

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Formal Concept Analysis and Logic

Exercise Sheet 5

Dr. Felix Distel Summer Semester 2012

Exercise 18

Initially, the set of objects is empty. We choose the order C < D < E on the attributes.

1st Iteration

 $P_0 = \emptyset, P_0'' = \{C, D, E\}$

Question to reasoner: Does $lcs \emptyset \supseteq_{\mathcal{T}} lcs \{C, D, E\}$ hold? (Equivalently: $\bot \supseteq_{\mathcal{T}} \exists r. \top$?)

Answer: No.

Counterexample: \perp

С	D	Ε

New $P_0'' = \emptyset = P_0$, i.e. P_0 is a intent.

2nd Iteration

 $P_1 = \{E\}, P_1'' = \{C, D, E\}$

Question to reasoner: Does $lcs{E} \sqsupseteq_{\mathcal{T}} lcs{C, D, E}$ hold? (Equivalently: $E \sqsupseteq_{\mathcal{T}} \exists r. \top$?)

Answer: No.

Counterexample: A

	С	D	Ε
\perp			
Α		×	×

New $P_1'' = \{D, E\}.$

Question to reasoner: Does $lcs{E} \supseteq_T lcs{D, E}$ hold? (Equivalently: $E \supseteq_T A \sqcap \exists r. \top$?) **Answer:** No.

Counterexample: $\exists r.B$

	С	D	Ε
A		×	\times
∃r.B			×

New $P_1'' = \{E\}$. P_1 is an intent.

3rd Iteration

$$P_2 = \{D\}, P_2'' = \{D, E\}$$

Question to reasoner: Does $lcs{D} \sqsupseteq_{\mathcal{T}} lcs{D, E}$ hold? (Equivalently: $D \sqsupseteq_{\mathcal{T}} A \sqcap \exists r. \top$?)

Answer: No.

Counterexample: *B*

	С	D	Ε
\perp			
A		×	×
∃r.B			×
В	×	×	

New $P_2'' = \{D\}$. P_2 is an intent.

4th Iteration

 $P_3 = \{D, E\}, P_3'' = \{D, E\}. P_3$ is an intent

5th Iteration

 $P_4 = \{C\}, P_4'' = \{C, D\}.$

Question to reasoner: Does $lcs{C} \supseteq_{\mathcal{T}} lcs{C, D}$ hold? (Equivalently: $C \supseteq_{\mathcal{T}} B \sqcap \exists r. \top$?)

Answer: No.

Counterexample: $\exists r.A$

	С	D	Ε
A		×	×
∃r.B			×
В	×	×	
∃r.A	×		

New $P_4'' = \{C\}$. P_4 is an intent.

6th Iteration

 $P_5 = \{C, E\}, P_5'' = \{C, D, E\}.$

Question to reasoner: Does $lcs\{C, E\} \supseteq_{\mathcal{T}} lcs\{C, D, E\}$ hold? (Equivalently: $\exists r. \top \supseteq_{\mathcal{T}} \exists r. \top$?)

Answer: Yes.

 $\mathcal{L}_5 = \{ CE \to CDE \}$

7th Iteration

 $P_6 = \{C, D\}, P_6'' = \{C, D\}. P_6$ is intent.

8th Iteration

 $P_7 = \{C, D, E\}, P_7'' = \{C, D, E\}. P_7$ is intent.

We obtain the following concept lattice (attribute labels only).

The inverse of this lattice is the subsumption hierarchy of all least common subsumers.

