From Tableaux to Automata for
Description Logics™

Franz Baader
Theoretical Computer Science
TU Dresden

Germany

e Short introduction to description logics.

e Tableau- and automata-based decision procedures for the DL ALC
with general concept inclusions.

e Abstract framework of tableau systems and translation into looping
automata.

@ * Joint work with Jan Hladik, Carsten Lutz, and Frank Wolter

Dresden © Franz Baader

DCSCI‘iptiOl’l Lo giCS class of knowledge representation formalisms

Dresden

Descended from structured inheritance networks [Brachman 78].

Tried to overcome ambiguities in semantic networks and frames due to
their lack of formal semantics.

Restriction to a small set of “epistemologically adequate” operators for
defining concepts (classes).

Importance of well-defined basic inference procedures: subsumption
and instance problem.

First realization: system KL-ONE [Brachman&Schmolze];
many successor systems (Classic, Crack, DLP, FaCT, Kris, K-Rep, Loom,
Racer, ...).

First application: natural language processing;
now also other domains (configuration, medical terminology, databases,
ontologies for the semantic web, ...).

© Franz Baader

Description logic system

description

language

e constructors for
building complex
concepts out of
atomic concepts
and roles

e formal, logic-based
semantics

Dresden

structure

TBox

defines the terminology of
the application domain

ABox

states facts about a
specific “world”

knowledge base

reasoning

component

/

e derive implicitly
respresented knowledge
(e.g., subsumption)

e “practical” algorithms

© Franz Baader

Description language

Dresden

Constructors of the DL ALC:
cnD,CuD,-Cvr.C,3Ar.C

A man

that has a rich or beautiful wife

and only happy children

Human M = Female T

Amarried_to.(Rich U Beautiful) M
YVehild. Happy

‘ TBox I

definition of concepts
Happy_man = Human 1. ..

more complex constraints

dAmarried_to. Doctor T Doctor

‘_ABOX I

properties of individuals

Happy_man(Franz)
married_to(Franz, Inge)
child(Franz, Luisa)

© Franz Baader

Formal semantics

An interpretation Z consist of a domain A? and it associates

e concepts C with sets CT C AZ,
e roles r with binary relations 7* on AZ, and

e individuals ¢ with elements af € AZL,

The semantics of the constructors is defined through identities:
e (CIDE=CINDL (CuD)?=CTuD, (~C)f=AT\CT
e (Ir.C)t ={d|3e.(d,e) €t Nee C?},
o (Vr.C)t ={d|Ve.(d,e) € rt — ¢ € C*}.

The interpretation Z is a model of the concept definition/inclusion axiom/assertion

A=C iff AT =C7,
CCD iff CtC D,

C(a) iff of € CZ,
r(a,b) iff (af,b?) € rl.

Dresden © Franz Baader

Dresden

Reasoning makes implicitly represented knowledge explicit,

provided as service by the DL system, e.g.:

Subsumption: Is C' a subconcept of D?

C C+ D iff C* C D? for all models Z of the TBox 7.

Satisfiability: Is the concept C' non-contradictory?

C is satisfiable w.r.t. 7 iff C* # () for some model Z of T

Consistency: Is the ABox .4 non-contradictory?

A is consistent w.r.t. 7 iff it has a model that is also a model of 7T .

Instantiation: Is e an instance of C'?

A =7 C(e) iff e € C7 for all models Z of T and A.

polynomial
reductions

«——

]

In presence
of negation

© Franz Baader

Focus of DL research

e application relvant concepts
must be definable

Expressivity
of language e some domains require
very expressive DLs

N

Complexity of

Practical

A
v

reasoning algorithms

e reasoning must be e casy to implement
decidable/of low complexity and optimize

e requires restricted e behave well in practice
description languages

Dresden © Franz Baader

DL research historic overview

Phase 1:
¢ implementation of incomplete systems (Back, Classic, Loom)

e based on structural subsumption algorithms

Phase 2:
e development of tableau-based algorithms and complexity results
e first implementation of tableau-based systems (Kris, Crack)

e first formal investigation of optimization methods

Phase 3:
e (tableau-based algorithms for very expressive DLs
¢ highly optimized tableau-based systems (FaCT, Racer)

¢ relationship to modal logic and decidable fragments of FOL

L)

Dresden © Franz Baader

versus

worst-case opti- practical

A
v

mal algorithms algorithms

PSpace-complete DLs such as ALC without general concept inclusions (GCI5s)
and the DLs implemented in Crack and Kiris:

e Tableau-based algorithms are easy to implement and optimize.

e Can be realized within PSpace.

ExpTime-complete DLs such as ALC with general concept inclusions (GCIs)
and the DLs implemented in FaCT and Racer:

e Tableau-based algorithms are still easy to implement and optimize.

e Usually yield NExpTime algorithms.

e Complexity upper-bound ExpTime shown using automata-based approach.
@ e No practical DL reasoner uses automata-based approach.

Dresden © Franz Baader

Goal of this work

Avoid having to design two algorithms, one worst-case
optimal and one practical, for each ExpTime-complete DL.

Achieved using the following approach:
e Define the abstract notion of tableau systems.

e Characterize the class of ExpTime-admissible tableau systems, which
can be translated into looping automata on infinite trees.

e Exponential size of looping automata together with their polynomial
time decidable emptiness problem yields ExpTime-upper bound.

@ e Recursive tableau systems yield tableau-based decision procedures.

Dresden © Franz Baader

Tableau approach for ALC without GCIs

e Tries to generate a finite, tree-shaped interpretation satisfying Cj
(where Cj is a concept description in negation normal form).

e Generates a root with label {C}}, and

¢ then applies tableau rules:

— propositional rules expand the label of the given node;
rule for disjunction is non-deterministic.

— existential rule generates new successor nodes;

— universal rule extends the label of successor nodes.

e (Clah trigger detects obvious contradictions in labels

@ (both A and —A).

Dresden © Franz Baader

Tableau approach Example:
bP satisfiability of 3r.A M 3dr.BMVr.(mA U - B)

Ir. AN 3dr.BNOVr.(mAU -B)
O dr.A, Ir.B, Vr. (AU -B)

O O

A B
-AlU-B -AU-B

>A~ B - A

saturated, clash-free completion tree for the input
@ Ir. AN Ir.BOVr.(-AU-B)

Dresden © Franz Baader

Tableau approach soundness, completeness, termination

Soundness Completeness
If there is a run of the algorithm If the input concept is satisfiable,
that generates a saturated and clash- then there is a run of the algorithm
free completion tree, then the in- that generates a saturated and clash-
put concept is satisfiable. free completion tree.
Termination

Every run of the algorithm terminates
with a saturated completion tree.

Dresden © Franz Baader

Tableau approach for ALC with GCIs

e Forevery GCI C' C D, the concept nnf(—C' LI D) is added to
every node of the completion tree.

¢ Blocking required to ensure termination:

Co=AnNvVr.B Q ,O ,O ,O
T={ALC 3r.A} A A A A
B

e Length of paths: may become exponential before blocking occurs.

e Non-determinism: treatment of disjunction. NExpTime

complexity

L)

Dresden © Franz Baader

Automata approach for ALC with GCIs

Dresden

Tests for the existence of a (possibly infinite) tree-shaped interpretation
satisfying Cy w.r.t. T .

States of the automaton: sets of “subformulae” of {Cy} and T that
— are propositionally expanded;

— clash-free;

— contain nn f(-C'U D) forall C © D in 7.

Initial states: states containing C).

Transitions look for the existence of “appropriate” successor nodes
(existential and universal restrictions satisfied).

Looping tree automaton: accepts if there is an infinite run.

Non-deterministic automaton.

© Franz Baader

Co=ANvYr.B
T={ALC Ir.A}

Automata approach

O A Anvr.B -AUdr.A B
Vr.B dr. A

v

Q A B —-AuUdr.A Vr.B
dr. A

v

O A4 B -Au3rA
dr. A

Dresden © Franz Baader

Automata approach emptiness test: naive top-down approach l ii

e Tries to construct a (possibly infinite) tree and a run on this tree.

e Starts with an initial state at the root, and then generates successor nodes
according to the transition function.

e Looks for state repetition on paths to ensure termination.
e Very similar to tableau-approach with blocking.

e Complexity: NP in size of automaton if the automaton is
nondeterministic.

Since the constructed automaton is exponential
in the size of the input,

@ this leaves us with a NExpTime procedure.

Dresden © Franz Baader

Automata approach gmptiness test:
improved bottom-up approach

Dresden

Computes inactive states, i.e., states that cannot occur on an infinite run
of the automaton:

— Starts with obviously inactive states, i.e., states that do not have
successor states w.r.t. the transition function.

— Propagates inactiveness along the transition function.

Tree language empty iff all initial states are inactive.

Naive implementation already polynomial.

Using appropriate data structures, the set of inactive states can be com-
puted in linear time.

Since the constructed automaton is exponential
in the size of the input,
this provides us with an ExpTime procedure.

© Franz Baader

Comparison automata versus tableau approach

tableau approach automata approach

e Constructs tree-shaped e ‘Tests for existence of tree-shaped
interpretation. interpretation.

e Top-down e Bottom-up

e NExpTime e ExpTime

e Constructs sets of subformu- e First constructs (exponentially
lae on-the-fly. large) automaton, then applies

emptiness test.

Dresden © Franz Baader

Goal of this work

Avoid having to design two algorithms, one worst-case
optimal and one practical, for each ExpTime-complete DL.

Achieved using the following approach:
e Define the abstract notion of tableau systems.

e Characterize the class of ExpTime-admissible tableau systems, which
can be translated into looping automata on infinite trees.

e Exponential size of looping automata together with their polynomial
time decidable emptiness problem yields ExpTime-upper bound.

@ e Recursive tableau systems yield tableau-based decision procedures.

Dresden © Franz Baader

Tableau SYStCIIlS abstract notion, generalizes concrete
tableau-based algorithms

Tableau system for set of inputs J: (Co,T)
S = (NLE, EL,-*, R,C) SALC

e NLE: node label elements.
Node labels in completion trees are all ALC-concept descriptions
sets of node label elements.

e EL: edge labels.

Edges in completion trees are labeled all ALC-role names
with edge labels.
e -°:input I mapped to I'* = (nle, el,ini) . “subconcepts” of input
— nle C NLE and el C EL finite. roles occurring in input
@ — ini C 2" (set of initial node labels). S R (O

Dresden © Franz Baader

Tableau systems (continued) S = (NLE,EL, -5, R.C)

e R: collection of tableau rules.

P—)R {Pl,...,Pk}

T T T Patterns, i.e., trees of depth < 1
with node labels from 2N'E and

edge labels from EL.

e Some rules of S 4 ¢:

O -1 O , O
Lu{CuD} Lu{CUuD} Lu{CUuD}
u{C} u{D}

Dresden © Franz Baader

Tableau systems (continued) S = (NLE,EL, -5, R.C)

e Some rules of S 4 (continued):

LU {vr.C} Cf R{ O Lu{vr.c} }
r O O ru{c}

e (: collection of clash triggers, i.e., set of patterns.

e Some clash triggers of S 4,¢:

; Lu{A.-A}y O

Dresden © Franz Baader

Rule application to S-tree, i.e., tree with the right labels.

e Therule P — 4r¢ {1, ..., P} is applicable to a tree T iff
pattern P matches a subtree of 7.

e Rule application replaces P in T’ by one of the P,
(non-deterministic).

{3r.A.vr.C} O {3r.A.vr.C} O
rl S lr
10 34wy O ‘/{A} O

|

j72 — Q

i

{{EIr.A,Vr.C} O } 1O

D uwad

Dresden © Franz Baader

S-tree for input [€ Jwith [= (nle, el, ini)

Smallest set of trees such that

e All initial S-trees belong to this set: Q L € ini

Application of a rule to an element of this set
yields an element of this set.

Limit of an infinite chain of rule applications starting with
an initial S-tree belongs to this set.

Saturated S-tree: no rule applicable.

Clash-free S-tree: no clash trigger applicable.

Dresden © Franz Baader

Tableau system soundness, completeness

Dresden

Let S be a tableau system for the set of inputs J, and
let P be a property of inputs, i.e., P C J.

Soundness of S for P

Completeness of S for P

If there is a saturated and clash-
free S-tree for I', then the input I'
satisfies P.

If the input [satisfies P, then there

is a saturated and clash-free S-tree
for I,

© Franz Baader

Translation to looping automata

L)

Dresden

Goal

Given a tableau system S that is sound and complete for property P,
construct for each input I" a looping automaton Ay such that

L(A) #0 iff T € P.

Two problems

1. S-trees for [' are generated by rule application from initial S-trees.

This is hard to check with automata.

2. Automata work on trees of a fixed arity.

© Franz Baader

Solution to Problem 2 fixed arity

Modity definition of completeness

Let p be a polynomial.
The tableau system S is p-complete
iff
[' € P implies that there is a saturated and clash-free S-tree for I’
of outdegree bounded by p(|T'|).

In the following, we assume that S' is sound and p-complete for P.

L)

Dresden © Franz Baader

Solution to Problem 1 requires additional conditions

L)

Dresden

Admissible tableau system:

Rule application strictly extends the tree.

If a rule is applicable to an S-tree I’ “contained” in a
saturated S-tree I’, then it can be applied such that the
resulting tree is again contained in 7.

O contained in Q

{AU B} {AU B, A}

Rule application to an S-tree “for an input” yields an
S-tree for this input.

Clash triggers are monotonic.

In the following, we assume that S' is admissible.

© Franz Baader

Solution to Problem 1 main technical lemma

S-tree compatible with input [

e Node labels and edge labels sanctioned by I'°.
e Root label contains an initial label for I'.

e Outdegree bounded by p(|['|).

Lemma

There is a saturated and clash-free S-tree for [’
iff

; there is a saturated and clash-free S-tree compatible with I'.

Dresden © Franz Baader

Translation to looping automata

Automaton that accepts the saturated and clash-free S-trees
compatible with I':

e Definition of states and of initial states ensures that the tree is
compatible with I'.

e Definition of transition function ensures that the tree is
saturated and clash-free.

If the tableau system satisfies some additional restrictions
(ExpTime-admissible), then the automaton can be
constructed in exponential time.

Dresden © Franz Baader

‘ Main theorem I

Dresden

Let J be a set of inputs, P C J a property, and p
a polynomial. If there exists an ExpTime-admissible
tableau system S for J that is sound and p-complete
for P, then P is decidable in ExpTime.

© Franz Baader

Tableau-based decision procedures from tableau systems

Let J be a set of inputs, P C J a property, and [a
recursive function. If there exists a recursive tableau
system S for J that is sound and f-complete for P,
then P is decidable with a tableau-based procedure.

Two problems must be solved in the proof:
1. Termination ensured by blocking.

2. Selection of applicable rule is don’t care non-deterministic.

L)

Dresden © Franz Baader

Related and future work

L)

Dresden

e From automata to tableaux:

— The inverse tableau method [Voronkov, 2001] yields an on-the-

fly realization of the automata-based decision procedure for ALC
(with or w/o GCIs) [Baader&Tobies, IICAR’01].

— Translation of alternating two-way looping automata into a DL that
has a (practical) tableau-based decision procedure [Hladik&Sattler,
CADE’03].

e Extension of the abstract notion of tableau systems:

— Larger patterns would facilitate treatment of DLs with number re-
strictions and inverse roles.

— Global book keeping component would facilitate treatment of DLs
with nominals.

© Franz Baader

