
Nonstandard Inferences in Description Logics

Franz Baader Theoretical Computer Science RWTH Aachen Germany

- Short introduction to Description Logics
- Application in chemical process engineering
- Non-standard inferences least common subsumer, most specific concept, rewriting, and matching

Description logics

- Descended from structured inheritance networks [Brachman 78].
- Tried to overcome ambiguities in semantic networks and frames that were due to their lack of a formal semantics.
- Restriction to a small set of "epistemologically adequate" operators for defining concepts (classes).
- Importance of well-defined basic inference procedures: subsumption and instance problem.
- First realization: system KL-ONE [Brachman&Schmolze 85], many successor systems (Classic, Crack, FaCT, Flex, Kris, Loom, Race...).
- First application: natural language processing;
 now also other domains (configuration, medical terminology, databases,
 chemical process engineering, ontologies for the semantic web,...)

Description language

examples of typical constructors: $C \sqcap D, \neg C, \forall r. C, \exists r. C, (\geq n r)$

A man	Human ¬ Female ¬
that is married to a doctor, and	∃ married-to . Doctor ⊓
has at least 5 children,	(≥ 5 child) ⊓
all of whom are professors.	∀ child . Professor

definition of concepts Happy-man = Human \sqcap ...

Rheinisch-Westfälische Technische Hochschule Aachen

properties of individuals Happy-Man(Franz) child(Franz,Luisa) child(Franz,Julian)

Formal semantics

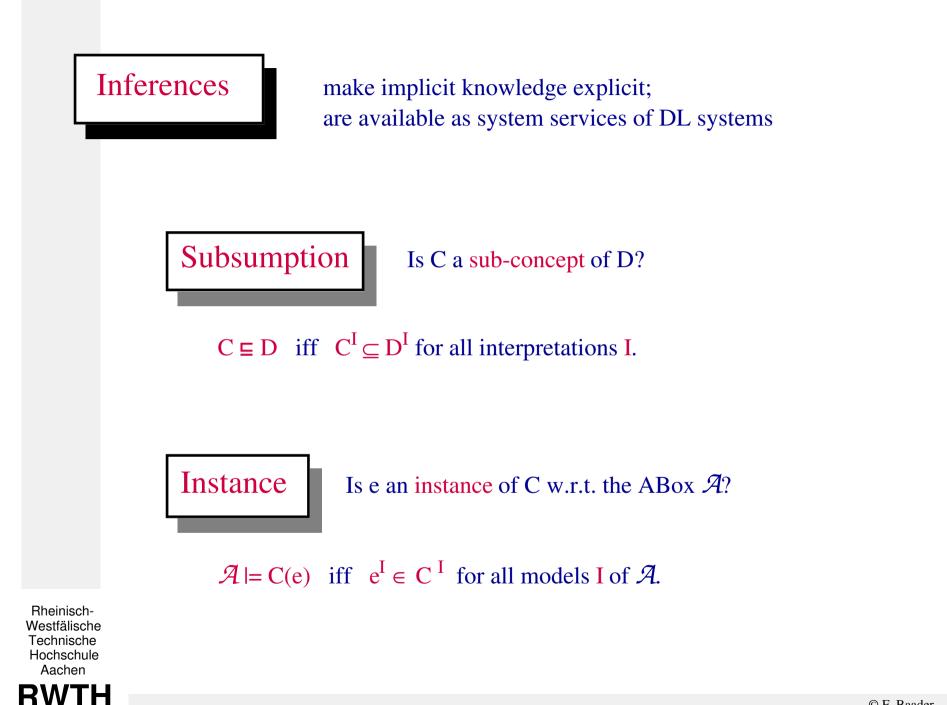
 $I \models C(a) \text{ iff } a^{I} \in C^{I}$ $I \models r(a,b) \text{ iff } (a^{I},b^{I}) \in r^{I}$

An interpretation I associates

- \blacktriangleright concepts C with sets C^I and
- \rightarrow roles r with binary relations r^I.

The semantics of the constructors is defined through identities:

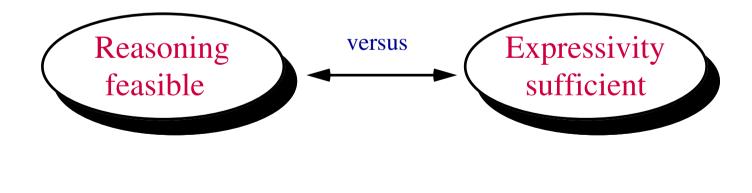
$$\blacktriangleright (C \sqcap D)^{I} = C^{I} \cap D^{I}$$

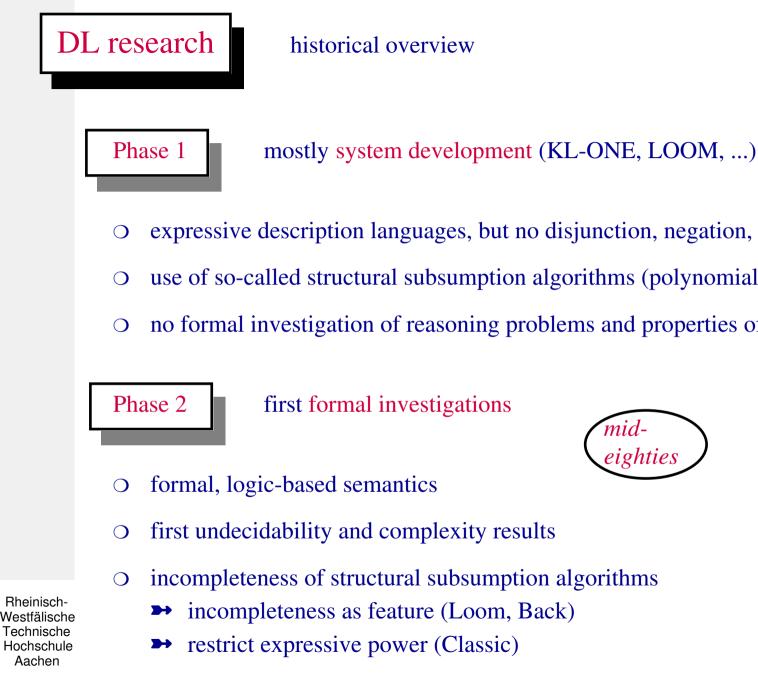

$$\implies (\ge n r)^{I} = \left\{ d \mid \# \{ e \mid (d, e) \in r^{I} \} \ge n \right\}$$

 $(\forall r. C)^{I} = \left\{ d \mid \forall e: (d,e) \in r^{I} \Rightarrow e \in C^{I} \right\}$

$$\Rightarrow (\exists r . C)^{I} = \left\{ d \mid \exists e: (d,e) \in r^{I} \land e \in C^{I} \right\}$$

$$I \models A = C$$
 iff $A^{I} = C^{I}$


model



- decidability/complexity of reasoning
- requires restricted description language
- systems and complexity results available for various combinations of constructors

- application relevant concepts must be definable
- some application domains require very expressive DLs
- efficient algorithms in practice for very expressive DLs?

- expressive description languages, but no disjunction, negation, exist. quant.
- use of so-called structural subsumption algorithms (polynomial)
- no formal investigation of reasoning problems and properties of algorithms

Westfälische

Phase 3

tableau algorithms for DLs and thorough complexity analysis

- Schmidt-Schauß and Smolka describe the first complete (tableau-based) subsumption algorithm for a non-trivial DL;
 ALC: propositionally closed (negation, disjunction, existential restrictions); complexity result: subsumption in ALC is PSPACE-complete.
- Exact worst-case complexity of satisfiability and subsumption for various DLs (DFKI, University of Rome I).
- Development of tableau-based algorithms for a great variety of DLs (DFKI, University of Rome I, RWTH Aachen, ...).
- First DL systems with tableau algorithms: Kris (DFKI), Crack (IRST Trento); first optimization techniques for DL systems with tableau algorithms.

Rheinisch-Westfälische Technische Hochschule Aachen • Schild notices a close connection between DLs and modal logics.

\mathcal{ALC} is a syntactic variant of multi-modal K

[Schild 91]

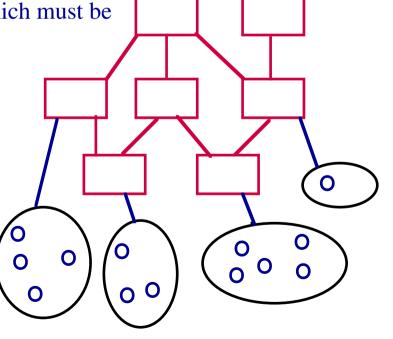
concept name A		propositional variable A
role name r		modal parameter r
СпD		$t(C) \wedge t(D)$
C ⊔ D	translation	$t(C) \lor t(D)$
¬ C	t	$\neg t(C)$
∃r.C		<r>t(C)</r>
∀ r . C		[r]t(C)

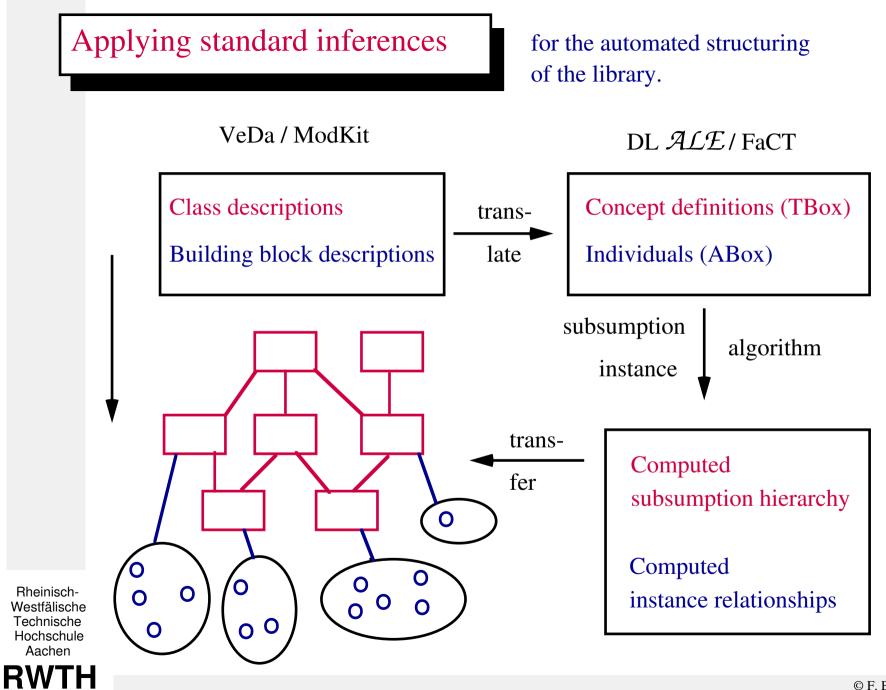
interpretation IKripke structure $\mathcal{K} = (\mathcal{W}, \mathcal{R})$ set of individuals dom(I)set of worlds \mathcal{W} interpretation of role names r^{I} accessibility relation R_{r} interpretation of concept names A^{I} worlds in which A is true

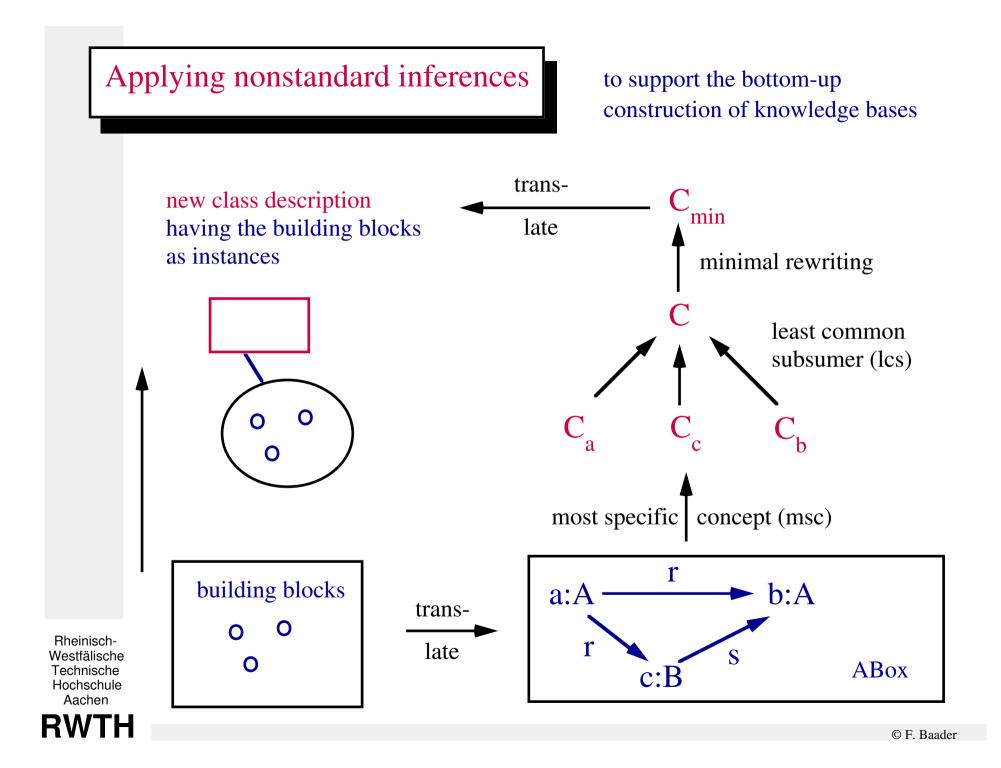
Phase 4

algorithms and systems for very expressive DLs (e.g., without finite model property)

- Decidability results for very expressive DLs by translation into PDL (propositional dynamic logic) (Uni Roma I), strong complexity results; motivated by database applications.
- Intensive optimization of tableau algorithms (Uni Manchester, IRST Trento, Bell Labs, Uni Hamburg): very efficient systems for expressive DLs.
- Design of practical tableau algorithms for very expressive DLs (Uni Manchester, RWTH Aachen); application to ontology reasoning for the semantic web.


Old and new inference problems


- Standard inference problems (like subsumption, instance) in Description Logics are well-investigated:
 - ► Complexity results for a great variety of DLs.
 - ► Optimized implementations for expressive DLs.
- Building and maintaining large knowledge bases requires support by additional nonstandard inference methods; e.g.:
 - Bottom-up construction of knowledge bases requires least common subsumer, most specific concept, and rewriting.
 - Search for partially specified concepts requires matching and unification.


Modelling chemical processes and plants

Process Systems Engineering RWTH Aachen (Prof. Marquardt)

- Computer-aided modelling of chemical processes to analyze, simulate, and optimize the processes.
- Modelling tool ModKit that allows to build process models from standard building blocks.
- Library of standard building blocks, which must be extended continuously.
- Description of building blocks in a frame-based formalism (VeDa).
- Structured representation of the building blocks in a class hierarchy supports searching and browsing.

Research work necessary to realize this approach Least common subsumer: existence and computation Ο ► First results for Classic (AT&T) [Cohen&Hirsh94, Frazier&Pitt96]: incorrect treatment of inconsistency and attributes. ▶ First sound and complete treatment for ALN, ALE, and ALEN[B.&Küsters98, B.,Küsters&Molitor99, Küsters&Molitor01]. Most specific concept: existence, computation or approximation \bigcirc \blacktriangleright Existence and computation for \mathcal{ALN} with cyclic definitions [B.&Küsters98].

- ▶ Non-existence and approximation in ALE [Küsters&MolitorKI01].
- **Rewriting:** general framework, complexity and computation
 - ▶ Results for ALE, ALN, ALC and sub-languages

- [B.,Küsters&Molitor00].
- ► Related results in database research: rewriting queries using views.

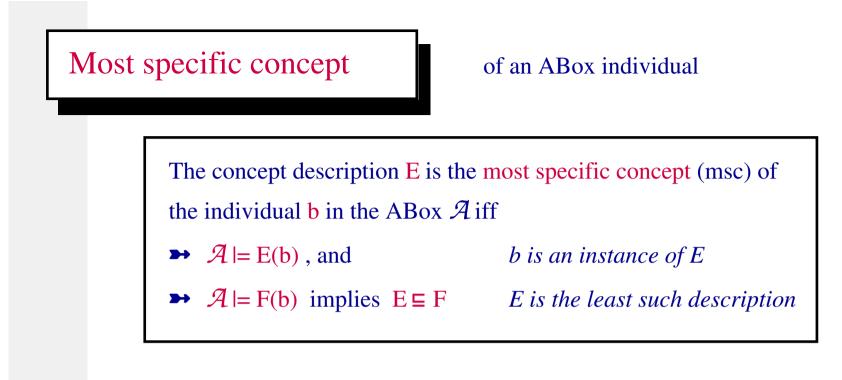
 \bigcirc In DLs with disjunction, lcs = disjunction and thus not interesting.

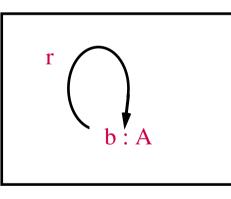
• Questions to be answered:

Rheinisch-

Westfälische Technische

Hochschule Aachen Existence of the lcs, its size (binary, n-ary), how to compute it.


Results


for the lcs in sublanguages of ALEN

	EL	ALE	ALEN
	$C \sqcap D, \exists r.C,$	$\mathcal{E}\mathcal{L} + \forall r.C +$	ALE +
	Тор	atomic negation	number restrictions
Existence	yes	yes	yes
Size (2)	polynomial	exponential	doubly exponential
Size (n)	exponential	exponential	doubly exponential
Computation	Ptime/Exptime	Exptime	2-Exptime

Approach

- Translate concept descriptions into description trees.
- Characterize subsumption via homomorphisms.
- Les as product of the description trees.

b is an instance of

A, $\exists r.A$, $\exists r.\exists r.A$, $\exists r.\exists r.A$, ...

There is no most specific ALE-concept description C such that b is an instance of C.

Rheinisch-Westfälische Technische Hochschule Aachen

A similar example shows that the msc need not exist in ALN.

Ways out

two approaches to deal with the non-existence of the msc

• Allow for cyclic TBoxes with an appropriate fixpoint semantics: $C = A \sqcap \exists r. C$ with gfp-semantics yields msc in the example.

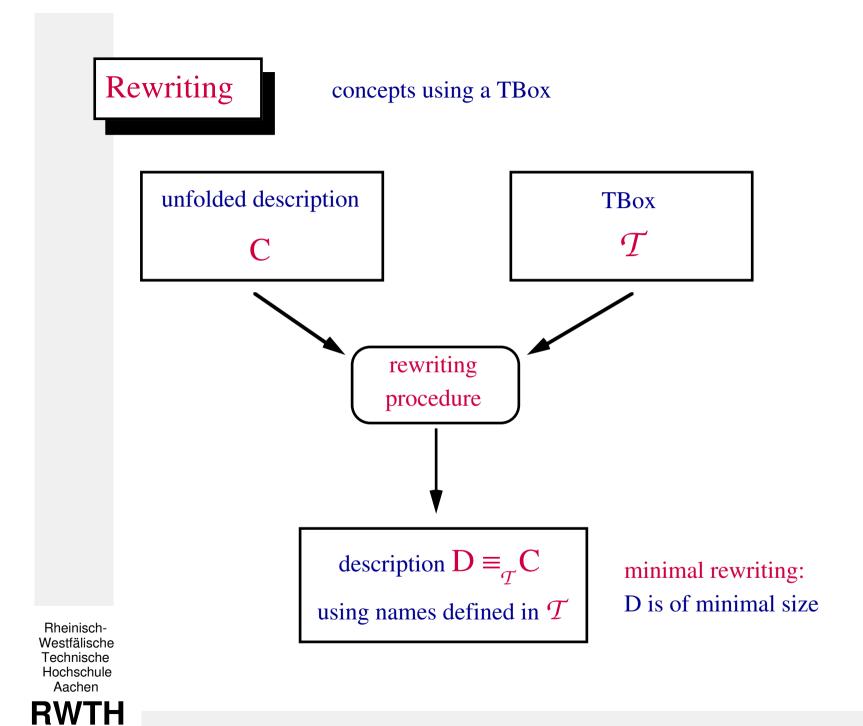
For \mathcal{ALN} with cyclic definitions and gfp-semantics, the msc always exists and can effectively be computed [B.&Küsters98].

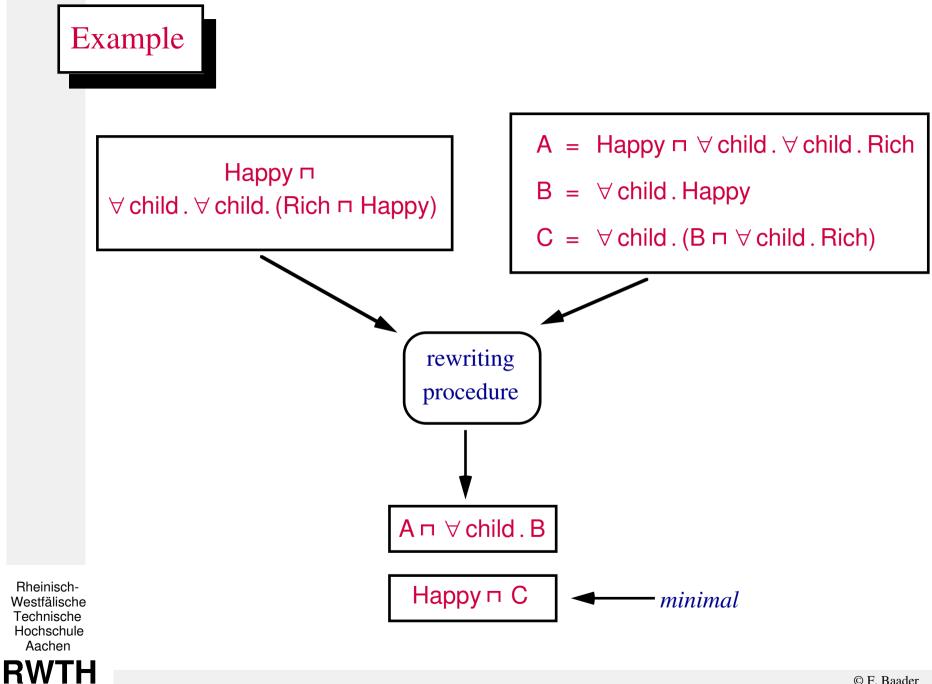
• Use k-approximation of the msc: most specific concept of role depth at most k having b as an instance:

 $A \sqcap \exists r. (A \sqcap \exists r. A)$ is the 2-approximation of the msc in the example.

For *ALE*, the k-approximation always exists and can effectively be computed. More efficient approaches for sub-languages of *ALE* [Küsters&MolitorKI01].

our motivation


Non-standard inference procedures for DLs, like


- ► computing the least common subsumer (lcs),
- ➤ matching and unification of concept descriptions,

produce concept descriptions that

- ➤ are shown to the user for inspection,
- ➤ may be quite large,
- ▶ are unfolded, i.e., do not use concept names defined in the TBox.

Inference service that automatically increases readability of concept descriptions?

Results

for the minimal rewriting problem in DLs [B.,Küsters&Molitor00]

- Complexity of the corresponding optimization problem:
 - ▶ \mathcal{ALN} : NP-hard, in Σ_2^p
 - ▶ \mathcal{ALE} : NP-hard, in PSPACE
 - ▶ \mathcal{ALC} : PSPACE-complete
- Nondeterministic algorithms computing all minimal rewritings in ALE and ALN.
- Heuristic rewriting algorithm for *ALE* behaves quite well in practice: descriptions of size 800 obtained as lcs in the process engineering application are rewritten into descriptions of size 10.

Matching in DL

our motivation

• Design by modification:

before defining a new building block from scratch, the process engineers try to locate a structurally similar one in the knowledge base, and then modify the existing block.

• Matching allows to look for concepts having a certain (partially specified) structure:

Assume we look for concepts concerned with individuals having a son and a daughter sharing some characteristic:

 \exists child. (Male $\sqcap X$) $\sqcap \exists$ child. (Female $\sqcap X$) variable

is a concept pattern expressing this.

The substitution $\{X \longrightarrow Tall, Y \longrightarrow Tall\}$ shows that this pattern matches the description

 \exists child. (Male \sqcap Tall) \sqcap \exists child. (Female \sqcap Tall)

Matching in DL

definition and results

Let **C** be a concept and **D** be a pattern.

The substitution σ is a matcher of $C \equiv D$ iff $C \equiv \sigma(D)$.

- O Matching in $\mathcal{ALN}[B., K"usters, Borgida, McGuinness 99]:$
 - ► Existence of matchers can be decided in polynomial time.
 - Solvable problems have a unique least matcher, which can be computed in polynomial time.
 - ► Matching problems are translated into formal language equations.
- \bigcirc Matching in \mathcal{ALE} [B.&Küsters00]:
 - ► Existence of matchers is an NP-complete problem.
 - Solvable problems have finitely many minimal matchers, which can be computed in exponential time. Both the number and the size of matchers may be exponential.
 - ► Approach depends on partial homomorphisms and lcs.

Conclusion

- Compared to the body of results for standard inferences, the research on nonstandard inferences is just at the beginning.
- For lcs, msc, and matching, we have a relatively clear picture for (sub-languages of) ALE and ALN.
- Other interesting nonstandard inferences:
 - > Unification, i.e., patterns on both sides of the equation: considerably harder than matching;
 Exptime-complete for *FL*₀ (C □ D, ∀r.C).
 - Approximation of concepts in one DL by concepts in another DL: we just started to work on this.