Unification in Description Logics Part I: Introduction

Oliver Fernández Gil

Chair of Automata Theory

ESSLLI'19

Riga, August 2019

Unification problem: make two given first-order logic terms syntactically equal.

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow x \mapsto g(a, b), y \mapsto b \text{ is a solution of } s = {}^{?} t \text{ (a unifier).}$$

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow$$

 $x \mapsto g(a, b), y \mapsto b \text{ is a solution of } s = {}^{?} t \text{ (a unifier).}$

Originally introduced in automated deduction

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow$$

 $x \mapsto g(a, b), y \mapsto b \text{ is a solution of } s = t \text{ (a unifier).}$

Originally introduced in automated deduction

• Basic operation of J.A. Robinson's resolution inference principle [Rob65].

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow$$

 $x \mapsto g(a, b), y \mapsto b \text{ is a solution of } s = {}^{?} t \text{ (a unifier).}$

Originally introduced in automated deduction

- Basic operation of J.A. Robinson's resolution inference principle [Rob65].
- Important! To compute a most general unifier (mgu).

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow$$

 $x \mapsto g(a, b), y \mapsto b$ is a solution of $s = {}^{?} t$ (a unifier).

Originally introduced in automated deduction

- Basic operation of J.A. Robinson's resolution inference principle [Rob65].
- Important! To compute a most general unifier (mgu).

f(x,y) = f(y,x) has many solutions: $x, y \mapsto f(x), x, y \mapsto f(f(x)), \dots$

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow$$

 $x \mapsto g(a, b), y \mapsto b$ is a solution of $s = {}^{?} t$ (a unifier).

Originally introduced in automated deduction

- Basic operation of J.A. Robinson's resolution inference principle [Rob65].
- Important! To compute a most general unifier (mgu).

f(x,y) = f(y,x) has many solutions: $x, y \mapsto f(x), x, y \mapsto f(f(x)), \dots$

 $x \mapsto y$ generates all of them, i.e., it is a mgu

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow$$

 $x \mapsto g(a, b), y \mapsto b \text{ is a solution of } s = {}^{?} t \text{ (a unifier).}$

Originally introduced in automated deduction

- Basic operation of J.A. Robinson's resolution inference principle [Rob65].
- Important! To compute a most general unifier (mgu).

$$f(x,y) = f(y,x)$$
 has many solutions: $x, y \mapsto f(x), x, y \mapsto f(f(x)), \dots$

 $x \mapsto y$ generates all of them, i.e., it is a mgu

Rediscovered in the area of term rewriting systems.

Unification problem: make two given first-order logic terms syntactically equal.

$$t = f(x, g(a, b)) \qquad \qquad s = f(g(y, b), x)$$

Q: can x and y be substituted in s and t by terms such that the resulting terms are "identical"?

$$\downarrow$$

 $x \mapsto g(a, b), y \mapsto b \text{ is a solution of } s = {}^{?} t \text{ (a unifier).}$

Originally introduced in automated deduction

- Basic operation of J.A. Robinson's resolution inference principle [Rob65].
- Important! To compute a most general unifier (mgu).

$$f(x,y) = f(y,x)$$
 has many solutions: $x, y \mapsto f(x), x, y \mapsto f(f(x)), \dots$

 $x \mapsto y$ generates all of them, i.e., it is a mgu

Rediscovered in the area of term rewriting systems.

• Knuth-Bendix completion algorithm [KB70]

Initial goal: to integrate troublesome axioms (like *commutativity, associativity*) into the unification process.

Initial goal: to integrate troublesome axioms (like *commutativity, associativity*) into the unification process.

• Changes the nature of the problem:

f(a,x) = f(b,y) has no solution w.r.t. "syntactic unification".

Initial goal: to integrate troublesome axioms (like *commutativity, associativity*) into the unification process.

• Changes the nature of the problem:

f(a, x) = f(b, y) has no solution w.r.t. "syntactic unification".

But, $x \mapsto b, y \mapsto a$ is a solution w.r.t. $C = \{f(x, y) \approx f(y, x)\}$

Initial goal: to integrate troublesome axioms (like *commutativity, associativity*) into the unification process.

• Changes the nature of the problem:

f(a,x) = f(b,y) has no solution w.r.t. "syntactic unification".

But, $x \mapsto b, y \mapsto a$ is a solution w.r.t. $C = \{f(x, y) \approx f(y, x)\}$ $f(a, b) =_C f(b, a)$

Initial goal: to integrate troublesome axioms (like *commutativity, associativity*) into the unification process.

• Changes the nature of the problem:

 $f(a, x) = {}^{?} f(b, y)$ has no solution w.r.t. "syntactic unification". But, $x \mapsto b, y \mapsto a$ is a solution w.r.t. $C = \{f(x, y) \approx f(y, x)\}$ $f(a, b) =_C f(b, a)$

• A little bit more formal/general,

Equational theory. Let *E* by a set of identities between first-order terms. The equational theory defined by $=_E$ consists of all identities s = t that can be "derived" from *E*.

E-unification problem. $\Gamma := \{s_1 = \stackrel{?}{_E} t_1, \dots, s_n = \stackrel{?}{_E} t_n\}$. A substitution σ is an E-unifier of Γ if

 $\sigma(s_i) =_E \sigma(t_i)$, for all $1 \le i \le n$.

Most general unifiers need not exist

Most general unifiers need not exist

• A C-unification problem with two minimal "non-comparable" unifiers:

$$\Gamma = \{f(x, y) \stackrel{?}{=} f(a, b)\} \qquad x \mapsto a, y \mapsto b \qquad x \mapsto b, y \mapsto a$$

Most general unifiers need not exist

• A C-unification problem with two minimal "non-comparable" unifiers:

$$\Gamma = \{f(x,y) \stackrel{?}{=} f(a,b)\} \qquad x \mapsto a, y \mapsto b \qquad x \mapsto b, y \mapsto a$$

• Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

Most general unifiers need not exist

• A C-unification problem with two minimal "non-comparable" unifiers:

$$\Gamma = \{f(x,y) \stackrel{?}{=} f(a,b)\} \qquad x \mapsto a, y \mapsto b \qquad x \mapsto b, y \mapsto a$$

- Notion of a mgu needs to be extended to that of a minimal complete set of unifiers.
- Unification type: cardinality of such sets.

Most general unifiers need not exist

• A C-unification problem with two minimal "non-comparable" unifiers:

$$\Gamma = \{f(x,y) \stackrel{?}{=} f(a,b)\} \qquad x \mapsto a, y \mapsto b \qquad x \mapsto b, y \mapsto a$$

• Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

- Unification type: cardinality of such sets.
 - It can be infinite:

(associativity) $A = \{f(x, f(y, z)) \approx f(f(x, y), z)\}$ and $\Gamma = \{f(a, x) = \stackrel{?}{A} f(x, a)\}$

Most general unifiers need not exist

• A C-unification problem with two minimal "non-comparable" unifiers:

$$\Gamma = \{f(x,y) \stackrel{?}{=} f(a,b)\} \qquad x \mapsto a, y \mapsto b \qquad x \mapsto b, y \mapsto a$$

• Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

- Unification type: cardinality of such sets.
 - It can be infinite: (associativity) $A = \{f(x, f(y, z)) \approx f(f(x, y), z)\}$ and $\Gamma = \{f(a, x) =_A^? f(x, a)\}$
 - minimal complete sets of unifiers may not exist (we will later see)

It investigates:

It investigates:

• Decidability and complexity of E-unification problems.

It investigates:

- Decidability and complexity of E-unification problems.
- Computation of E-unifiers (if they exists).

It investigates:

- Decidability and complexity of E-unification problems.
- Computation of E-unifiers (if they exists).
- Unification type of equational theories.

It investigates:

- Decidability and complexity of E-unification problems.
- Computation of E-unifiers (if they exists).
- Unification type of equational theories.

Applications in many areas:

It investigates:

- Decidability and complexity of E-unification problems.
- Computation of E-unifiers (if they exists).
- Unification type of equational theories.

Applications in many areas:

• Databases, Information retrieval, Planning Systems,

It investigates:

- Decidability and complexity of E-unification problems.
- Computation of E-unifiers (if they exists).
- Unification type of equational theories.

Applications in many areas:

- Databases, Information retrieval, Planning Systems,
- Description Logics: detecting redundancies in ontologies.

It investigates:

- Decidability and complexity of E-unification problems.
- Computation of E-unifiers (if they exists).
- Unification type of equational theories.

Applications in many areas:

- Databases, Information retrieval, Planning Systems,
- Description Logics: detecting redundancies in ontologies.
- Modal Logics: special case of recognizability of admissible inference rules.

Description Logics

dl.kr.org

What are Description Logics (DLs)?

"...a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way..."

"...a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain \rightarrow represented as concept descriptions:

"...a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain \rightarrow represented as concept descriptions:

"...a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain \rightarrow represented as concept descriptions:

... a human, that is an athlete, plays baseball, wears a helmet or a cap, is not lazy, only owns shiny baseball bats ...

"...a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain \rightarrow represented as concept descriptions:

Atomic properties \rightarrow Concept names Human, Athlete, Baseball, Helmet, ...

... a human, that is an athlete, plays baseball, wears a helmet or a cap, is not lazy, only owns shiny baseball bats ...

"...a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain \rightarrow represented as concept descriptions:

 $\begin{array}{l} \mbox{Atomic properties} \rightarrow \mbox{Concept names} \\ \mbox{Human, Athlete, Baseball, Helmet, } \ldots \end{array}$

 $\begin{array}{c} \mathsf{Relations} \to \mathsf{Role\ names} \\ \\ \mathsf{plays}, \mathsf{wears} \end{array}$

... a human, that is an athlete, plays baseball, wears a helmet or a cap, is not lazy, only owns shiny baseball bats ...

"...a family of knowledge representation languages that can be used to represent knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain \rightarrow represented as concept descriptions:

 $\begin{array}{l} \mbox{Atomic properties} \rightarrow \mbox{Concept names} \\ \mbox{Human, Athlete, Baseball, Helmet, } \ldots \end{array}$

 $\begin{array}{l} \mbox{Relations} \rightarrow \mbox{Role names} \\ \mbox{plays, wears} \end{array}$

... a human, that is an athlete, plays baseball, wears a helmet or a cap, is not lazy, only owns shiny baseball bats ...

Concept descriptions: built using the concept/role constructors provided by a DL.

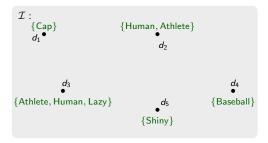
Human \sqcap Athlete \sqcap \exists wears.(Helmet \sqcup Cap) \sqcap \exists plays.Baseball $\sqcap \neg$ Lazy $\sqcap \forall$ owns_bat.Shiny

Formal semantics inherited from *first-order* logic

Formal semantics inherited from *first-order* logic

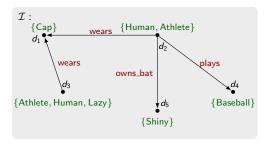


Formal semantics inherited from *first-order* logic



Concept names: unary predicates

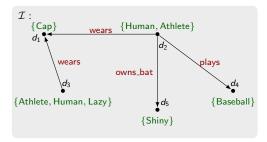
Formal semantics inherited from *first-order* logic



Concept names: unary predicates

Role names: binary predicates

Formal semantics inherited from *first-order* logic

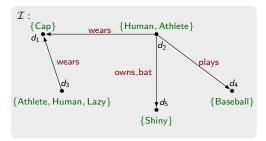


Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Formal semantics inherited from *first-order* logic



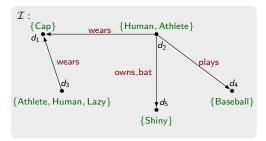
Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Concept constructors

Formal semantics inherited from *first-order* logic



Concept names: unary predicates

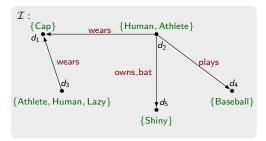
Role names: binary predicates

Formulas (concept descriptions)

Concept constructors

```
 \begin{array}{c} \sqcap \quad \forall r.C \\ \neg \quad \exists r.C \quad \sqcup \quad \bot \\ \leq nr.C \quad \top \\ \end{array}
```

Formal semantics inherited from *first-order* logic



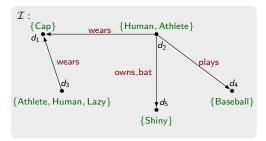
Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Concept constructors Semantics $\begin{array}{ccc} & \square & \forall r.C & (Human \sqcap Athlete)^{\mathcal{I}} = \{d_2, d_3\} \\ & \neg & \exists r.C & \sqcup & \bot \\ & \leq nr.C & \top & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

Formal semantics inherited from *first-order* logic



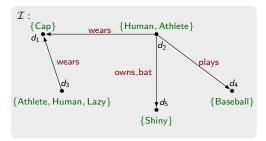
Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Concept constructors	Semantics
□ ∀ <i>r</i> . <i>C</i>	$(Human \sqcap Athlete)^\mathcal{I} = \{\mathit{d}_2, \mathit{d}_3\}$
_ ∃ <i>r.C</i> _ ⊥	$(Cap \sqcup Helmet)^\mathcal{I} = \{ d_1 \}$
\leq nr.C \top	
ACC	

Formal semantics inherited from *first-order* logic



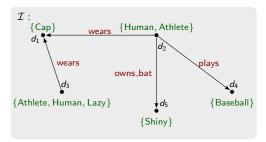
Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Concept constructors	Semantics
□ ∀ <i>r</i> . <i>C</i>	$(Human\sqcapAthlete)^\mathcal{I}=\{\mathit{d}_2,\mathit{d}_3\}$
_ ∃r.C ⊔ ⊥	$(Cap\sqcupHelmet)^\mathcal{I}=\{d_1\}$
\leq nr.C \top	$(\neg Lazy)^\mathcal{I} = \{ d_1, d_2, d_4, d_5 \}$
ALC	

Formal semantics inherited from *first-order* logic



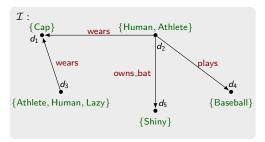
Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Concept constructorsSemantics \sqcap $\forall r. C$ (Human \sqcap Athlete) $\mathcal{I} = \{d_2, d_3\}$ (\exists plays.Baseball) $\mathcal{I} = \{d_2\}$ \neg $\exists r. C$ \bot (Cap \sqcup Helmet) $\mathcal{I} = \{d_1\}$ $\leq nr. C$ \top $(\neg$ Lazy) $\mathcal{I} = \{d_1, d_2, d_4, d_5\}$

Formal semantics inherited from *first-order* logic



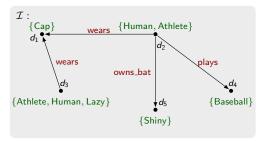
Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Concept constructorsSemantics \sqcap $\forall r. C$ (Human \sqcap Athlete) $\mathcal{I} = \{d_2, d_3\}$ (\exists plays.Baseball) $\mathcal{I} = \{d_2\}$ \neg $\exists r. C$ \sqcup (Cap \sqcup Helmet) $\mathcal{I} = \{d_1\}$ (\forall owns_bat.Shiny) $\mathcal{I} = dom(\mathcal{I})$ $\leq nr. C$ \top $(\neg$ Lazy) $\mathcal{I} = \{d_1, d_2, d_4, d_5\}$

Formal semantics inherited from *first-order* logic



Concept names: unary predicates

Role names: binary predicates

Formulas (concept descriptions)

Concept constructorsSemantics $\square \quad \forall r. C$ $(\text{Human } \square \text{ Athlete})^{\mathcal{I}} = \{d_2, d_3\}$ $(\exists \text{plays.Baseball})^{\mathcal{I}} = \{d_2\}$ $\neg \quad \exists r. C \quad \sqcup \quad \bot$ $(\text{Cap } \sqcup \text{ Helmet})^{\mathcal{I}} = \{d_1\}$ $(\forall \text{owns_bat.Shiny})^{\mathcal{I}} = \text{dom}(\mathcal{I})$ $\leq nr. C \quad \top$ $(\neg \text{Lazy})^{\mathcal{I}} = \{d_1, d_2, d_4, d_5\}$ $\forall r. C \equiv \neg \exists r. \neg C \quad C \sqcup D \equiv \neg (\neg C \sqcap \neg D) \quad \bot \equiv \neg \top$

Terminological knowledge (general knowledge about the domain)

Terminological knowledge (general knowledge about the domain)

Concept definitions

 $\mathsf{Baseball_Player} \doteq \bigcirc$

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player ≐ ○ Concept inclusions (GCls) pitchers are baseball players and throw fastball

Terminological knowledge (general knowledge about the domain)

Concept definitions $Baseball_Player \doteq \bigcirc$

Concept inclusions (GCIs) and throw fastball

 $\textit{pitchers are baseball players} \quad _ \rightarrow \quad \mathsf{Pitcher} \sqsubseteq \mathsf{Baseball_Player} \sqcap$ ∃throws.Fastball

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player \doteq \bigcirc Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ *and throw fastball* ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Terminological knowledge (general knowledge about the domain)

Concept definitions	
$Baseball_Player \doteq$	С

Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ *and throw fastball* ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Semantics (Baseball_Player)^{\mathcal{I}} = (\bigcirc)^{\mathcal{I}} (Pitcher)^{\mathcal{I}} \subseteq (Baseball_Player $\sqcap \exists$ throws.Fastball)^{\mathcal{I}}

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player \doteq () Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ *and throw fastball* ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Semantics

$$\begin{split} (\mathsf{Baseball_Player})^{\mathcal{I}} &= (\bigcirc)^{\mathcal{I}} \\ (\mathsf{Pitcher})^{\mathcal{I}} &\subseteq (\mathsf{Baseball_Player} \sqcap \exists \mathsf{throws}.\mathsf{Fastball})^{\mathcal{I}} \end{split}$$

 $\mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{I} \text{ satisfies}$ all definitions/GCls in \mathcal{T}

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player \doteq \bigcirc Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ *and throw fastball* ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Semantics (Baseball_Player)^{\mathcal{I}} = (\bigcirc)^{\mathcal{I}} (Pitcher)^{\mathcal{I}} \subseteq (Baseball_Player $\sqcap \exists$ throws.Fastball)^{\mathcal{I}}

 $\begin{array}{c} \mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{I} \text{ satisfies} \\ \text{all definitions/GCls in } \mathcal{T} \end{array} \end{array}$

Assertional knowledge (knowledge about concrete situations)

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player \doteq \bigcirc Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ and throw fastball _____ ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Semantics (Baseball_Player)^{\mathcal{I}} = (\bigcirc)^{\mathcal{I}} (Pitcher)^{\mathcal{I}} \subseteq (Baseball_Player $\sqcap \exists throws.Fastball)^{\mathcal{I}}$

 $\mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{I} \text{ satisfies}$ all definitions/GCIs in \mathcal{T}

Assertional knowledge (knowledge about concrete situations)

```
Pitcher(pedro)
```

```
Shiny(s) ¬Lazy(omar)
Human(pedro)
owns_bat(omar, s)
```

. . .

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player \doteq \bigcirc Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ and throw fastball _____ ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Semantics (Baseball_Player)^{\mathcal{I}} = (\bigcirc)^{\mathcal{I}} (Pitcher)^{\mathcal{I}} \subseteq (Baseball_Player $\sqcap \exists throws.Fastball)^{\mathcal{I}}$

 $\mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{I} \text{ satisfies}$ all definitions/GCls in \mathcal{T}

Assertional knowledge (knowledge about concrete situations)

```
Pitcher(pedro)
```

A finite set of assertions is called an ABox ${\cal A}$

```
Shiny(s) ¬Lazy(omar)
Human(pedro)
owns_bat(omar, s)
```

. . .

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player \doteq \bigcirc Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ *and throw fastball* ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Semantics (Baseball_Player)^{\mathcal{I}} = (\bigcirc)^{\mathcal{I}} (Pitcher)^{\mathcal{I}} \subseteq (Baseball_Player $\sqcap \exists throws.Fastball)^{\mathcal{I}}$

 $\mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{I} \text{ satisfies} \\ \text{all definitions/GCls in } \mathcal{T}$

Assertional knowledge (knowledge about concrete situations)

```
Pitcher(pedro)
Shiny(s) ¬Lazy(omar)
Human(pedro)
owns_bat(omar, s)
```

. . .

A finite set of assertions is called an ABox \mathcal{A} A knowledge base is a pair $\mathcal{K} = (\mathcal{T}, \mathcal{A})$

Terminological knowledge (general knowledge about the domain)

Concept definitions Baseball_Player \doteq \bigcirc Concept inclusions (GCls) *pitchers are baseball players* _____ Pitcher ⊑ Baseball_Player⊓ *and throw fastball* ∃throws.Fastball

A finite set of definitions/GCIs is called a TBox ${\cal T}$

Semantics (Baseball_Player)^{\mathcal{I}} = (\bigcirc)^{\mathcal{I}} (Pitcher)^{\mathcal{I}} \subseteq (Baseball_Player $\sqcap \exists throws.Fastball)^{\mathcal{I}}$

 $\mathcal{I} \models \mathcal{T} \text{ iff } \mathcal{I} \text{ satisfies} \\ \text{all definitions/GCls in } \mathcal{T}$

Assertional knowledge (knowledge about concrete situations)

Pitcher(pedro) Shiny(s) ¬Lazy(omar) Human(pedro) owns_bat(*omar*, s)

. . .

A finite set of assertions is called an ABox \mathcal{A} A knowledge base is a pair $\mathcal{K} = (\mathcal{T}, \mathcal{A})$

Entailments of *K*: *Pedro throws FastBall*, ...

Standard Inferences

Standard Inferences

- Concept satisfiability.
- Subsumption.

Instance:Two concepts C, D and a TBox \mathcal{T} .Question:Does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{T} ?

• Knowledge base consistency, query answering.

Standard Inferences

- Concept satisfiability.
- Subsumption.

Instance:Two concepts C, D and a TBox \mathcal{T} .Question:Does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{T} ?

• Knowledge base consistency, query answering.

Non-Standard Inferences

Standard Inferences

- Concept satisfiability.
- Subsumption.

Instance:Two concepts C, D and a TBox \mathcal{T} .Question:Does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{T} ?

• Knowledge base consistency, query answering.

Non-Standard Inferences

- Most specific generalizations.
- Least common subsumer.
- Unification.
- ...

More on DLs...

An Introduction to Description Logic

Franz Baader Ian Horrocks Carsten Lutz Uli Sattler

Unification in Description Logics

• Two developers of a medical ontology define finding of severe head injury in two different ways:

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

b) \exists finding.(Severe_injury $\sqcap \exists$ finding_site.Head)

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

not equivalent, but meant to represent the same notion!

b) \exists finding.(Severe_injury $\sqcap \exists$ finding_site.Head)

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

not equivalent, but meant to represent the same notion!

b) \exists finding.(Severe_injury $\sqcap \exists$ finding_site.Head)

• Can they be made equivalent?

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

not equivalent, but meant to represent the same notion!

b) ∃finding.(Severe_injury □ ∃finding_site.Head)

• Can they be made equivalent?

1 Select Head_injury and Severe_injury as variables.

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

not equivalent, but meant to represent the same notion!

b) ∃finding.(Severe_injury □ ∃finding_site.Head)

- Can they be made equivalent?
 - 1 Select Head_injury and Severe_injury as variables.
 - **2** Apply the substitution (add definitions to the ontology):

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

not equivalent, but meant to represent the same notion!

b) ∃finding.(Severe_injury □ ∃finding_site.Head)

- Can they be made equivalent?
 - 1 Select Head_injury and Severe_injury as variables.
 - 2 Apply the substitution (add definitions to the ontology):

$$\label{eq:Head_injury} \begin{split} \mathsf{Head_injury} &\mapsto \mathsf{Injury} \sqcap \exists \mathsf{finding_site}.\mathsf{Head} \\ \mathsf{Severe_injury} &\mapsto \mathsf{Injury} \sqcap \exists \mathsf{severity}.\mathsf{Severe} \end{split}$$

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

not equivalent, but meant to represent the same notion!

b) ∃finding.(Severe_injury □ ∃finding_site.Head)

- Can they be made equivalent?
 - 1 Select Head_injury and Severe_injury as variables.
 - **2** Apply the substitution (add definitions to the ontology):

 $\label{eq:head_injury} \mapsto Injury \sqcap \exists finding_site.Head \\ Severe_injury \mapsto Injury \sqcap \exists severity.Severe \\ concept descriptions \\ \end{cases}$

• Two developers of a medical ontology define finding of severe head injury in two different ways:

a) ∃finding.(Head_injury □ ∃severity.Severe)

not equivalent, but meant to represent the same notion!

b) ∃finding.(Severe_injury □ ∃finding_site.Head)

- Can they be made equivalent?
 - 1 Select Head_injury and Severe_injury as variables.
 - **2** Apply the substitution (add definitions to the ontology):

• Semi-automated process: suggests possible candidates to ontology engineers.

• Suppose that the second developer uses a different definition, i.e., c) instead of b):

• Suppose that the second developer uses a different definition, i.e., c) instead of b):

a) ∃finding.(Head_injury □ ∃severity.Severe)

c) \exists status.Emergency $\sqcap \exists$ finding.(Severe_injury $\sqcap \exists$ finding_site.Head)

• Suppose that the second developer uses a different definition, i.e., c) instead of b):

a) ∃finding.(Head_injury □ ∃severity.Severe)

not unifiable!

c) \exists status.Emergency $\sqcap \exists$ finding.(Severe_injury $\sqcap \exists$ finding_site.Head)

• Suppose that the second developer uses a different definition, i.e., c) instead of b):

a) ∃finding.(Head_injury □ ∃severity.Severe)

not unifiable!

c) \exists status.Emergency $\sqcap \exists$ finding.(Severe_injury $\sqcap \exists$ finding_site.Head)

But they are, in presence of background knowledge (TBox) containing the GCI:
 ∃finding.∃severity.Severe ⊑ ∃status.Emergency

Let ${\mathcal L}$ be some description logic.

Let ${\mathcal L}$ be some description logic.

 $\bullet\,$ The set N_C of concept names is partitioned into two sets:

Let ${\mathcal L}$ be some description logic.

- $\bullet\,$ The set N_C of concept names is partitioned into two sets:
 - N_v: concept variables (like Head_injury and Severe_injury).

Let ${\mathcal L}$ be some description logic.

- The set N_C of concept names is partitioned into two sets:
 - N_v: concept variables (like Head_injury and Severe_injury).
 - N_c: concept constants (like Severe, Head, Emergency).

Let ${\mathcal L}$ be some description logic.

- The set N_C of concept names is partitioned into two sets:
 - N_v: concept variables (like Head_injury and Severe_injury).
 - N_c: concept constants (like Severe, Head, Emergency).
- A substitution σ is a mapping of the form:

 $\sigma: N_v \mapsto$ the set of all \mathcal{L} concept descriptions.

Let ${\mathcal L}$ be some description logic.

- $\bullet\,$ The set N_C of concept names is partitioned into two sets:
 - N_v: concept variables (like Head_injury and Severe_injury).
 - N_c: concept constants (like Severe, Head, Emergency).
- A substitution σ is a mapping of the form:

 $\sigma: N_v \mapsto$ the set of all \mathcal{L} concept descriptions.

 $\boldsymbol{\sigma}$ is extended to arbitrary concepts inductively

Let ${\mathcal L}$ be some description logic.

- The set N_C of concept names is partitioned into two sets:
 - N_v: concept variables (like Head_injury and Severe_injury).
 - N_c: concept constants (like Severe, Head, Emergency).
- A substitution σ is a mapping of the form:

 $\sigma: N_v \mapsto$ the set of all \mathcal{L} concept descriptions.

 σ is extended to arbitrary concepts inductively (in ALC):

$$\sigma(\top) := \top \quad \sigma(A) := A, \text{ for all } A \in \mathsf{N}_{\mathsf{c}}$$

$$\sigma(C \sqcap D) := \sigma(C) \sqcap \sigma(D) \quad \sigma(C \sqcup D) := \sigma(C) \sqcup \sigma(D)$$

$$\sigma(\exists r.C) := \exists r.\sigma(C) \quad \sigma(\forall r.C) := \forall r.\sigma(C)$$

Let ${\mathcal L}$ be some description logic.

- $\bullet\,$ The set N_C of concept names is partitioned into two sets:
 - N_v: concept variables (like Head_injury and Severe_injury).
 - N_c: concept constants (like Severe, Head, Emergency).
- A substitution σ is a mapping of the form:

 $\sigma: N_v \mapsto$ the set of all \mathcal{L} concept descriptions.

 σ is extended to arbitrary concepts inductively (in ALC):

$$\sigma(\top) := \top \quad \sigma(A) := A, \text{ for all } A \in \mathsf{N}_{\mathsf{c}}$$

$$\sigma(C \sqcap D) := \sigma(C) \sqcap \sigma(D) \quad \sigma(C \sqcup D) := \sigma(C) \sqcup \sigma(D)$$

$$\sigma(\exists r.C) := \exists r.\sigma(C) \quad \sigma(\forall r.C) := \forall r.\sigma(C)$$

Definition 1 (\mathcal{L} -unification)

An \mathcal{L} -unification problem is of the form:

$$\Gamma := \{ C_1 \equiv D_1, \ldots, C_n \equiv D_n \}.$$

A substitution σ is a unifier of Γ if

 $\sigma(C_i) \equiv \sigma(D_i)$, for all $1 \leq i \leq n$.

Unification in DLs. Formal definition - TBoxes

Restricted to ground TBoxes: a general TBox ${\mathcal T}$ is ground if it contains no variables.

Unification in DLs. Formal definition - TBoxes

Restricted to ground TBoxes: a general TBox ${\mathcal T}$ is ground if it contains no variables.

Definition 2 (\mathcal{L} -unification w.r.t. a general TBox)

Let \mathcal{T} be a general TBox that is ground. An \mathcal{L} -unification problem w.r.t. \mathcal{T} is of the form:

$$\Gamma := \{ C_1 \equiv^? D_1, \ldots, C_n \equiv^? D_n \}.$$

A substitution σ is a unifier of Γ w.r.t. ${\mathcal T}$ if

$$\sigma(C_i) \equiv_{\mathcal{T}} \sigma(D_i)$$
, for all $1 \leq i \leq n$.

Definition 1 corresponds to the special case where $\mathcal{T} = \emptyset$.

Unification in DLs. Formal definition - TBoxes

Restricted to ground TBoxes: a general TBox ${\mathcal T}$ is ground if it contains no variables.

Definition 2 (\mathcal{L} -unification w.r.t. a general TBox)

Let \mathcal{T} be a general TBox that is ground. An \mathcal{L} -unification problem w.r.t. \mathcal{T} is of the form:

$$\Gamma := \{ C_1 \equiv^? D_1, \ldots, C_n \equiv^? D_n \}.$$

A substitution σ is a unifier of Γ w.r.t. ${\mathcal T}$ if

$$\sigma(C_i) \equiv_{\mathcal{T}} \sigma(D_i)$$
, for all $1 \leq i \leq n$.

Definition 1 corresponds to the special case where $\mathcal{T} = \emptyset$.

The decision problem

$\mathcal{L}\text{-}\mathsf{Unification}$ Decision Problem

Instance: A ground general TBox \mathcal{T} and an \mathcal{L} -unification problem Γ . **Question:** Is there a unifier σ of Γ w.r.t. \mathcal{T} ?

• Comparing unifiers. Instantiation pre-order \leq .

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define,

 $\theta \leq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Comparing unifiers. Instantiation pre-order \leq .

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define, $\theta \preceq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Minimal complete set of unifiers.

A set of substitutions ${\mathcal M}$ is a complete set of unifiers of Γ iff

- $\sigma \in \mathcal{M}$ implies σ is a unifier of Γ .
- if σ is a unifier of Γ , then $\theta \preceq \sigma$ for some $\theta \in \mathcal{M}$.

• Comparing unifiers. Instantiation pre-order ∠.

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define, $\theta \leq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Minimal complete set of unifiers.

A set of substitutions ${\mathcal M}$ is a complete set of unifiers of Γ iff

- $\sigma \in \mathcal{M}$ implies σ is a unifier of Γ .
- if σ is a unifier of Γ , then $\theta \leq \sigma$ for some $\theta \in \mathcal{M}$.

 ${\mathcal M}$ is called minimal, iff ${\mathcal M}$ also satisfies:

• if $\sigma, \theta \in \mathcal{M}$, then $\sigma \leq \theta$ implies $\sigma = \theta$.

• Comparing unifiers. Instantiation pre-order \leq .

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define, $\theta \leq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Minimal complete set of unifiers.

A set of substitutions ${\mathcal M}$ is a complete set of unifiers of Γ iff

- $\sigma \in \mathcal{M}$ implies σ is a unifier of Γ .
- if σ is a unifier of Γ , then $\theta \leq \sigma$ for some $\theta \in \mathcal{M}$.

 ${\mathcal M}$ is called minimal, iff ${\mathcal M}$ also satisfies:

• if
$$\sigma, \theta \in \mathcal{M}$$
, then $\sigma \preceq \theta$ implies $\sigma = \theta$

Unification type

• Comparing unifiers. Instantiation pre-order \leq .

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define, $\theta \leq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Minimal complete set of unifiers.

A set of substitutions ${\mathcal M}$ is a complete set of unifiers of Γ iff

- $\sigma \in \mathcal{M}$ implies σ is a unifier of Γ .
- if σ is a unifier of Γ , then $\theta \leq \sigma$ for some $\theta \in \mathcal{M}$.

 ${\mathcal M}$ is called minimal, iff ${\mathcal M}$ also satisfies:

- if $\sigma, \theta \in \mathcal{M}$, then $\sigma \leq \theta$ implies $\sigma = \theta$.
- Unification type

An \mathcal{L} -unification problem Γ has type

• unitary iff it has a minimal complete \mathcal{M} of size 1.

• Comparing unifiers. Instantiation pre-order ∠.

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define, $\theta \leq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Minimal complete set of unifiers.

A set of substitutions ${\mathcal M}$ is a complete set of unifiers of Γ iff

- $\sigma \in \mathcal{M}$ implies σ is a unifier of Γ .
- if σ is a unifier of Γ , then $\theta \leq \sigma$ for some $\theta \in \mathcal{M}$.

 ${\mathcal M}$ is called minimal, iff ${\mathcal M}$ also satisfies:

- if $\sigma, \theta \in \mathcal{M}$, then $\sigma \leq \theta$ implies $\sigma = \theta$.
- Unification type

An \mathcal{L} -unification problem Γ has type

- unitary iff it has a minimal complete M of size 1.
- finitary iff it has a finite minimal complete \mathcal{M} .

• Comparing unifiers. Instantiation pre-order ∠.

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define, $\theta \leq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Minimal complete set of unifiers.

A set of substitutions ${\mathcal M}$ is a complete set of unifiers of Γ iff

- $\sigma \in \mathcal{M}$ implies σ is a unifier of Γ .
- if σ is a unifier of Γ , then $\theta \leq \sigma$ for some $\theta \in \mathcal{M}$.

 ${\mathcal M}$ is called minimal, iff ${\mathcal M}$ also satisfies:

- if $\sigma, \theta \in \mathcal{M}$, then $\sigma \preceq \theta$ implies $\sigma = \theta$.
- Unification type

An \mathcal{L} -unification problem Γ has type

- unitary iff it has a minimal complete \mathcal{M} of size 1.
- finitary **iff** it has a finite minimal complete \mathcal{M} .
- finitary iff it has an infinite minimal complete \mathcal{M} .

Unification in DLs. Additional notions from unification theory

• Comparing unifiers. Instantiation pre-order ∠.

Let θ, σ be two unifiers of an \mathcal{L} -unification problem Γ . We define, $\theta \leq \sigma$ iff exists λ s.t. $\sigma(X) \equiv \lambda(\theta(X))$ for all $X \in \Gamma$.

• Minimal complete set of unifiers.

A set of substitutions ${\mathcal M}$ is a complete set of unifiers of Γ iff

- $\sigma \in \mathcal{M}$ implies σ is a unifier of Γ .
- if σ is a unifier of Γ , then $\theta \leq \sigma$ for some $\theta \in \mathcal{M}$.

 ${\mathcal M}$ is called minimal, iff ${\mathcal M}$ also satisfies:

- if $\sigma, \theta \in \mathcal{M}$, then $\sigma \preceq \theta$ implies $\sigma = \theta$.
- Unification type

An \mathcal{L} -unification problem Γ has type

- unitary iff it has a minimal complete \mathcal{M} of size 1.
- finitary **iff** it has a finite minimal complete \mathcal{M} .
- finitary iff it has an infinite minimal complete \mathcal{M} .
- zero iff it does not have a minimal complete $\mathcal{M}.$

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.

Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.

Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)

• Concept descriptions vs. terms:

concept var. \rightarrow variable symbols concept const. \rightarrow free constants

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.

Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)

• Concept descriptions vs. terms:

concept var. \rightarrow variable symbols concept const. \rightarrow free constants

 $\begin{array}{l} \text{concept constr.} \rightarrow \text{function symbols} \\ \boldsymbol{\Sigma} = \{\wedge^2, h_{r_1}{}^1, \ldots, h_{r_n}{}^1, 1\} \end{array}$

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.
- Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)
 - Concept descriptions vs. terms:

concept var. \rightarrow variable symbols concept const. \rightarrow free constants

 $\begin{array}{l} \text{concept constr.} \to \text{function symbols} \\ \boldsymbol{\Sigma} = \{\wedge^2, h_{r_1}{}^1, \ldots, h_{r_n}{}^1, 1\} \end{array}$

concept descriptions \longrightarrow terms over Σ

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.
- Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)
 - Concept descriptions vs. terms:

concept var. \rightarrow variable symbols concept const. \rightarrow free constants

 $\begin{array}{l} \text{concept constr.} \to \text{function symbols} \\ \boldsymbol{\Sigma} = \{\wedge^2, h_{r_1}{}^1, \ldots, h_{r_n}{}^1, 1\} \end{array}$

 $\begin{array}{c} \text{concept descriptions} \\ \text{over } \mathsf{N}_{\mathsf{R}} = \{ r_1, \ldots, r_n \} \end{array} \xrightarrow{} \text{terms over } \Sigma \\ \end{array}$

 $A \sqcap \forall r_1. \top \sqcap \forall r_2. (X \sqcap B) \longrightarrow a \land h_{r_1}(1) \land h_{r_2}(x \land b)$

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.
- Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)
 - Concept descriptions vs. terms:

concept var. \rightarrow variable symbols concept const. \rightarrow free constants

 $\begin{array}{l} \text{concept constr.} \rightarrow \text{function symbols} \\ \boldsymbol{\Sigma} = \{\wedge^2, h_{r_1}{}^1, \ldots, h_{r_n}{}^1, \mathbb{1}\} \end{array}$

concept descriptions \longrightarrow terms over Σ

 $A \sqcap \forall r_1. \top \sqcap \forall r_2. (X \sqcap B) \longrightarrow a \land h_{r_1}(1) \land h_{r_2}(x \land b)$

• Equational theory $\mbox{ACUIh} \rightarrow \mbox{axiomatizes}$ equivalence in \mathcal{FL}_0

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.
- Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)
 - Concept descriptions vs. terms:

concept var. \rightarrow variable symbols concept const. \rightarrow free constants

 $\begin{array}{l} \text{concept constr.} \rightarrow \text{function symbols} \\ \boldsymbol{\Sigma} = \{\wedge^2, h_{r_1}{}^1, \ldots, h_{r_n}{}^1, \mathbb{1}\} \end{array}$

concept descriptions \longrightarrow terms over Σ

 $A \sqcap \forall r_1. \top \sqcap \forall r_2. (X \sqcap B) \longrightarrow a \land h_{r_1}(1) \land h_{r_2}(x \land b)$

• Equational theory $\mbox{ACUIh} \rightarrow \mbox{axiomatizes}$ equivalence in \mathcal{FL}_0

 $\label{eq:commutative} \begin{array}{l} \sqcap \text{ is} \\ \text{ commutative } \to x \land y \approx y \land x, \\ \text{ associative } \to (x \land y) \land z \approx x \land (y \land z), \\ \text{ idempotent } \to x \land x \approx x, \\ \text{ has } \top \text{ as unit } \to x \land 1 = x. \end{array}$

- For many DLs, \equiv can be axiomatized using finitely many equational axioms.
- Unification in such a DL can be viewed as unification modulo the corresponding equational theory.

Example (DL \mathcal{FL}_0 , only $\top, \sqcap, \forall r.C$)

• Concept descriptions vs. terms:

concept var. \rightarrow variable symbols concept const. \rightarrow free constants

 $\begin{array}{l} \text{concept constr.} \rightarrow \text{function symbols} \\ \boldsymbol{\Sigma} = \{\wedge^2, h_{r_1}{}^1, \ldots, h_{r_n}{}^1, \mathbb{1}\} \end{array}$

concept descriptions \longrightarrow terms over Σ

 $A \sqcap \forall r_1. \top \sqcap \forall r_2. (X \sqcap B) \longrightarrow a \land h_{r_1}(1) \land h_{r_2}(x \land b)$

• Equational theory ${\sf ACUIh} o$ axiomatizes equivalence in ${\cal FL}_0$

 $\begin{array}{ll} \sqcap \text{ is} & \forall r_i \text{ satisfies} \\ \text{commutative} \to x \land y \approx y \land x, \\ \text{associative} \to (x \land y) \land z \approx x \land (y \land z), \\ \text{idempotent} \to x \land x \approx x, \\ \text{has } \top \text{ as unit} \to x \land 1 = x. \end{array} \qquad \begin{array}{ll} \forall r_i (T) \equiv T \to h_{r_i}(1) = 1 \\ \forall r_i (C \sqcap D) \equiv \forall r_i . C \sqcap \forall r_i . D \\ \downarrow \\ h_{r_i}(x \land y) \approx h_{r_i}(x) \land h_{r_i}(y) \end{array}$

Lemma 3 [BN01]

Let C and D be two \mathcal{FL}_0 concept descriptions. Then,

 $C \equiv D$ iff $\tau(C) \approx_{ACUIh} \tau(D)$.

Lemma 3 [BN01]

Let C and D be two \mathcal{FL}_0 concept descriptions. Then,

```
C \equiv D iff \tau(C) \approx_{ACUIh} \tau(D).
```

Results can be transferred

Lemma 3 [BN01]

Let C and D be two \mathcal{FL}_0 concept descriptions. Then,

```
C \equiv D iff \tau(C) \approx_{ACUIh} \tau(D).
```

Results can be transferred

 $C \equiv D$ has a unifier **iff** $\tau(C)$ and $\tau(D)$ are unifiable.

Lemma 3 [BN01]

Let C and D be two \mathcal{FL}_0 concept descriptions. Then,

```
C \equiv D iff \tau(C) \approx_{ACUIh} \tau(D).
```

Results can be transferred

$$C \equiv D$$
 has a unifier **iff** $\tau(C)$ and $\tau(D)$ are unifiable.
 \Rightarrow
Unification in ACUIh is ExpTime-complete.

Lemma 3 [BN01]

Let C and D be two \mathcal{FL}_0 concept descriptions. Then,

```
C \equiv D iff \tau(C) \approx_{ACUIh} \tau(D).
```

Results can be transferred

 $C \equiv$ [?] *D* has a unifier **iff** $\tau(C)$ and $\tau(D)$ are unifiable. \Rightarrow Unification in ACUIh is ExpTime-complete. \mathcal{FL}_0 has unification type zero (ACUIh has unification type zero [Baa93].)

Lemma 3 [BN01]

Let C and D be two \mathcal{FL}_0 concept descriptions. Then,

```
C \equiv D iff \tau(C) \approx_{ACUIh} \tau(D).
```

Results can be transferred

 $C \equiv$? *D* has a unifier **iff** $\tau(C)$ and $\tau(D)$ are unifiable. \Rightarrow Unification in ACUIh is ExpTime-complete. \mathcal{FL}_0 has unification type zero (ACUIh has unification type zero [Baa93].)

Unification w.r.t. a TBox \rightarrow unification w.r.t. an additional set of ground identities:

$$\mathcal{T} = \{C_1 \sqsubseteq D_1, \ldots, C_n \sqsubseteq D_n\} \rightarrow G_{\mathcal{T}} = \bigcup_{i=1}^n \{\tau(C_i) \land \tau(D_i) \approx \tau(D_i)\}.$$

Lemma 3 [BN01]

Let C and D be two \mathcal{FL}_0 concept descriptions. Then,

```
C \equiv D iff \tau(C) \approx_{ACUIh} \tau(D).
```

Results can be transferred

 $C \equiv$ [?] *D* has a unifier **iff** $\tau(C)$ and $\tau(D)$ are unifiable. \Rightarrow Unification in ACUIh is ExpTime-complete. \mathcal{FL}_0 has unification type zero (ACUIh has unification type zero [Baa93].)

Unification w.r.t. a TBox \rightarrow unification w.r.t. an additional set of ground identities:

$$\mathcal{T} = \{C_1 \sqsubseteq D_1, \dots, C_n \sqsubseteq D_n\} \to G_{\mathcal{T}} = \bigcup_{i=1}^n \{\tau(C_i) \land \tau(D_i) \approx \tau(D_i)\}.$$
$$C \equiv_{\mathcal{T}} D \text{ iff } \tau(C) \approx_{\mathsf{ACUIh} \cup G_{\mathcal{T}}} \tau(D).$$

Mostly concentrated in sub-Boolean fragments of \mathcal{ALC}

Mostly concentrated in sub-Boolean fragments of \mathcal{ALC}

• First investigated for \mathcal{FL}_0 : ExpTime-complete w.r.t. the empty TBox.

Mostly concentrated in sub-Boolean fragments of \mathcal{ALC}

- First investigated for \mathcal{FL}_0 : ExpTime-complete w.r.t. the empty TBox.
- In \mathcal{EL} , the problem is easier: NP-complete.

Mostly concentrated in sub-Boolean fragments of \mathcal{ALC}

- First investigated for \mathcal{FL}_0 : ExpTime-complete w.r.t. the empty TBox.
- In \mathcal{EL} , the problem is easier: NP-complete.
- Only a few results exist for unification w.r.t. arbitrary TBoxes.

Mostly concentrated in sub-Boolean fragments of \mathcal{ALC}

- First investigated for \mathcal{FL}_0 : ExpTime-complete w.r.t. the empty TBox.
- In \mathcal{EL} , the problem is easier: NP-complete.
- Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

Mostly concentrated in sub-Boolean fragments of \mathcal{ALC}

- First investigated for \mathcal{FL}_0 : ExpTime-complete w.r.t. the empty TBox.
- In \mathcal{EL} , the problem is easier: NP-complete.
- Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

- Important open problem: unification in the nomal modal logic K (syntactic variant of $\mathcal{ALC}).$

Mostly concentrated in sub-Boolean fragments of \mathcal{ALC}

- First investigated for \mathcal{FL}_0 : ExpTime-complete w.r.t. the empty TBox.
- In \mathcal{EL} , the problem is easier: NP-complete.
- Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

- Important open problem: unification in the nomal modal logic K (syntactic variant of \mathcal{ALC}).
- Undecidability results for very expressive DLs: transferred from research in Modal Logics.

References I

Franz Baader.

Unification in commutative theories, hilbert's basis theorem, and gröbner bases. J. ACM, 40(3):477–503, 1993.

Franz Baader and Paliath Narendran. Unification of Concept Terms in Description Logics. *J. Symb. Comput.*, 31(3):277–305, 2001.

DONALD E. KNUTH and PETER B. BENDIX.

Simple word problems in universal algebras. In JOHN LEECH, editor, *Computational Problems in Abstract Algebra*, pages 263 – 297. Pergamon, 1970.

John Alan Robinson.

A machine-oriented logic based on the resolution principle.

J. ACM, 12(1):23-41, 1965.