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m	 Short introduction to Description Logics

m	 Application in chemical process engineering

m	 Non-standard inferences least common subsumer, 
	 most specific concept, rewriting, and matching
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Description logics	 class of knowledge representation formalisms

m	 Descended from structured inheritance networks [Brachman 78].

m	 Tried to overcome ambiguities in semantic networks and frames
	 that were due to their lack of a formal semantics.

m	 Restriction to a small set of "epistemologically adequate" operators
	 for defining concepts (classes).

m	 Importance of well-defined basic inference procedures: 
	 subsumption and instance problem.

m	 First realization: system KL-ONE  [Brachman&Schmolze 85],
	 many successor systems (Classic, Crack, FaCT, Flex, Kris, Loom, Race...).

m	 First application: natural language processing;
	 now also other domains (configuration, medical terminology, databases,
	 chemical process engineering, ontologies for the semantic web,...)
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Description logic systems	 structure

	 TBox
defines terminology of

the application domain

	 ABox
states facts about a

specific "world"

knowledge base

description
language

m	 constructors for
	 building complex
	 concepts and roles 
	 out of atomic 
	 concepts and roles

m	 formal, logic-based
	 semantics

reasoning
component

m	 derive implicitly
	 represented knowledge
	 (e.g., subsumption)

m	 "practical" algorithms
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Description language	 examples of typical constructors:

	 	 	 C  D,  C, ∀ r . C, ∃ r . C, (≥ n r) 

A man 	 	 Human   Female 

that is married to a doctor, and	 	 ∃ married-to . Doctor 

has at least 5 children,             	 	 (≥ 5 child) 

all of whom are professors.	 	 ∀ child . Professor

	 TBox	 	 ABox

definition of concepts	 properties of individuals

Happy-man = Human  ...	 Happy-Man(Franz)
	 	 	 child(Franz,Luisa)
	 	 	 child(Franz,Julian)
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Formal semantics	 based on interpretations as in predicate logic

An interpretation I associates

	 ü	 concepts C with sets CI and 

	 ü	 roles r with binary relations rI.

The semantics of the constructors is defined through identities:

	 ü	 (C  D)I = CI ∩ DI

	 ü	 (≥ n r)I = {d  |  #{e | (d,e) ∈ rI} ≥ n}
	 ü	 (∀ r . C )I = {d  |  ∀ e: (d,e) ∈ rI  ⇒ e ∈ CI}
	 ü	 (∃ r . C )I = {d  |  ∃ e:  (d,e) ∈ rI ∧ e ∈ CI}

I |= A = C  iff  AI = CI
	 I |= C(a)  iff  aI ∈ CI

	 	 	 	 I |= r(a,b)  iff  (aI,bI) ∈ rI
model
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Subsumption	 Is C a sub-concept of D? 

	 C  D   iff   CI ⊆ DI for all interpretations I.

Instance	 Is e an instance of C w.r.t. the ABox A? 

	 A |= C(e)   iff   eI ∈ C I  for all models I of A.

Inferences	 make implicit knowledge explicit;
	 	 	 	 are available as system services of DL systems
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Reasoning
feasible 	

Expressivity
sufficient 

	

versus

m	 decidability/complexity	 m	 application relevant concepts 
	 of reasoning	 	 must be definable

m	 requires restricted description	 m	 some application domains  
	 language	 	 require very expressive DLs

m	 systems and complexity results   	 m	 efficient algorithms in practice
	 available for various combinations  	 	 for very expressive DLs?
	 of constructors 		

			

Focus of 
DL research
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Phase 1		 mostly system development (KL-ONE, LOOM, ...)

m	 expressive description languages, but no disjunction, negation, exist. quant.

m	 use of so-called structural subsumption algorithms (polynomial)

m	 no formal investigation of reasoning problems and properties of algorithms

Phase 2		 first formal investigations

m	 formal, logic-based semantics

m	 first undecidability and complexity results

m	 incompleteness of structural subsumption algorithms
	 ü	 incompleteness as feature (Loom, Back)
	 ü	 restrict expressive power (Classic)

early
eighties

DL research	 historical overview

mid-
eighties
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Phase 3		 tableau algorithms for DLs and 
	 	 	 thorough complexity analysis

m	 Schmidt-Schauß and Smolka describe the first complete  (tableau-based) 
	 subsumption algorithm for a non-trivial DL; 

	 ALC: propositionally closed (negation, disjunction, existential restrictions);

	 complexity result: subsumption in ALC  is PSPACE-complete.

m	 Exact worst-case complexity of satisfiability and subsumption for various 
	 DLs (DFKI, University of Rome I).

m	 Development of tableau-based algorithms for a great variety of DLs 
	 (DFKI, University of Rome I, RWTH Aachen, ...).

m	 First DL systems with tableau algorithms: Kris (DFKI), Crack (IRST Trento);
	 first optimization techniques for DL systems with tableau algorithms.

m	 Schild notices a close connection between DLs and modal logics.

end eighties to
mid-nineties
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 	 concept name A	 propositional variable A

	 role name r	 modal parameter r

	 C  D	 t(C) ∧ t(D)

	 C    D	 t(C) ∨ t(D)

	 ¬ C		 ¬ t(C)

	 ∃ r  C	 <r>t(C)

	 ∀ r  C	 [r]t(C)

ALC is a syntactic variant of multi-modal K        [Schild 91]

translation

t

	 interpretation I	 Kripke structure K = (W,R)

	 set of individuals dom(I)	 set of worlds W

	 interpretation of role names rI 	 accessibility relation Rr

	 interpretation of concept names AI 	 worlds in which A is true
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Phase 4		 algorithms and systems for very expressive DLs
	 	 	 (e.g., without finite model property)

m	 Decidability results for very expressive DLs by translation into PDL 
	 (propositional dynamic logic) (Uni Roma I), strong complexity results;
	 motivated by database applications.

m	 Intensive optimization of tableau algorithms (Uni Manchester, IRST Trento, 
	 Bell Labs, Uni Hamburg): very efficient systems for expressive DLs.

m	 Design of practical tableau algorithms for very expressive DLs
	 (Uni Manchester, RWTH Aachen); application to ontology reasoning
	 for the semantic web.

late
nineties
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Old and new inference problems

m	 Standard inference problems (like subsumption, instance) in 
	 Description Logics are well-investigated: 
	 ü	 Complexity results for a great variety of DLs.
	 ü	 Optimized implementations for expressive DLs.

m	 Building and maintaining large knowledge bases requires support by
	 additional nonstandard inference methods; e.g.:

	 ü	 Bottom-up construction of knowledge bases requires
	 	 least common subsumer, most specific concept, and rewriting.

	 ü	 Search for partially specified concepts requires
	 	 matching and unification.
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Modelling chemical	 Process Systems Engineering 

processes and plants	 RWTH Aachen (Prof. Marquardt) 

m	 Computer-aided modelling of chemical processes to
	 analyze, simulate, and optimize the processes.

m	 Modelling tool ModKit that allows to build process models
	 from standard building blocks.

m	 Library of standard building blocks, which must be 
	 extended continuously.

m	 Description of building blocks in a 
	 frame-based formalism (VeDa).

m	 Structured representation of the 
	 building blocks in a class hierarchy 
	 supports searching and browsing.
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Applying standard inferences	 for the automated structuring 
	 	 	 of the library.

Class descriptions

Building block descriptions
	

VeDa / ModKit DL ALE / FaCT

trans-

late

subsumption
	 	 	 	 algorithm
      instance

trans-

fer
Computed 
subsumption hierarchy

Computed 
instance relationships

Concept definitions (TBox)

Individuals (ABox)
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Applying nonstandard inferences	 to support the bottom-up
	 	 	 construction of knowledge bases

building blocks

new class description
having the building blocks
as instances

trans-

late

a:A b:A
r

r s
c:B ABox

most specific   concept (msc) 

C
a

C
c C

b

C least common
subsumer (lcs)

minimal rewriting

C
min

trans-

late



RWTH

Rheinisch-
Westfälische
Technische
 Hochschule

Aachen

© F. Baader

Research work            necessary to realize this approach

m	 Least common subsumer:  existence and computation 
	 ü	 First results for Classic (AT&T) [Cohen&Hirsh94, Frazier&Pitt96]:
	 	 incorrect treatment of inconsistency and attributes.

	 ü	 First sound and complete treatment for ALN,  ALE, and ALEN

	 	 [B.&Küsters98, B.,Küsters&Molitor99, Küsters&Molitor01].

m	 Most specific concept:  existence, computation or approximation

	 ü	 Existence and computation for ALN with cyclic definitions 

	 	 [B.&Küsters98].

	 ü	 Non-existence and approximation in ALE [Küsters&MolitorKI01].

m	 Rewriting:  general framework, complexity and computation

	 ü	 Results for ALE, ALN, ALC and sub-languages

	 	 [B.,Küsters&Molitor00].	

	 ü	 Related results in database research: rewriting queries using views.
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Least common subsumer	 of concept descriptions

m	 The concept description E is the least common subsumer (lcs) of

	 the concept descriptions  C
1
, ..., C

n
   iff 

	 ü	 C
1
  E, ..., C

n
  E, and	 subsumes all C

i

	 ü	 C
1
  F, ..., C

n
  F  implies  E  F	 is the least such description

∃ child. Top 
∀ child. (Male  Doctor) 

∃ child. (Male  Student) 
∃ child. (Doctor    Female) 

and

m	 	 ∃ child. Male ∃ child. Doctor     is in ALE the lcs of

m	 In DLs with disjunction, lcs = disjunction and thus not interesting.

m	 Questions to be answered: 
	 Existence of the lcs, its size (binary, n-ary), how to compute it.
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Results	 for the lcs in sublanguages of ALEN

	 EL

C  D, ∃ r . C, 

	 Top

	 ALEN

	 ALE + 
number restrictions

	 Existence	      yes	      yes	      yes

	 Size (2)		 polynomial	 exponential	 doubly exponential

	 Size (n)		 exponential	 exponential	 doubly exponential

	 Computation	 Ptime/Exptime	 Exptime	 2-Exptime

	 ALE

EL + ∀ r . C +

atomic negation

Approach m	 Translate concept descriptions into description trees.

m	 Characterize subsumption via homomorphisms.

m	 Lcs as product of the description trees.
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Most specific concept	 of an ABox individual

	 The concept description E is the most specific concept (msc) of

	 the individual b in the ABox A iff 

	 ü	 A |= E(b) , and		 b is an instance of E

	 ü	 A |= F(b)  implies  E  F	 E is the least such description

b : A

r
b is an instance of

A,  ∃ r . A,  ∃ r . ∃ r . A,  ∃ r . ∃ r . ∃ r .A, ...

There is no most specific ALE-concept 

description C such that b is an instance of C.

A similar example shows that the msc need not exist in ALN.
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m	 Allow for cyclic TBoxes with an appropriate fixpoint semantics:

	 C = A  ∃ r . C    with gfp-semantics yields msc in the example.

	 For ALN with cyclic definitions and gfp-semantics, the msc always

	 exists and can effectively be computed [B.&Küsters98].

m	 Use k-approximation of the msc: most specific concept of role depth
	 at most k having b as an instance:

	 A  ∃ r . (A  ∃ r . A)    is the 2-approximation of the msc in the example.

	 For ALE, the k-approximation always exists and can effectively 

	 be computed. More efficient approaches for sub-languages of ALE

	 [Küsters&MolitorKI01].

Ways out	 two approaches to deal with the non-existence of the msc
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Rewriting in DL	 our motivation

Non-standard inference procedures for DLs, like

	 ü	 computing the least common subsumer (lcs),

	 ü	 matching and unification of concept descriptions,

produce concept descriptions that 

	 ü	 are shown to the user for inspection,

	 ü	 may be quite large,

	 ü	 are unfolded, i.e.,  do not use concept names defined in the TBox.

Inference service that automatically

increases readability of concept descriptions?
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unfolded description

C 

TBox

T

description D ≡
T
 C 

using names defined in T

Rewriting 	 concepts using a TBox

rewriting
procedure

minimal rewriting:
D is of minimal size



RWTH

Rheinisch-
Westfälische
Technische
 Hochschule

Aachen

© F. Baader

A ∀ child . B

Example

Happy 
∀ child . ∀ child. (Rich  Happy)

A	 = 	Happy ∀ child . ∀ child . Rich

B	 =	 ∀ child . Happy

C	 =	 ∀ child . (B  ∀ child . Rich)

rewriting
procedure

Happy C minimal
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Results	 for the minimal rewriting problem  in DLs

	 	 	 [B.,Küsters&Molitor00]

m	 Complexity of the corresponding optimization problem:

	 ü	 ALN:	NP-hard, in Σ

	 ü	 ALE:	 NP-hard, in PSPACE

	 ü	 ALC:	 PSPACE-complete

m	 Nondeterministic algorithms computing all minimal rewritings 

	 in ALE and ALN.

m	 Heuristic rewriting algorithm for ALE behaves quite well in practice:

	 descriptions of size 800 obtained as lcs in the process engineering

	 application are rewritten into descriptions of size 10.
	

p
2
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Matching in DL	 our motivation

m	 Design by modification:
	 before defining a new building block from scratch, the process
	 engineers try to locate a structurally similar one in the knowledge 
	 base, and then modify the existing block.

m	 Matching allows to look for concepts having a certain (partially
	 specified) structure:

	 Assume we look for concepts concerned with individuals having
	 a son and a daughter sharing some characteristic:

	 	 ∃ child. (Male  X) ∃ child. (Female  X)

	 is a concept pattern expressing this.

	 The substitution {X —> Tall, Y —> Tall} shows that this pattern
	 matches the description

`	 	 ∃ child. (Male  Tall) ∃ child. (Female  Tall)
	

	

variable
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Matching in DL	 definition and results
			

	 Let C be a concept and D be a pattern. 

	 The substitution σ is a matcher of C ≡? D  iff   C ≡ σ(D).

m	 Matching in ALN [B., Küsters, Borgida, McGuinness 99]:

	 ü	 Existence of matchers can be decided in polynomial time.
	 ü	 Solvable problems have a unique least matcher, which can be 
	 	 computed in polynomial time.
	 ü	 Matching problems are translated into formal language equations.

m	 Matching in ALE [B.&Küsters00]:

	 ü	 Existence of matchers is an NP-complete problem.
	 ü	 Solvable problems have finitely many minimal matchers, which 
	 	 can be computed in exponential time. Both the number and the 
	 	 size of matchers may be exponential.
	 ü	 Approach depends on partial homomorphisms and lcs.
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Conclusion

m	 Compared to the body of results for standard inferences, 
	 the research on nonstandard inferences is just at the beginning.

m	 For lcs, msc, and matching, we have a relatively clear picture for 

	 (sub-languages of) ALE and ALN. 

m	 Other interesting nonstandard inferences:

	 ü	 Unification, i.e., patterns on both sides of the equation:
	 	 considerably harder than matching; 

	 	 Exptime-complete for FL
0
 (C  D, ∀ r . C).

	 ü	 Approximation of concepts in one DL by concepts in another DL:
	 	 we just started to work on this.


