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O Motivation: constraint solving in Automated Theorem Proving
and Logic Programming
O Combination of unification algorithms

O Logical and algebraic analysis of the results

O Extension to more general constraint solvers
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O Coupling of specialized procedures with the universal component

O Coupling of different specialized procedures



Logic Programming language with arithmetic component

Environment-friendly freight forwarding company:
Whenever possible, use rail instead of trucks.

directly-connected(Aachen,Cologne)

connected(X,Y) :- directly-connected(X,Y)
connected(X,Y) :- directly-connected(X,Z), connected(Z,Y)

transport-with(X,Y,rail) :- connected(X,Y)
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Additional economic constraints

Costs should not be significantly higher and transportation time should not be
significantly longer compared to transportation by trucks

‘ Calculations involving (e.g. rational, real) numbers I

logical encoding of the use efficient specialized
theory of real numbers procedures; e.g., procedures for
1s too inefficient solving linear equations and

inequations (Simplex)

Other specialized procedures relevant in this context:
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Resolution method

refutation proof by inferring the empty clause

Resolution rule

o is a unifier of s and t:
o(C, v C,) It is sufficient to compute the most general
unifier: every unifier is an instance of the mgu

‘ Building-in specialized procedures I

by modifying the unification component, e.g.,
O unification modulo equational theories

O replace unification by constraint solving (e.g. CLP(R))
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Unification modulo equational theories

Plotkin 1972: resolution-based theorem provers waste a lot of time

by applying axioms like associativity and commutativity.

‘Examplel f associative
Apply the resolution rule to

P(f(x,x)) and —-P(f(xl,...,f(Xn,f(xl,...,f(xn_l,xn)...))...))

Many ways of re-arranging work modulo associativity,
parentheses in the right term 1.e. consider words instead of terms:
"most of them" don't —uP(xl...anl...xn)
unify with f(x,Xx) P(xx)

Automated theorem prover Mathematician



E-unifier of I

Complete set of

Set of equational axioms

Induced equational theory

E-unification problem

E-unifiers CUE(F)

N

s=, tiff El=s=t

:t}

I'= {s1 =t,.,8 =t

substitution ¢ such that

G(Sl) =g G(tl), G(Sn) =g G(tn)

Every E-unifier 0 is an instance of an

element ¢ of CUE(F), i.e., there is A with

6(x) = Mo(x)) for all variables x in I.
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Associativity A = {f(x.f(y,2)) = f(f(x,y),z)}

Unification problem I' = {f(x,a) = f(a,x)}

c, = {x > a} 1s syntactic unifier and A-unifier

c,= {x — f(a,a)} 1s A-unifier, but not a syntactic unifier

Plotkin procedure that enumerates complete sets
of A-unifiers; these sets may be infinite.

In the example: cU A(1“) = {Gn | n>1}

‘ Makanin I A-unifiability is decidable.
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Constraint solving instead of unification

Instead of computing a complete set of unifiers,

just test solvability of the unification problem.

‘ Example I f associative

Axioms: Q) v P(f(x,a),f(a,x)), —P(y,y)

Assumption: —Q(b)

Q(x) v P(f(x,a).f(a,x)) —=P(y.y)

Qx) | f(x,a) =y =1f(a,x)

? resolution with =Q(b) not possible,
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Requirements on the
unification algorithm

when building-in E-unification
into a resolution-based theorem prover

One needs an algorithm for general E-unification, i.e., the terms to be unified
may contain additional free function symbols.

‘ Example I A = {f(x.f(y,z)) = f(f(x,y),z)} contains only f.
Free function symbols are generated by Skolemization.
dx Vy: f(x,y) =y > Vy:fle,y) =y
Skolemization
Vy dz: f(z,y) =e > Vy: f(i(y),y) =e

Makanin's decision procedure cannot deal with free function symbols.



Combination of unification algorithms

How can unification algorithms for the theories E and F be used
to construct an algorithm for the combined theory E U F?

‘ Examples I

O Building-in an associative symbol f and a commutative symbol g.

O Going from A-unification with free constants to general A-unification
corresponds to the combination of an A-unification algorithm with
an algorithm for syntactic unification.

‘ Disjointness I of the signatures of E and F

O For arbitrary non-disjoint signatures there cannot exists general

Rheinisch-
Westfilische
Technische
Hochschule
Aachen

RWTH

combination methods.




Rheinisch-
Westfilische
Technische
Hochschule
Aachen

RWTH

Combination results

computation of complete sets of unifiers
equational theories over disjoint signatures

First solved for the combination of several associative-commutative
symbols and free symbols [Stickel75, Fages84, Herold&Siekmann87].

Generalized to classes of theories whose axioms satisfy certain
syntactic restrictions [Kirchner85, Tiden86, Herold86, Yelick87, ...].

+
+

‘ Schmidt-Schaul389 I solves the problem in a rather general way

No syntactic restrictions on the axioms of the equational theory.

Requirements are of an algorithmic nature: in addition to an algorithm for
unification with constants one needs a "constant elimination procedure."

Logical/algebraic meaning of this requirement is not clear.

The method cannot be used to combine decision procedures.



Combination of decision procedures [Baader&Schulz92]

Unification modulo E U F is decidable, provided that
O E and F are equational theories over disjoint signatures,

(O unification with linear constant restrictions is decidable
for E and F.

‘ Linear constant restrictions I linear ordering < on the variables and
constants of the problem

x < c: the constant ¢ must not occur in the image of the variable x

Rheinisch- {f(x) =1(b)}: does not have a syntactic unifier under the restriction x < b
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Consequences

O General A-unification is decidable: Makanin's algorithm can "easily"
be extended to an algorithm for A-unification with lcr [Schulz91].

O Modularity result: the combination method yields a decision procedure
for unification with Icr in the combined theory.

O Complexity result: NP-decidability can be lifted to the combined
theory.

O Complete sets: the combination method can also be used to combine
algorithms computing complete sets of unifiers. The combination result
of Schmidt-Schaul} can be obtained as a corollary.
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decomposition

1 ith unification problem for E U F
algorithm sig(B) N sig(F) =0

O standard transformation steps
used in many combination procedures
(variable abstraction,
variable identification, ...)

transformation
rules

O New: choose a linear ordering

O some of the steps are non-deterministic
(responsible for complexity of algorithm)

Rheinisch- ) . .« .
woamser unification problem unification problem

Technische with lcr for E with lcr for F
ochschule
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PSSO oy = e, s =gy | BT

variable abstraction:
generates "pure" terms
z=1(y.y) g(z) = g(x), g(x) = g(y)
choose theory for variables:
avoids incompatible instantiations
z=1(y,y) g(z) = g(x), g(x) = g(y)
choose variable identification:
avoids incompatible free constants
x =1(y,y) g(x) = g(x), g(x) = g(y)
Rheinisch- linear constant restriction:
Westfilische . . .
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Analysis of results

O more abstract | O better understanding
goa

O less technical » | O simpler proofs

formulation O easier to generalize

Two approaches

O logical and algebraic characterizations of unification with linear

constant restrictions.

O combination of algebras and solution structures instead of

union of theories.
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A logical view on unification

F:{slztl,...,s
nn | —e EI:EI§:31=t1/\.../\sn=t

1s E-unifiable n

1 tarv E-unifi validity in E of existential
elementary E-unifica- - |
g ‘ - positive formulae is

decidable

tion 1s decidable

elementaty unification:
no free symbols
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Logical characterization of linear constant restrictions

equivalence result

unification with validity in the general
ler positive theory unification
decidable decidable decidable
( example forE=0 b
{(x) = f(b)} with Ix Yy, f(x) = (y,) (f(x) = f(g()))
restriction x <b
not valid not unifiable
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Algebraic reformulation of the combination results
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O The equational theory E defines the variety V(E) = { 4| E I= A4}.
O The quotient term algebra T(Z,X)/:E is free in V(E) with generators X.

O E-unification is solving equations in the E-free algebra T(X,V)/=_

with countably infinite set of generators V.

O The free algebra T(X,V)/= is canonical for the positive theory of E,

1.e., a positive formula is valid in E iff it is valid in T(Z,V)/=E.

positive theories of positive theory of
T V)= and TA V)= | — | TEUAV)/= EUF)
decidable decidable

E and F equational theories over
disjoint signatures X~ and A



Generalization of results

More general constraints than purely equational constraints

O Allow for additional predicate symbols (different from =) in the
signature and consider free structures instead of free algebras.

O Modularity result for decidability of positive theories of free
structures [Baader&SchulzRTA93].

More general solution structures than free algebras/structures

O Many of the solution structures considered in constraint programming
are not free:

Rheinisch- . .
Westfilische » rational trees in CLP-languages (e.g. Prolog III)
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Hochschule » feature structures in computational linguistics (e.g. Life, Oz)
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Combination of structures

We are looking for (abstract algebraic) characterizations of interesting
classes of structures for which there is a general combination construction 3
such that the following holds:

O If Ais a X-structure and ‘B a A-structure (for disjoint signatures X

and A), then A4 # Bis a (X U A)-structure.
O The positive theory of 4 % ‘Bis decidable, provided that the positive
theories of A4 and of ‘B are decidable.

O This decidability result can be shown using a variant of the

decomposition algorithm.

Raeinish When is A% ‘B a "reasonable" combination of 4 and B ?
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The free amalgamated product arbitrary structures
no disjointness restriction

is characterized by a universal property:

common g~
e
|

gEmA ﬂ’*‘ @ : > Q)ZUA

~

A % Band D belong to a
class of "admissible" structures

Adm(A4,B).

Need not exist for
arbitrary structures!
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Results

O If the free amalgamated product exists, then it is unique up
to isomorphism.

O For free algebras, the free amalgamated product always exists:

TEX)/=p # TAX)= = TEVAX)/=¢

where T(XNA,X) is the common part and V(EUF) is the admissible class.

Questions

» [s there a larger class of structures for which the free amalgamated
product always exists?

» (Can this product be obtained by an explicit construction?

» [s our combination method for decision procedures applicable?




Internal characterization of free structures
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The structure A is free over the countably infinite set of generators V
(for some variety V(E)) iff

1) Ais generated by V.

2) Every mapping f: V — A can be extended to an endomorphism

of 4.

Generalization

O Keep 2): important in the proof of correctness of the
combination method.

O Weaken 1):
"generated by" is replaced by "stabilized by".



Quasi-free structures [Baader&SchulzCP95,TCS98]

The countably infinite structure A4 is called quasi-free over the countably

infinite set of "atoms" X iff

1) Forevery a € A there exists a finite set Stab(a) < X such that

endomorphisms of A that agree on Stab(a) also agree on a.

2) Every mapping f: X — A can be extended to an endomorphism

of 4.
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The algebra of rational trees

is quasi-free, but not free

O Elements are countable (finite or infinite) trees containing only

finitely many different subtrees.

/\

/ t solution of
< : : y =f(x,y)

/\

/\

O Used as solution structure in place of the term algebra in some

Logic Programming languages (e.g. Prolog III).

O Ad-hoc approaches for combination with data structures such as

sets and lists.



Results for quasi-free structures

O Investigation of the algebraic and logical properties of
quasi-free structures.

O Definition of an explicit amalgamation construction for
quasi-free structures over disjoint signatures.

O This construction yields the free amalgamated product.

O It allows for a purely algebraic proof of correctness of the
decomposition algorithm.

O More abstract (less technical) understanding of why our
combination method works.
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Theorem [Baader&SchulzTCS98]

Let 4 and ‘B be quasi-free structures over disjoint signatures.
1) The free amalgamated product A % B of 4 and B always exists.

2) If the positive theories of 4 and ‘B are decidable, then the

positive theory of A4 % ‘B is decidable as well.

This combination result applies to important solution structures
such as the algebra of rational trees, feature structures, and
hereditarily finite well-founded or non-well-founded sets and lists.




Conclusion

O Combination of decision procedures for unification

modulo equational theories.

O General approach for combining solution structures:

free amalgamated product.
O Definition of the class of quasi-free structures:

» (Generalization of free structures.
»  Allow for an explicit amalgamation construction.
» (Combination of decision procedures for the

positive theories of quasi-free structures.
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