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m	 Motivation: constraint solving in Automated Theorem Proving 
	 and Logic Programming

m	 Combination of unification algorithms 

m	 Logical and algebraic analysis of the results

m	 Extension to more general constraint solvers

*	 This is joint work with Klaus U. Schulz, University of Munich
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	 equational	 resolution-based
	 unification	 theorem provers
		
	 ordering	 Knuth-Bendix
 	 constraints	 completion

	 data structures	 Logic Programming
	 (lists, sets)	 languages

	

specialized
procedure

specialized
procedure universal

deductive

component

Combination problems

	 m	 Coupling of specialized procedures with the universal component

	 m	 Coupling of different specialized procedures
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Logic Programming language with arithmetic component

Environment-friendly freight forwarding company: 
Whenever possible, use rail instead of trucks.

	 directly-connected(Aachen,Cologne)

	 connected(X,Y) :- directly-connected(X,Y)

	 connected(X,Y) :- directly-connected(X,Z), connected(Z,Y)

	 transport-with(X,Y,rail) :- connected(X,Y)

...
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Costs should not be significantly higher and transportation time should not be 
significantly longer compared to transportation by trucks

	 Calculations involving (e.g. rational, real) numbers

	 logical encoding of the	 use efficient specialized
	 theory of real numbers	 procedures; e.g., procedures for
	 is too inefficient	 solving linear equations and
	 	 	 inequations (Simplex)

	 Other specialized procedures relevant in this context:

	 Integration of data structures such as sets and lists (e.g. Prolog III)

Additional economic constraints
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Goal	 refutation proof by inferring the empty clause

Resolution rule

	 P(s) ∨ C
1
	 ¬P(t) ∨ C

2

	 	 σ(C
1
 ∨ C

2
)

Building-in specialized procedures

by modifying the unification component, e.g.,

m	 unification modulo equational theories

m	 replace unification by constraint solving (e.g. CLP(R))

Resolution method

σ is a unifier of s and t:

	 σ(s) = σ(t)

It is sufficient to compute the most general 

unifier: every unifier is an instance of the mgu
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Plotkin 1972: resolution-based theorem provers waste a lot of time

by applying axioms like associativity and commutativity.

Example	 f associative

	 	 	 Apply the resolution rule to 	

	 	 P(f(x,x)) and ¬P(f(x
1
,...,f(x

n
,f(x

1
,...,f(x

n-1
,x

n
)...))...))

	 Many ways of re-arranging	 work modulo associativity,

	 parentheses in the right term	 i.e. consider words instead of terms:

	 "most of them" don't	 ¬P(x
1
...x

n
x

1
...x

n
)

	 unify with f(x,x)	            P(xx)

Unification modulo equational theories

Automated theorem prover	 Mathematician
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E-unification

Set of equational axioms	 E = { ..., s = t, ... } 

Induced equational theory	 s =
E

 t  iff  E |= s = t

E-unification problem	 Γ = {s
1
 = t

1
, ..., s

n
 = t

n
}

E-unifier of Γ	 substitution σ such that 

	 	 	 σ(s
1
) =

E
 σ(t

1
), ..., σ(s

n
) =

E
 σ(t

n
)

Complete set of	 Every E-unifier θ is an instance of an

E-unifiers cU
E
(Γ)	 element σ of cU

E
(Γ), i.e., there is λ with

	 	 	 θ(x) =
E 

λ(σ(x))  for all variables x in Γ.

plays role of
most general unifier
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Associativity	 A = {f(x,f(y,z)) = f(f(x,y),z)}

Unification problem Γ = {f(x,a) = f(a,x)}

	 σ
1
 = {x → a}	 is syntactic unifier and A-unifier

	 σ
2
 = {x → f(a,a)}	 is A-unifier, but not a syntactic unifier

Plotkin	 procedure that enumerates complete sets 
	 	 of A-unifiers; these sets may be infinite.

	 	 In the example: cU
A

(Γ) = {σ
n
 |  n ≥ 1}

Makanin	 A-unifiability is decidable.
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Constraint solving instead of unification

Instead of computing a complete set of unifiers, 
just test solvability of the unification problem.

Example	 f associative

Axioms:	 	 Q(x) ∨ P(f(x,a),f(a,x)),     ¬P(y,y)

Assumption:	 ¬Q(b)

Q(x) ∨ P(f(x,a),f(a,x))    ¬P(y,y)

	 Q(x) | f(x,a) = y = f(a,x)

resolution with ¬Q(b) not possible,
since {f(x,a) = y = f(a,x), x = b} is
not solvable
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Example	 A = {f(x,f(y,z)) = f(f(x,y),z)} contains only f.
	 	 	 Free function symbols are generated by Skolemization.

Requirements on the 
unification algorithm    

when building-in  E-unification
into a resolution-based theorem prover

One needs an algorithm for general E-unification, i.e., the terms to be unified
may contain additional free function symbols.

∃x ∀y: f(x,y) = y               	 ∀y: f(e,y) = y

∀y ∃z: f(z,y) = e               	 ∀y: f(i(y),y) = e

Skolemization

Makanin's decision procedure cannot deal with free function symbols.



RWTH

Rheinisch-
Westfälische
Technische
 Hochschule

Aachen

Combination of unification algorithms

How can unification algorithms for the theories E and F be used 
to construct an algorithm for the combined theory E ∪ F?

Examples

m	 Building-in an associative symbol f and a commutative symbol g.

m	 Going from A-unification with free constants to general A-unification 
	 corresponds to the combination of an A-unification algorithm with 
	 an algorithm for syntactic unification.

Disjointness	 of the signatures of E and F

m	 For arbitrary non-disjoint signatures there cannot exists general
	 combination methods.
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Combination results	 computation of complete sets of unifiers
	 	 	 equational theories over disjoint signatures

m	 First solved for the combination of several associative-commutative 
	 symbols and free symbols [Stickel75, Fages84, Herold&Siekmann87].

m	 Generalized to classes of theories whose axioms satisfy certain 
	 syntactic restrictions [Kirchner85, Tiden86, Herold86, Yelick87, ...].

Schmidt-Schauß89	 solves the problem in a rather general way

:	 No syntactic restrictions on the axioms of the equational theory.

:	 Requirements are of an algorithmic nature: in addition to an algorithm for 
	 unification with constants one needs a "constant elimination procedure." 

	 Logical/algebraic meaning of this requirement is not clear.

	 The method cannot be used to combine decision procedures.
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Linear constant restrictions	 linear ordering < on the variables and
	 	 	 constants of the problem

	 x < c:   the constant c must not occur in the image of the variable x

	 {f(x) = f(b)}:   does not have a syntactic unifier under the restriction x < b

Combination of decision procedures	 [Baader&Schulz92]

Unification modulo E ∪ F is decidable, provided that

m	 E and F are equational theories over disjoint signatures,

m	 unification with linear constant restrictions is decidable
	 for E and F.
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Consequences

m	 General A-unification is decidable: Makanin's algorithm can "easily"
	 be extended to an algorithm for A-unification with lcr [Schulz91].

m	 Modularity result: the combination method yields a decision procedure
	 for unification with lcr in the combined theory.  

m	 Complexity result: NP-decidability can be lifted to the combined 
	 theory.

m	 Complete sets: the combination method can also be used to combine
	 algorithms computing complete sets of unifiers. The combination result  
	 of Schmidt-Schauß can be obtained as a corollary.
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decomposition
	 algorithm	 unification problem for E ∪ F

sig(E) ∩ sig(F) = Ø
Γ0

transformation
rules

Γ2Γ1

unification problem	 unification problem 
	 with lcr for E	 	 with lcr for F

m	 standard transformation steps 
	 used in many combination procedures
	 (variable abstraction, 
	 variable identification, ...)

m	 New: choose a linear ordering

m	 some of the steps are non-deterministic
	 (responsible for complexity of algorithm)
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g(f(y,y)) = g(x), g(x) = g(y)
f associative g free

z = f(y,y)	 g(z) = g(x), g(x) = g(y)

variable abstraction:
generates "pure" terms

z = f(y,y)	 g(z) = g(x), g(x) = g(y)

choose theory for variables:
avoids  incompatible instantiations

x = f(y,y)	 g(x) = g(x), g(x) = g(y)

choose variable identification:
avoids incompatible free constants

linear constant restriction:
avoids cyclic dependencies
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m	 better understanding

m	 simpler proofs

m	 easier to generalize 

Analysis of results

m	 more abstract

m	 less technical

formulation

goal

Two approaches

m	 logical and algebraic characterizations of unification with linear 

	 constant restrictions.

m	 combination of algebras and solution structures instead of

	 union of theories.
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A logical view on unification

Γ = {s
1
 = t

1
, ..., s

n
 = t

n
}

is E-unifiable
E |= ∃x: s

1
 = t

1
 ∧ ... ∧ s

n
 = t

n

elementary E-unifica-
tion is decidable

validity in E of existential 
positive formulae is 
decidable

elementaty unification:
no free symbols



RWTH

Rheinisch-
Westfälische
Technische
 Hochschule

Aachen

unification with	  validity in the	   general
	   lcr	 	 	 positive theory	 unification
   decidable		    decidable	  decidable

{f(x) = f(b)} with	 ∃x ∀y
b
 f(x) = f(y

b
)	 {f(x) = f(g(x))}

restriction x < b	
not unifiable	 not valid	 not unifiable

equivalence result

example for E = Ø

Logical characterization of linear constant restrictions
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positive theories of 	 positive theory of 

T(Σ,V)/=
E

 and T(∆,V)/=
F
 	 T(Σ ∪ ∆,V)/=

(E ∪ F)
 

decidable	 decidable

Algebraic reformulation of the combination results

m	 The equational theory E defines the variety V(E) = {A | E |= A}.

m	 The quotient term algebra T(Σ,X)/=
E
  is free in V(E) with generators X.

m	 E-unification is solving equations in the E-free algebra T(Σ,V)/=
E

 

	 with countably infinite set of generators V.

m	 The free algebra T(Σ,V)/=
E
 is canonical for the positive theory of E,

	 i.e., a positive formula is valid in E iff it is valid in T(Σ,V)/=
E
.

E and F equational theories over
disjoint signatures Σ and ∆



RWTH

Rheinisch-
Westfälische
Technische
 Hochschule

Aachen

Generalization of results

More general constraints	 than purely equational constraints

	 	 m	 Allow for additional predicate symbols (different from =) in the
	 	 	 signature and consider free structures instead of free algebras. 

	 	 m	 Modularity result for decidability of positive theories of free
	 	 	 structures [Baader&SchulzRTA95].

More general solution structures	 than free algebras/structures

	 	 m	 Many of the solution structures considered in constraint programming 
	 	 	 are not free:

	 	 	 ü	 rational trees in CLP-languages (e.g. Prolog III)
	 	 	 ü	 feature structures in computational linguistics  (e.g. Life, Oz)
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We are looking for (abstract algebraic) characterizations of interesting

classes of structures for which there is a general combination construction j

such that the following holds:

	 m	 If A is a Σ-structure and B a ∆-structure (for disjoint signatures Σ 

	 	 and ∆), then A j B is a (Σ ∪ ∆)-structure.

	 m	 The positive theory of A j B is decidable, provided that the positive

	 	 theories of A and of B are decidable.

	 m	 This decidability result can be shown using a variant of the 

	 	 decomposition algorithm.

Combination of structures

When is A j B  a "reasonable"  combination of A and B ?
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The free amalgamated product	 arbitrary structures
	 	 	 no disjointness restriction

	 	 is characterized by a universal property:

AΣ

B∆

GΣ∩∆ A j B DΣ∪∆!

A j B and DΣ∪∆ belong to a
class of "admissible" structures

Adm(A,B).

Need not exist for
arbitrary structures!

common
part
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Results

m	 If the free amalgamated product exists, then it is unique up
	 to isomorphism.

m	 For free algebras, the free amalgamated product always exists:
	

	

	 where T(Σ∩∆,X) is the common part and V(E∪F) is the admissible class.

T(Σ,X)/=
E

 j T(∆,X)/=
F
 ≅  T(Σ ∪ ∆,X)/=

(E ∪ F)
 

Questions

ü	 Is there a larger class of structures for which the free amalgamated 
	 product always exists? 

ü	 Can this product be obtained by an explicit construction? 

ü	 Is our combination method for decision procedures applicable? 
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Internal characterization of free structures

The structure A is free over the countably infinite set of generators V

(for some variety V(E)) iff 

1) 	 A is generated by V.

2) 	 Every mapping f: V → A can be extended to an endomorphism

	  of A.

Generalization

	 m	 Keep 2): important in the proof of correctness of the
	 	 combination method.

	 m	  Weaken 1): 
	 	 "generated by" is replaced by "stabilized by".
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Quasi-free structures	 [Baader&SchulzCP95,TCS98]

The countably infinite structure A is called quasi-free over the countably 

infinite set of "atoms" X  iff

1)	 For every a ∈ A there exists a finite set Stab(a) ⊆ X such that

	 endomorphisms of A that agree on Stab(a) also agree on a.

2) 	 Every mapping f: X → A can be extended to an endomorphism

	  of A.

A
a

X Stab(a)
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m	 Elements are countable (finite or infinite) trees containing only
	 finitely many different subtrees.

m	 Used as solution structure in place of the term algebra in some 
	 Logic Programming languages (e.g. Prolog III). 

m	 Ad-hoc approaches for combination with data structures such as 
	 sets and lists.

The algebra of rational trees	 is quasi-free, but not free

f

x

f

x f

x f

x

solution of
y = f(x,y)

.
	 .
	 	 .
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Results	 for quasi-free structures

m	 Investigation of the algebraic and logical properties of 
	 quasi-free structures.

m	 Definition of an explicit amalgamation construction for
	 quasi-free structures over disjoint signatures.

m	 This construction yields the free amalgamated product.

m	 It allows for a purely algebraic proof of correctness of the
	 decomposition algorithm.

m	 More abstract (less technical) understanding of why our
	 combination method works.
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Theorem	 [Baader&SchulzTCS98]

Let A and B  be quasi-free structures over disjoint signatures.

1) 	 The free amalgamated product A j B of A and B always exists.

2) 	 If the positive theories of A and B  are decidable, then the

	 positive theory of A j B  is decidable as well.

This combination result applies to important solution structures
such as the algebra of rational trees, feature structures, and 
hereditarily finite well-founded or non-well-founded sets and lists.
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Conclusion

m	 Combination of decision procedures for unification

	 modulo equational theories.

m	 General approach for combining solution structures:

	 free amalgamated product.

m	 Definition of the class of quasi-free structures:

	 ü	 Generalization of free structures.

	 ü	 Allow for an explicit amalgamation construction.

	 ü	 Combination of decision procedures for the 

	 	 positive theories of quasi-free structures.


