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m	 Content-based representation of information

m	 The role of logics and why they must be engineered

m	 Description Logics as a successful instance of this approach

m	 Two applications of DL: Semantic Web and Databases
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Content-based representation	

m	 representation of the "meaning" of the information

m	 shared understanding of this meaning among all agents 
	 (human users, search engines, ...) using the information

m	 understanding of meaning should result in

	 ü	 ability to draw conclusions from the represented information

	 ü	 ability to determine semantic equivalence of syntactically
	 	 different representations
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Example	 searching for information on the WWW

m	 looking for garden centers offering 

	 palisades for my new garden

	 ü	 search engine should know that

	 	 paling is a similar notion

	 ü	 and that fence subsumes both

m	 use of an ontology: 

	 ü	 defines the important notions (classes, relations, objects) of the domain

	 ü	 states constraints on the way these notions can be interpreted

	 ü	 information about synonyms, subsumption, etc. can automatically

	 	 be deduced from the definitions and constraints
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Semantics	 of the representation formalism

m	 Need for a formal, well-defined semantics since otherwise there
	 cannot be a shared understanding and reliable reasoning

	 ü	 not just "intuitive" or purely "procedural" semantics

m	 comprehensible to human users

m	 usable by machines (e.g. in reasoning)

m	 logic as an appropriate tool 

	 ü	 yields formal semantics

	 ü	 reasoning about the information as logical inference problem 

	 ü	 standard approaches for logical reasoning can be used
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Example	 graph-based formalisms such as semantic networks (AI), 
	 	 	 ER diagrams (DB), UML diagrams (software engineering)
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Pictures say more than 1000 words,

but they may tell 100 different stories, depending on the viewer.
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Why engineering of logics?	

m	 Expressiveness vs. tractability issue:

	 ü	 application-relevant knowledge must be expressible
	 ü	 reasoning must still be "feasible"

	 Requires logics that are tailored to the application problem

m	 Practical considerations, usability of logics:
	 not just investigation of formal properties (axiomatization,
	 interpolation, ...), but emphasis on algorithmic properties

	 ü	 (worst-case) complexity analysis
	 ü	 "practical" algorithms
	 ü	 optimization techniques
	 ü	 empirical evaluation
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Own contributions	 to this endeavour 

m	 Designing expressive knowledge representation formalisms and
	 practical reasoning tools, application in chemical process engineering,
	 databases, and semantic Web 

	 ü	 collaboration with E. Franconi, I. Horrocks (U. Manchester), 
	 	 M. Lenzerini (U. Rome), W. Marquardt (RWTH Aachen)

m	 Combination of logics and reasoners: equational theories (word problem and
	 unification), modal and description logics

	 ü	 collaboration with K. Schulz (U. Munich), C. Tinelli (U. Iowa),
	 	 F. Wolter (U. Leipzig)
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Description Logics	 class of knowledge representation formalisms

Descended from structured inheritance networks [Brachman 78] via the system 
KL-ONE  [Brachman&Schmolze 85]. Emphasis on well-defined basic inference 
procedures: subsumption and instance problem.

Phase 1:	
	 ü	 implementation of incomplete systems (Back, Classic, Loom, ...)
	 ü	 based on structural subsumption algorithms

Phase 2:	
	 ü	 development of tableau-based algorithms and complexity results
	 ü	 first implemented tableau-based systems (Kris, Crack)
	 ü	 first formal investigation of optimization methods

Phase 3:	
	 ü	 tableau-based algorithms for very expressive DLs
	 ü	 highly optimized tableau-based systems (FaCT, Racer)
	 ü	 relationship to modal logic and decidable fragments of FOL
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Description logic systems	 structure

	 TBox
defines terminology of

the application domain

	 ABox
states facts about a

specific "world"

knowledge base

description
language

m	 constructors for
	 building complex
	 concepts and roles 
	 out of atomic 
	 concepts and roles

m	 formal, logic-based
	 semantics

reasoning
component

m	 derive implicitly
	 represented knowledge
	 (e.g., subsumption)

m	 "practical" algorithms
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Description language	 examples of typical constructors:

	 	 	 C  D,  C, ∀ r . C, ∃ r . C, (≥ n r) 

A man 	 	 Human   Female 

that is married to a doctor, and	 	 ∃ married-to . Doctor 

has at least 5 children,             	 	 (≥ 5 child) 

all of whom are professors.	 	 ∀ child . Professor

	 TBox

definition of concepts

Happy-man = Human  ...

statement of constraints

∃ married-to . Doctor  Doctor

	 ABox

properties of individuals

Happy-Man(Franz)
child(Franz,Luisa)		
child(Franz,Julian)
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Formal semantics	 based on interpretations as in predicate logic

An interpretation I associates

	 ü	 concepts C with sets CI and 

	 ü	 roles r with binary relations rI.

The semantics of the constructors is defined through identities:

	 ü	 (C  D)I = CI ∩ DI

	 ü	 (≥ n r)I = {d  |  #{e | (d,e) ∈ rI} ≥ n}
	 ü	 (∀ r . C )I = {d  |  ∀ e: (d,e) ∈ rI  ⇒ e ∈ CI}
	 ü	 . . .

model

I |= A = C  iff  AI = CI
	 I |= C(a)  iff  aI ∈ CI

I |= C  D  iff  CI ⊆ DI
	 I |= r(a,b)  iff  (aI,bI) ∈ rI
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Subsumption:	 Is C a subconcept of D? 

	 C  D   iff   CI ⊆ DI for all interpretations I.

Satisfiability:	 Is the concept description C non-contradictory?

	 C is satisfiable   iff   there is an I such that CI ≠ Ø.

Consistency:	 Is the ABox A non-contradictory?

	 A is consistent  iff   it has a model.

Instantiation:	 Is e an instance of C w.r.t. the given ABox A? 

	 A |= C(e)   iff   eI ∈ C I  for all models I of A.

Reasoning	 makes implicitly represented knowledge explicit,
	 	 	 	 is provided as service by the DL system, e.g.:

polynomial
reductions

in presence
of negation
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Idea	 	 	 generate an interpretation I such that C
0
I ≠ Ø

				

Satisfiability algorithm

Data structure	 for describing (partial) interpretations: ABoxes

	 	 	 	 (w.l.o.g. all concept descriptions in negation normal form)

Approach	 ABox assertions are viewed as constraints;

	 	 	 	 propagate constraints.

m	 Starting with A
0
 := {C

0
(x

0
)}, the algorithm applies transformation rules 

	 until all constraints are satisfied or an obvious contradiction is detected. 

m	 Every rule corresponds to one constructor. 

m	 Disjunction requires non-deterministic rule: two alternatives.
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{  ...  ∃ r  C(a)  ...  }

Exists-restriction rule

{   ...   ∃ r  C(a),  C(b),  r(a,b)  ...  }

new individual name

Condition	

	 there is no c with

	 C(c) and r(a,c) 
	 present
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{  ...  (C  D)(a)  ...  }

Disjunction rule

{ ... (C  D)(a), C(a) ... } { ... (C  D)(a), D(a) ... }

Condition	

	 neither

	 C(a) nor D(a) 
	 is present
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{C
0
(x

0
)}

search tree

deterministic rule

non-deterministic rule

local soundness: rules 
preserve satisfiability

termination:

all paths finite

complete ABoxes: no rules apply

	 	  	 iff one of the complete ABoxes is open,  i.e.,
	 	 	 does not contain an obvious contradiction (clash)
			

A(x), ¬A(x)satisfiable
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Ontologies	 for the Semantic Web

"An ontology is a specification of a conceptualization."	  (Tom Gruber, Stanford)

m	 An abstract, simplified view of the world, expressed in an appropriate

	 formal language with well-defined semantics.

m	 Facilitates shared understanding: common ontologies for a set of agents allow 

	 them to communicate about a domain of discourse without necessarily 

	 operating on a globally shared theory. 

DAML+OIL	 joint proposal by EU/US initiatives for a W3C
	 	 	 ontology standard

	 ü	 RDF (schema) based syntax

	 ü	 semantics defined by translation into an expressive DL

	 ü	 reasoning employs highly optimized DL reasoner (FaCT)
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SHIQ	 	 DL used to define the semantics of DAML+OIL

	 	 	 	 depends on last 10 years of DL research

m	 very expressive DL: 
	 ü	 Boolean operators ( , , )
	 ü	 value and existential restrictions (∀ r . C, ∃ r . C)
	 ü	 qualified number restrictions 
	 ü	 general inclusion axioms
	 ü	 transitive roles, inverse roles, and role hierarchies
	

ALC
[Schmidt-Schauß&
Smolka 88/91]

}

m	 implemented systems: FaCT [Horrocks 98] and Racer [Haarslev,Moeller 01]
	 ü	 tableau-based subsumption algorithm
	 	 building on experience of Kris  [B.&Hollunder 91]
	 ü	 highly optimized implementation
	 	 building on experience with optimizing Kris
	 	 [B.,Franconi,Hollunder,Nebel,Profitlich 92]
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Qualified number restrictions	 extend the simple number
	 	 	 	 restrictions of early DL systems

m	 Can not only express "At least 3 children" 

	 	 (≥ 3  child)

m	 but also "At most 1 daughter and at most 1 son"

	 	 (≤ 1  child  Female) (≤ 1  child  Female)

m	 First algorithm that can handle qualified number restrictions
	 proposed in [Hollunder&B. 91]:

	 ü	 Introduces a nondeterministic "choose-rule"
	 ü	 necessary to detect inconsistencies:
	 	 (≤ 1 child  Female) (≤ 1 child  Female) (≥ 3  child)



© F. BaaderDresden

General inclusion axioms	 extend the simple concept definitions 
	 	 	 	 of early DL systems

m	 Can be used to formulate complex constraints, e.g.,
	 ü	 domain and range constraints on roles:
	 	 ∃ child . Human  Human
	 	 Human  ∀ child . Human

m	 Make reasoning considerably harder (for ALC, complexity jumps

	 from PSpace to ExpTime).

m	 First algorithm that can handle general inclusion axioms
	 proposed in [B., Bürckert,Hollunder,Nutt,Siekmann 90]: 
	 ü	 termination requires "blocking":

	 	 Human  ∃ parent . Human

Human Human Human Human
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Complex roles	 extend the simple atomic roles
	 	 	 	 of early DL systems

m	 Transitive roles can express partonomies, causality, ..., e.g.,
	 ∃ part . (Reactor  ∃ part . Heater) implies ∃ part . Heater
	 ü	 Transitive roles in DLs first treated in [Sattler 96]: 

	 	 ALC with transitive roles still in PSpace.

m	 Role hierarchies can (e.g.) express that son is a subrole of child
	 ü	 Transitive roles and role hierarchies can simulate general inclusion 
	 	 axioms [Horrocks,Sattler 98].

m	 Inverse roles: e.g., parent is the inverse of child
	 ü	 Because of the combination of general inclusion axioms, inverse roles,

	 	 and number restrictions, SHIQ does not have the finite model property.

	 ü	 First algorithm for SHIQ presented in [Horrocks,Sattler,Tobies 99/00]

	 ü	 requires a very sophisticated blocking condition.
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SHIQ	 	 does not have the finite model property

Finite model property: if a subsumption relationship does not hold, then
	 there is a finite counter-model showing this.

Axioms:

Subsumption question:   ∃ parent . Chinese   Chinese ?

Chinese  ∃ parent . Chinese (≤ 1  child)

parent is the inverse of child

Chinese
∃ parent . Chinese

Chinese

parent

Chinese

parent

Chinese

parent parent
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Conceptual modelling	 of data sources

m	 Semantic data model describes the "universe of discourse" about which
	 the database will contain information by
	 ü	 introducing the terms to be used in talking about the domain, and
	 ü	 capturing their meaning by their inter-relationships and constraints.

m	 (Extended) entity-relationship diagrams (EER) are a semantic modelling
	 formalism that allows to define such models.

m	 Semantic data models are usually employed in the design phase
	 ü	 to specify the requirements on the database
	 ü	 to generate the logical schema (e.g., in the relational model)

m	 Semantic data models can also be used
	 ü	 when integrating different data sources (schema integration)
	 ü	 for semantic query optimization
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Description logics	 for conceptual modelling

m	 The DL DLR with n-ary relations [Calvanese et al. 99]  can express
	 many semantic modelling languages such as EER diagrams. 

m	 The DL SHIQ can express the relevant parts of DLR, and thus

	 reasoners for SHIQ (like FaCT and Racer) can 

	 ü	 check satisfiability of models expressed in EER
	 ü	 support schema integration by checking satisfiability of the 
	 	 integrated model

m	 ICOM (Intelligent Conceptual Modelling Tool)  [Franconi and Ng 00]  
	  realizes this idea.
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Conclusion

m	 Expressive Description Logics can express ontology languages
	 for the Semantic Web and semantic modelling languages for DBs,
	 and provide useful reasoning tools.

m	 Reasoning in these DLs depends on the last 10 years of DL research
	 ü	 justifies our "proactive" research on foundations of DLs
	 ü	 which is responsible for the fact that we now have a significant
	 	 technological lead 

m	 Future directions:
	 ü	 even more expressive DLs (e.g., practical algorithms for

	 	 SHIQ with individuals)

	 ü	 nonstandard inferences in DLs (least common subsumer, matching)
	 	 that support building and maintaining large ontologies
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Overall goal 	 a warehouse of logics and inference tools

m	 Offer a rich palette of logics with good computational properties.

m	 Flexible and semantically well-founded schemes for combining
	 logics and reasoners.

m	 Highly optimized implementations of reasoning tools.

m	 Scientifically well-founded evaluations in different application domains.

m	 Achieved by
	 ü	 comparing and combining different reasoning approaches
	 	 (automata, tableaux, resolution, BDD, ...)
	 ü	 from different research fields (automated deduction, knowledge 
	 	 representation, mathematical logic, philosophical logic, 
	 	 verification, ...)


