_{7}^{\prime \prime}, \mathcal{L}_{8}=\mathcal{L}_{7}$
- $P_{8}=\{i, r\}=P_{8}^{\prime \prime}, \mathcal{L}_{9}=\mathcal{L}_{8}$
- $P_{9}=\{i, o\}=P_{9}^{\prime \prime}, \mathcal{L}_{10}=\mathcal{L}_{9}$
- $P_{10}=\{i, a\}=P_{10}^{\prime \prime}, \mathcal{L}_{11}=\mathcal{L}_{10}$
- $P_{11}=\{e\} \neq P_{11}^{\prime \prime}\{e, i, a\}, \mathcal{L}_{12}=\{\{o, r\} \rightarrow\{e, i, a, o, r\},\{a, r\} \rightarrow\{e, i, a, o, r\},\{a, o\} \rightarrow$ $\{e, i, a, o, r\},\{e\} \rightarrow\{e, i, a\}\}$
- $P_{12}=\{e, i, a\}=P_{12}^{\prime \prime}, \mathcal{L}_{13}=\mathcal{L}_{12}$.

Hence, the Duquenne-Guigues Base is

$$
\begin{aligned}
\mathcal{L}=\{ & \{\{o, r\} \rightarrow\{e, i, a, o, r\}, \\
& \{a, r\} \rightarrow\{e, i, a, o, r\} \\
& \{a, o\} \rightarrow\{e, i, a, o, r\}, \\
& \{e\} \rightarrow\{e, i, a\}\} .
\end{aligned}
$$

Exercise 14

Observe that

- \sqcap can be expressed using \neg and \sqcup using de-Morgans laws (and vice versa)
- \exists can be expressed using \neg and \forall using $\exists r . C \equiv \neg \forall r . \neg C$ (and vice versa)

Therefore, there are 4 minimal fragments:

- ᄀ, \sqcap, \forall
- ᄀ, п, ヨ
- ᄀ, ப, \forall
- ᄀ, ப, ヨ

Exercise 15

We obtain
a) $\{d, e, f\}$
b) $\{g\}$
c) $\{d, e, f\}$
d) $\{g\}$
e) $\{d, f, g\}$
f) $\{e\}$

