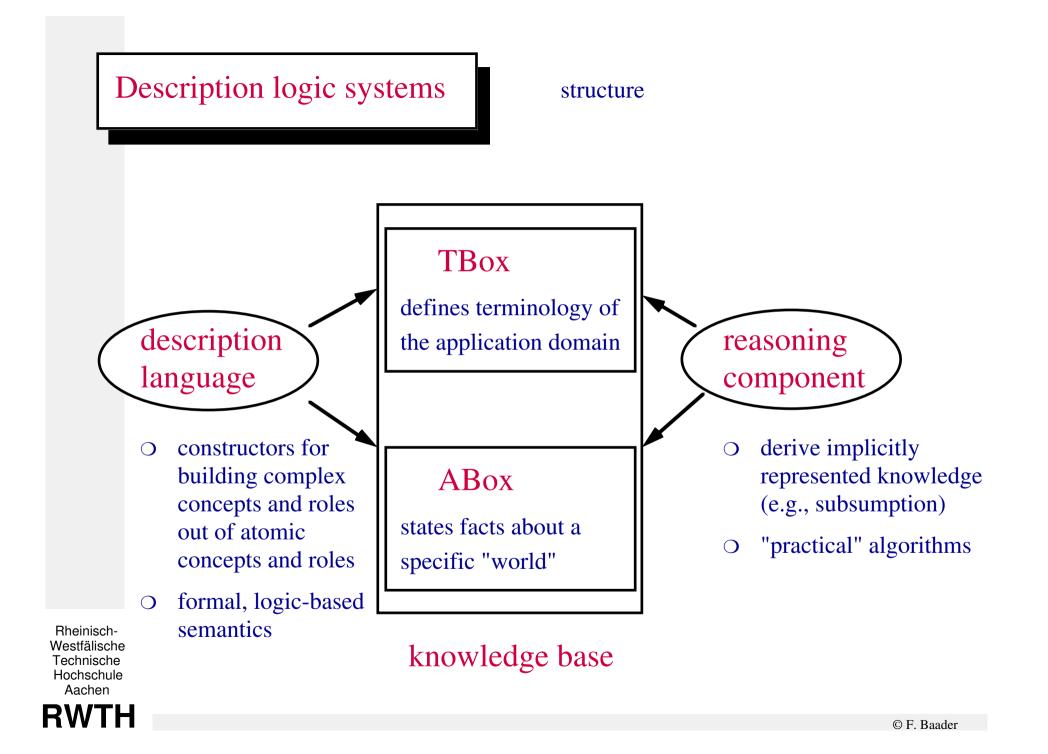
Tableau Algorithms for Description Logics

Franz Baader Theoretical Computer Science RWTH Aachen Germany

- Short introduction to Description Logics (terminological KR languages, concept languages, KL-ONE-like KR languages, ...).
- A tableau algorithm for \mathcal{ALC} (i.e., multi-modal K).
- Extensions that can handle number restrictions, terminological axioms, and role constructors.

Description logics

- Descended from structured inheritance networks [Brachman 78].
- Tried to overcome ambiguities in semantic networks and frames that were due to their lack of a formal semantics.
- Restriction to a small set of "epistemologically adequate" operators for defining concepts (classes).
- Importance of well-defined basic inference procedures: subsumption and instance problem.
- First realization: system KL-ONE [Brachman&Schmolze 85], many successor systems (Classic, Crack, FaCT, Flex, Kris, Loom, Race...).
- First application: natural language processing;
 now also other domains (configuration of technical systems, databases,
 chemical process engineering, medical terminology, ...)



Description language

examples of typical constructors: $C \sqcap D, \neg C, \forall r. C, \exists r. C, (\ge n r)$

A man

that is married to a doctor, and

has at least 5 children,

all of whom are professors.

Human n - Female n

∃ married-to . Doctor ⊓

 $(\geq 5 \text{ has-child}) \sqcap$

 \forall has-child . Professor

TBox

definition of concepts Happy-man = Human \sqcap ...

Rheinisch-Westfälische Technische Hochschule Aachen statement of constraints ∃ married-to . Doctor ⊑ Doctor

ABox

properties of individuals Happy-Man(Franz) has-child(Franz,Luisa) has-child(Franz,Julian)

Formal semantics

An interpretation I associates

- \blacktriangleright concepts C with sets C^I and
- \rightarrow roles r with binary relations r^I.

The semantics of the constructors is defined through identities:

$$\blacktriangleright (C \sqcap D)^{I} = C^{I} \cap D^{I}$$

$$\implies (\ge n r)^{I} = \left\{ d \mid \#\{e \mid (d,e) \in r^{I}\} \ge n \right\}$$

 $\implies (\forall r . C)^{I} = \left\{ d \mid \forall e : (d,e) \in r^{I} \Rightarrow e \in C^{I} \right\}$

▶ ...

$$I \models A = C \text{ iff } A^{I} = C^{I}$$
$$I \models C \subseteq D \text{ iff } C^{I} \subseteq D^{I}$$
$$I \models r(a,b) \text{ iff } (a^{I},b^{I}) \in r^{I}$$

Reasoning

makes implicitly represented knowledge explicit, is provided as service by the DL system, e.g.:

Subsumption: Is C a subconcept of D? $C \equiv D$ iff $C^{I} \subseteq D^{I}$ for all interpretations I. Satisfiability: Is the concept description C non-contradictory? C is satisfiable iff there is an I such that $C^{I} \neq \emptyset$.

Consistency: Is the ABox \mathcal{A} non-contradictory?

 \mathcal{A} is consistent iff it has a model.

 Instantiation:
 Is e an instance of C w.r.t. the given ABox \mathcal{A} ?

 $\mathcal{A} \models C(e)$ iff $e^{I} \in C^{I}$ for all models I of \mathcal{A} .
 in presence of negation

Hochschule Aachen

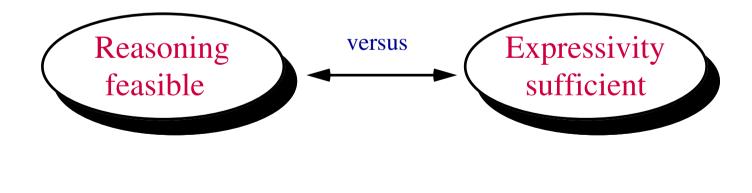
Rheinisch-

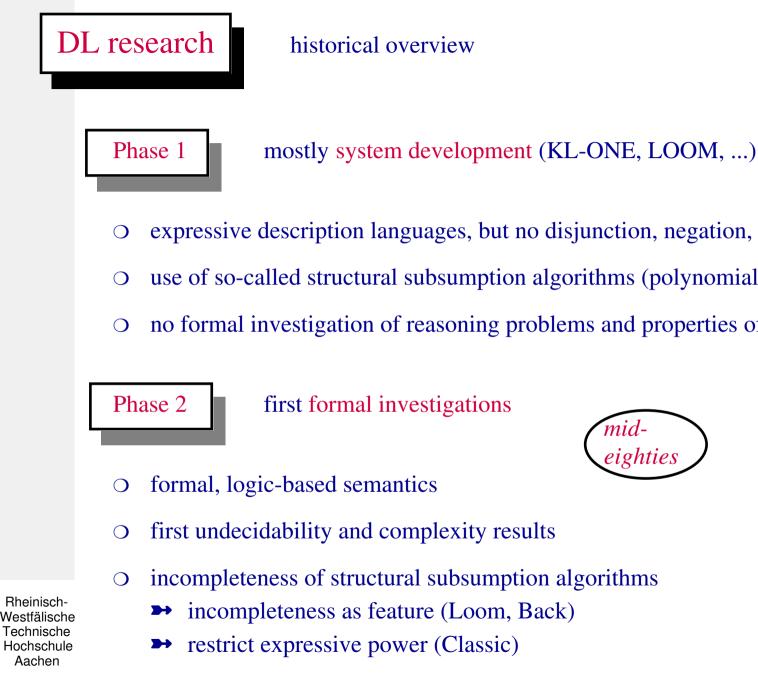
Westfälische

Technische

- decidability/complexity of reasoning
- requires restricted description language
- systems and complexity results available for various combinations of constructors

- application relevant concepts must be definable
- some application domains require very expressive DLs
- efficient algorithms in practice for very expressive DLs?





- expressive description languages, but no disjunction, negation, exist. quant.
- use of so-called structural subsumption algorithms (polynomial)
- no formal investigation of reasoning problems and properties of algorithms

Westfälische

Phase 3

tableau algorithms for DLs and thorough complexity analysis

- Schmidt-Schauß and Smolka describe the first complete (tableau-based) subsumption algorithm for a non-trivial DL;
 ALC: propositionally closed (negation, disjunction, existential restrictions); complexity result: subsumption in ALC is PSPACE-complete.
- Exact worst-case complexity of satisfiability and subsumption for various DLs (DFKI, University of Rome I).
- Development of tableau-based algorithms for a great variety of DLs (DFKI, University of Rome I, RWTH Aachen, ...).
- First DL systems with tableau algorithms: Kris (DFKI), Crack (IRST Trento); first optimization techniques for DL systems with tableau algorithms.

Rheinisch-Westfälische Technische Hochschule Aachen • Schild notices a close connection between DLs and modal logics.

\mathcal{ALC} is a syntactic variant of multi-modal K

[Schild 91]

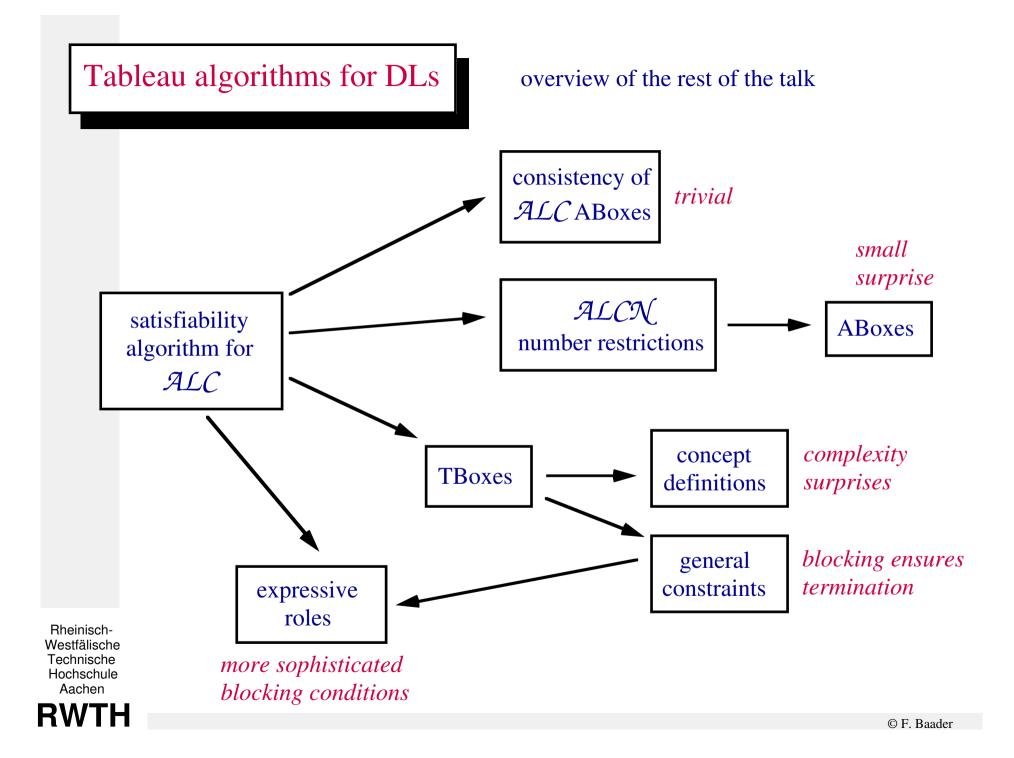
concept name A	translation t	propositional variable A
role name r		modal parameter r
СпD		$t(C) \wedge t(D)$
C ⊔ D		$t(C) \lor t(D)$
¬ C		$\neg t(C)$
∃r.C		<r>t(C)</r>
∀ r . C		[r]t(C)

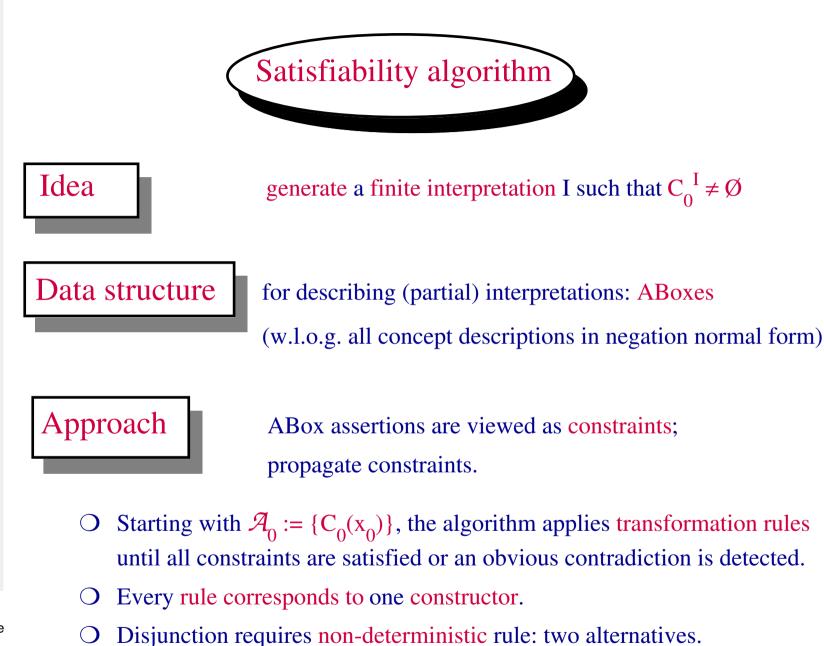
interpretation IKripke structure $\mathcal{K} = (\mathcal{W}, \mathcal{R})$ set of individuals dom(I)set of worlds \mathcal{W} interpretation of role names r^{I} accessibility relation R_{r} interpretation of concept names A^{I} worlds in which A is true

Phase 4

algorithms and systems for very expressive DLs (e.g., without finite model property)

- Decidability results for very expressive DLs by translation into PDL (propositional dynamic logic) (Uni Roma I), strong complexity results; motivated by database applications.
- Intensive optimization of tableau algorithms (Uni Manchester, IRST Trento, Bell Labs): very efficient systems for expressive DLs.
- Design of practical tableau algorithms for very expressive DLs (Uni Manchester, RWTH Aachen).





The \rightarrow_{\Box} -rule

Condition: \mathcal{A} contains $(C_1 \sqcap C_2)(x)$, but not both $C_1(x)$ and $C_2(x)$. Action: $\mathcal{A}' := \mathcal{A} \cup \{C_1(x), C_2(x)\}.$

The \rightarrow_{\sqcup} -rule

 $\begin{array}{ll} \textit{Condition:} \ \ \mathcal{A} \ \text{contains} \ (C_1 \sqcup C_2)(x), \ \text{but neither} \ C_1(x) \ \text{nor} \ C_2(x). \\ \textit{Action:} \ \mathcal{A}' := \mathcal{A} \cup \{C_1(x)\}, \ \mathcal{A}'' := \mathcal{A} \cup \{C_2(x)\}. \end{array}$

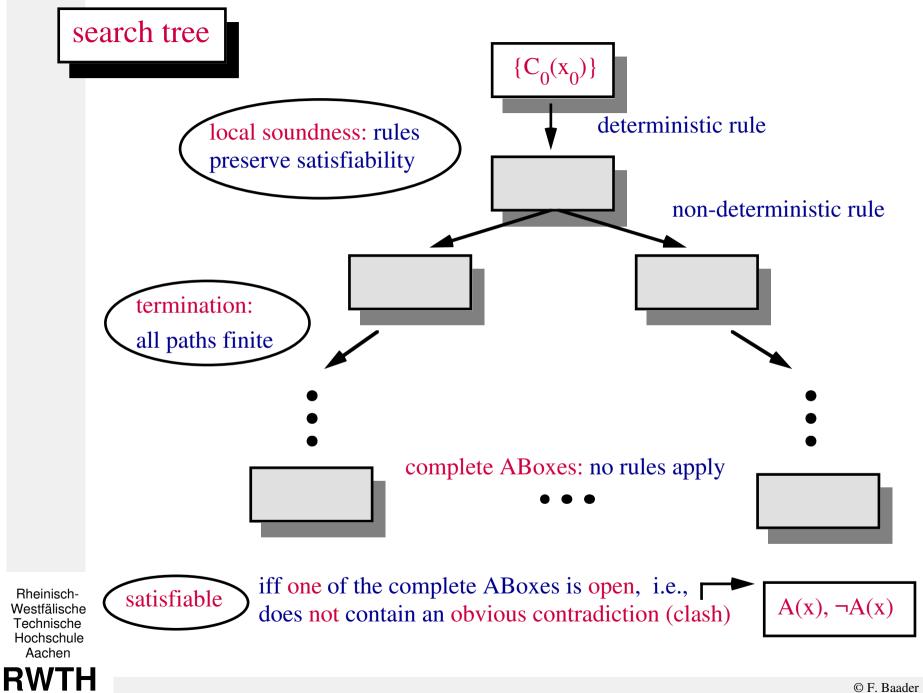
The \rightarrow_\exists -rule

Condition: \mathcal{A} contains $(\exists r.C)(x)$, but there is no individual name z such that C(z) and r(x, z) are in \mathcal{A} .

Action: $\mathcal{A}' := \mathcal{A} \cup \{C(y), r(x, y)\}$ where y is an individual name not occurring in \mathcal{A} .

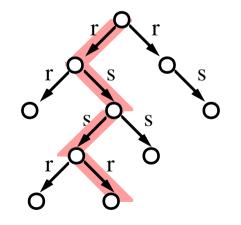
The \rightarrow_{\forall} -rule

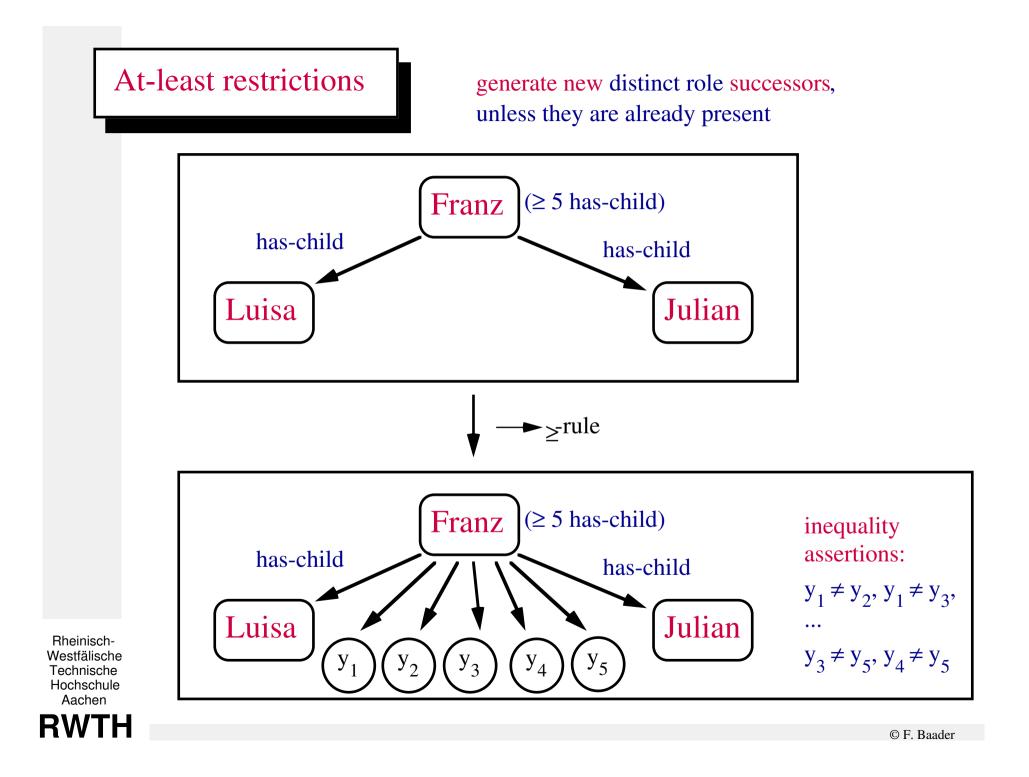
Rheinisch-Westfälische Technische Hochschule Aachen

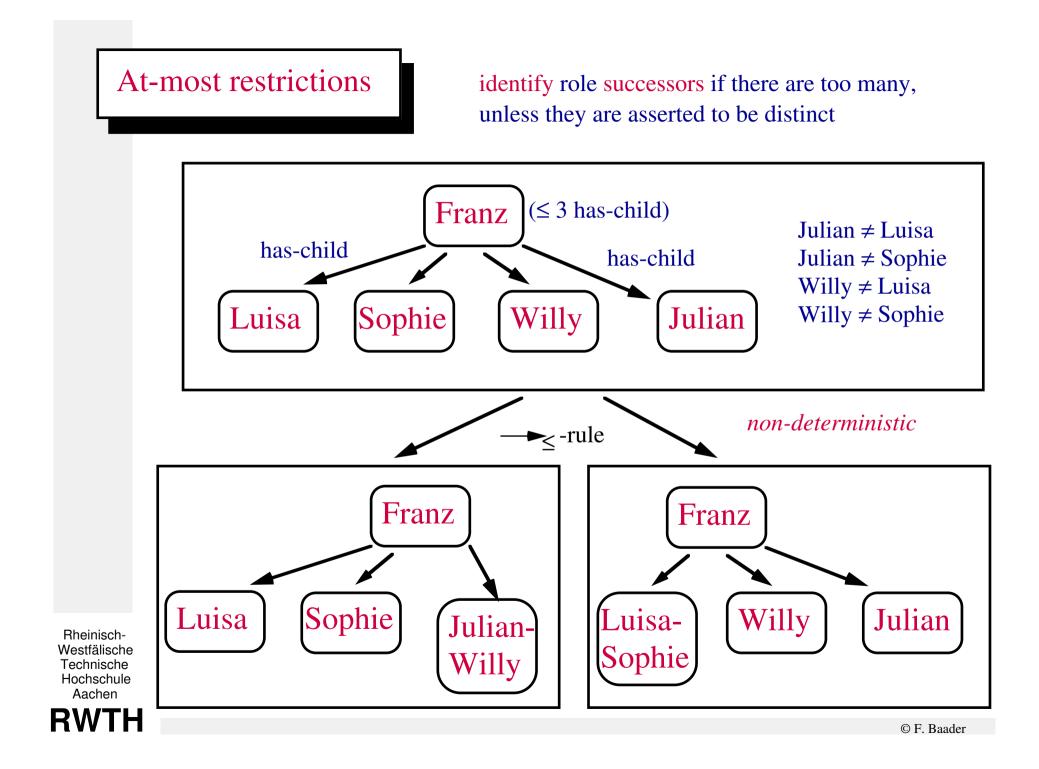


Complexity

- O **PSPACE-hard:** reduction of **QBF** (Quantified Boolean Formulae)
- In PSPACE:
 - ► PSPACE = NPSPACE, i.e., forget about non-determinism
 - ➤ interpretations generated by the algorithm may be exponential, but:
 - ► they are trees of linear depth, whose branches can be generated separately

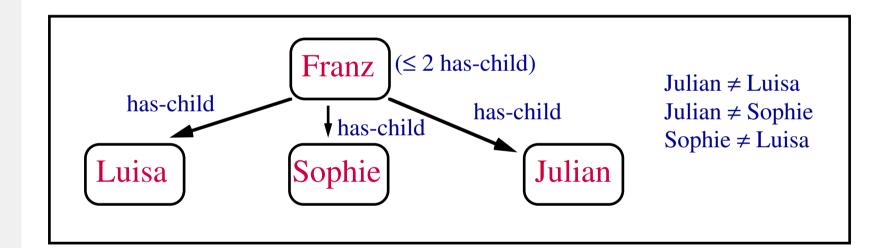






New type of clashes

if there are too many successors that are asserted to be distinct



Complexity

satisfiability in \mathcal{ALCN} is PSPACE-complete

Unary coding of numbers: similar to the case of ALC.
 Only one branch together with the direct successors of the nodes on the branch must be stored.

- Decimal coding of numbers: number n of direct successors exponential in the size of the decimal representation of n. However:
 - It is sufficient to generate only one representative for each at-least restriction, if
 - ➤ another type of clashes is used:

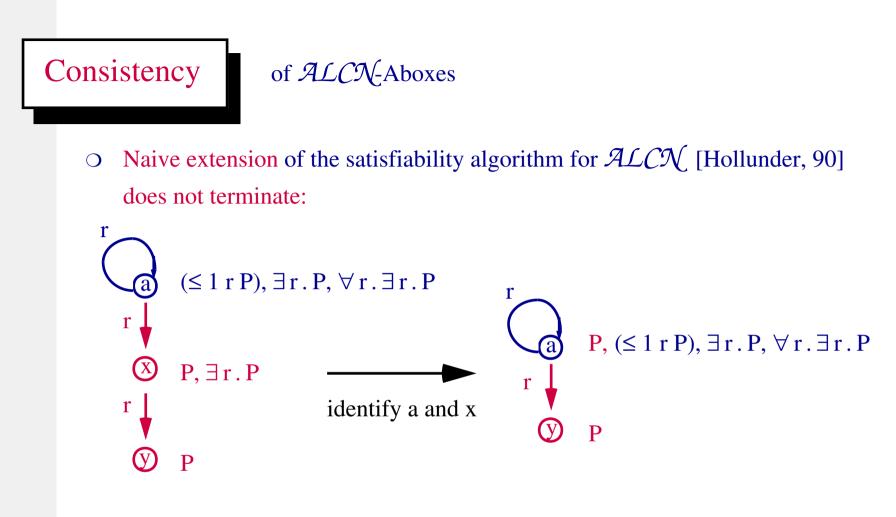
 $(\leq n r), (\geq m r)$ for n < m

restrict number of successors belonging to a certain concept

 $(\geq 3 \text{ has-child. Human}) \sqcap (\leq 1 \text{ has-child. Female}) \sqcap (\leq 1 \text{ has-child. ¬Female})$

- Naive extension of the algorithm for ALCN [van der Hoek&de Rijke, 95] does not work.
- One needs an additional non-deterministic rule [Hollunder&Baader, 91]:
 If (≤ n r. C)(a) is present, then choose C(b) or ¬C(b) for each
 r-successor b of a.
- O Complexity: PSPACE-complete
 - ▶ Unary coding: same as for ALCN

Rheinisch-Westfälische Technische Hochschule Aachen Decimal coding: introducing one representative is not sufficient! [Tobies, 99] uses counters and new types of clashes.



- Solution: use a strategy that applies generating rules with lower priority.
- Complexity: PSPACE-complete [Hollunder, 96].

Rheinisch-Westfälische Technische Hochschule Aachen Pre-completion: first, apply rules only to "old" individuals; then forget about the role assertions.

acyclic, w/o multiple definitions

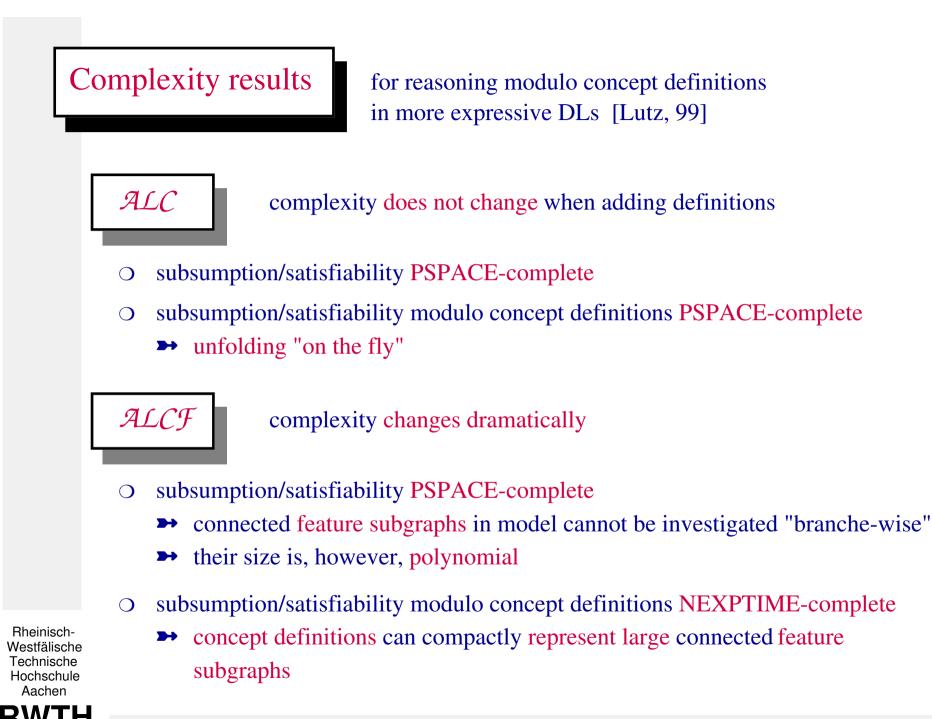
- Defined names (lhs of defs) are just abbreviations (macros).
- Unfolding of concept descriptions: replace defined names by their definitions until no defined name occurs.
- Unfolding reduces reasoning modulo definitions to reasoning w/o definitions.
- Most papers consider only reasoning w/o definitions.
- However, unfolding may be exponential:

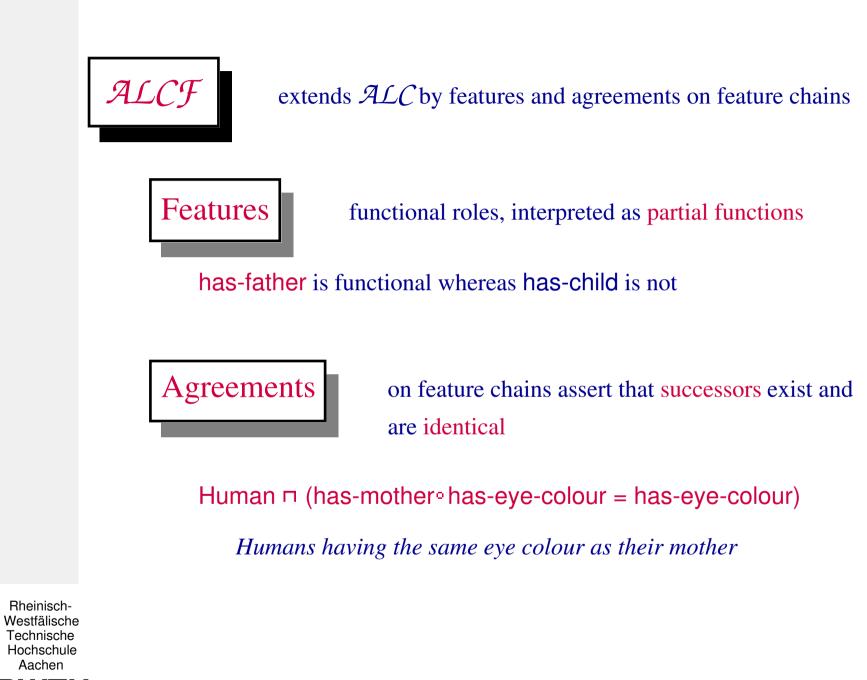
$$A_1 = \forall r . A_0 \sqcap \forall s . A_0, \quad \dots, \quad A_n = \forall r . A_{n-1} \sqcap \forall s . A_{n-1}$$

- Complexity result for small language (\forall , \sqcap) [Nebel, 90]:
 - ➤ subsumption w/o definitions is polynomial,
 - ► subsumption modulo concept definitions is coNP-complete.

Rheinisch-Westfälische Technische Hochschule Aachen

 \bigcirc Folk theorem: this difference does not occur for ALC.





General constraints

$C \sqsubseteq D$ for arbitrary concept descriptions C, D

• Considering one constraint of the form $\mathsf{Top} \sqsubseteq \mathsf{D}$ is sufficient:

$$C_1 \sqsubseteq D_1, ..., C_n \sqsubseteq D_n \quad \longrightarrow \quad \mathsf{Top} \sqsubseteq (\neg C_1 \sqcup D_1) \sqcap \ ... \sqcap \ \neg C_n \sqcup D_n)$$

- General constraints make reasoning considerably harder:
 - satisfiability/subsumption in ALC with general constraints
 EXPTIME-hard (proof very similar to Exptime-hardness of PDL)
 - ➤ satisfiability/subsumption in ALCF with general constraints undecidable (reduction from word problem for groups)

- New rule: to take the constraint $Top \equiv D$ into account, assert D(b) for each individual b.
- This may obviously cause non-termination: test satisfiability of P under the constraint $Top \equiv \exists r . P$

- Blocking yields termination:
 - ▶ y is blocked by x in \mathcal{A} iff $\{D \mid D(y) \text{ in } \mathcal{A}\} \subseteq \{D \mid D(x) \text{ in } \mathcal{A}\}$
 - generating rules not applied to blocked individuals
- Rheinisch-Westfälische Technische Hochschule Aachen
- successors of "blocking individual" can be re-used for "blocked individual"

of \mathcal{ALC} with general constraints

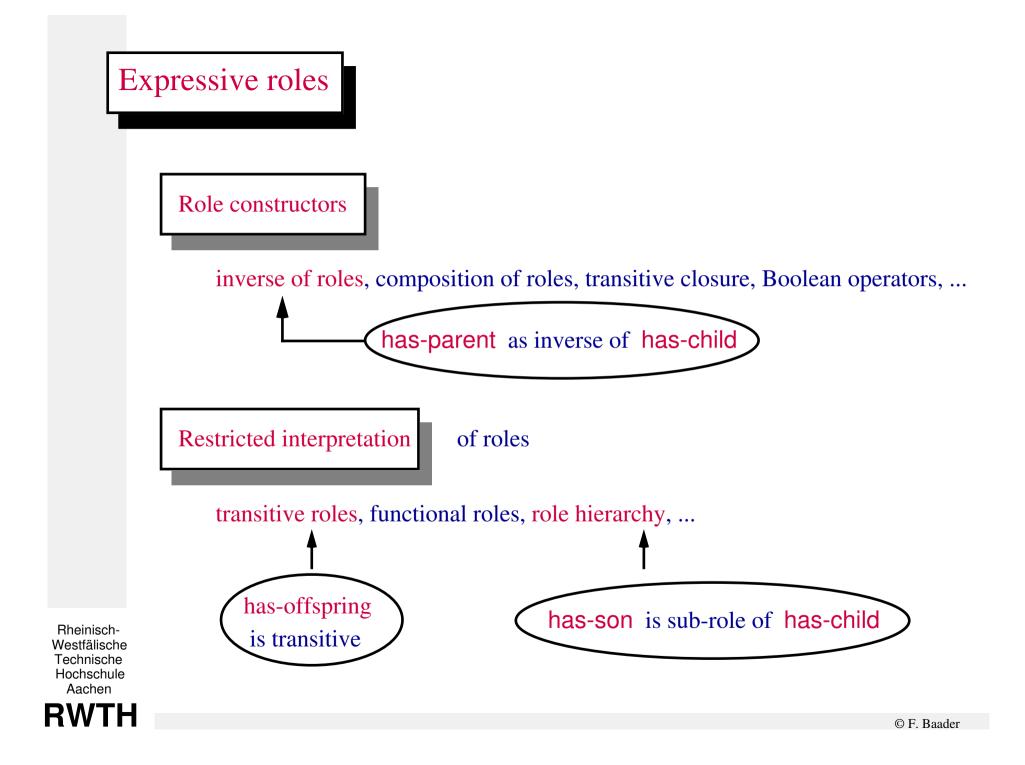
• Satisfiability/subsumption in *ALC* with general constraints is EXPTIME-complete:

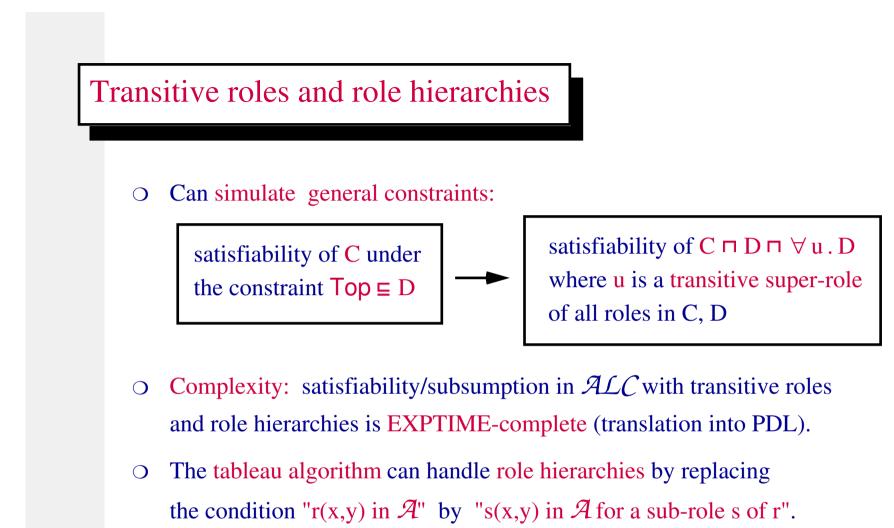
► in EXPTIME: translation into PDL or direct automata construction

- The tableau algorithm (as presented) yields only a NEXPTIME upper bound
 - optimized implementation shows very good behaviour in practice [Horrocks, 98]
 - ➤ designing an EXPTIME tableau algorithm for ALC with general constraints is rather hard [Donini&Massacci, 99].

Rheinisch-Westfälische Technische Hochschule Aachen

Complexity

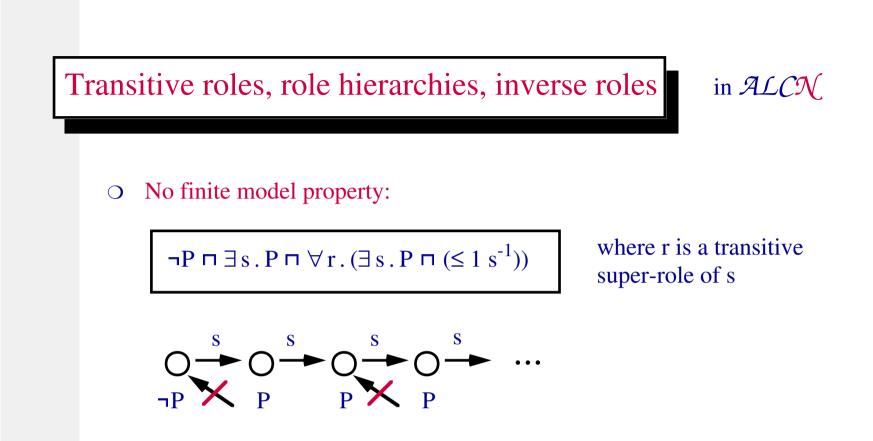




• The tableau algorithm can handle transitive roles by an additional rule: if $\forall r . D(x)$ and r(x,y) is in \mathcal{A} and r is transitive, then add $\forall r . D(y)$.

Rheinisch-Westfälische Technische Hochschule Aachen

• Both ideas must be combined; blocking required for termination.



- The tableau algorithm in [Horrocks&Sattler, 99] tries to generate a finite pre-model that can be "unravelled" to a model.
- Requires more sophisticated blocking conditions.

tableau algorithms for DLs

- Main focus of research not on theoretical complexity results:
 - tableau approach yields worst-case optimal algorithms for PSPACE DLs
 - most tableau algorithms for EXPTIME DLs are not worst-case optimal
- Focus on practical algorithms: remarkable evolution in the last 15 years
 - ► eighties: polynomial structural algorithms
 - ➤ mid-nineties: optimized PSPACE tableau algorithms
 - ▶ end nineties: optimized tableau algorithms for EXPTIME DLs

Rheinisch-Westfälische Technische Hochschule Aachen

Conclusion