

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Formal Concept Analysis and Logic

Exercise Sheet 3

Dr. Felix Distel Summer Semester 2012

Exercise 9

Let $n \ge 3$ be a natural number.

- Present a formal context such that there are n pseudo-intents, but at least 2ⁿ⁻¹ intents.
- Show that contexts of the following form have 2^{*n*} pseudo-intents.

	<i>m</i> ₀	<i>m</i> ₁		m _n	m_{n+1}		<i>m</i> _{2<i>n</i>}
<i>g</i> ₁							
			¥			¥	
<i>g</i> _n							
<i>g</i> _{n+1}	×						
:	:				\neq		
g _{3n}	×						

Here \neq stands for the contranominal scale (where there are crosses everywhere except on the main diagonal).

Exercise 10

Complete the proof of Lemma 2.35. Show that the pseudo-closure operator $\mathcal{D}G^*_{(G,M,I)}$ is a closure operator, i.e. it is extensive, monotone and idempotent.

Show that all intents and pseudo-intents are pseudo-closed.

Exercise 11

Prove Lemma 2.37 which states that for a pseudo-closed set P the lectically next pseudo-closed set \overline{P} is of the form

 $P \oplus_{\mathcal{L}} x$,

where $\mathcal{L} = \{ \mathcal{Q} \rightarrow \mathcal{Q}'' \mid \mathcal{Q} < P \}$, and *x* is maximal with the property that

 $P <_{x} P \oplus_{\mathcal{L}} x.$

Exercise 12

(optional exercise)

A set $Q \subseteq M$ is called a *quasi-intent* iff every $R \subseteq Q$ satisfies $R'' \subseteq Q$ or R'' = Q''.

Prove that a set $P \subseteq M$ is a pseudo-intent iff

- $P \neq P''$,
- P is a quasi-intent, and
- for all quasi-intents Q, $Q \subsetneq P$ implies $Q'' \subsetneq P$.