

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Formal Concept Analysis and Logic

Exercise Sheet 6

Dr. Felix Distel Summer Semester 2012

Exercise 19

Let (G, M, T, F) be a partial context. Show that the operator $\cdot^{\bullet} : 2^{M} \to 2^{M}$ defined as

$$P^{\bullet} = M \setminus \bigcup_{g \in c(P)} \{m \in M \mid gFm\}$$

is a closure operator on $(2^M, \subseteq)$.

Exercise 20

Proof Lemma 3.11 which states the following. Let \mathcal{N}_C be a set of concept names. Let (G, M, I) be a formal context whose set of attributes is $M = \mathcal{N}_C$, let $A \to B$ be an implication and \mathcal{L} a set of implications.

If $A \to B$ follows from \mathcal{L} then

$$\{ \bigcap P \sqsubseteq \bigcap R \mid P \to R \in \mathcal{L} \} \models \bigcap A \sqsubseteq \bigcap B.$$

Exercise 21

Show that for every interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ the operators *mmsc* and $\cdot^{\mathcal{I}}$ form a monotone Galois-connection.