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What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t = f (x , g(a , b)) s = f (g(y , b), x)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

↓

x 7→ g(a, b), y 7→ b is a solution of s =? t (a unifier).

Originally introduced in automated deduction

• Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

• Important! To compute a most general unifier (mgu).

f (x , y) =? f (y , x) has many solutions: x , y 7→ f (x), x , y 7→ f (f (x)), . . .

x 7→ y generates all of them, i.e., it is a mgu

Rediscovered in the area of term rewriting systems.

• Knuth-Bendix completion algorithm [KB70]
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Equational Unification

Initial goal: to integrate troublesome axioms (like commutativity, associativity) into the
unification process.

• Changes the nature of the problem:

f (a, x) =? f (b, y) has no solution w.r.t. “syntactic unification”.

But, x 7→ b, y 7→ a is a solution w.r.t. C = {f (x , y) ≈ f (y , x)}

f (a, b) =C f (b, a)

• A little bit more formal/general,

Equational theory. Let E by a set of identities between first-order terms. The
equational theory defined by =E consists of all identities s = t that can be
“derived” from E .

E-unification problem. Γ := {s1 =?
E t1, . . . , sn =?

E tn}. A substitution σ is an
E-unifier of Γ if

σ(si ) =E σ(ti ), for all 1 ≤ i ≤ n.
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Equational Unification

Most general unifiers need not exist

• A C -unification problem with two minimal “non-comparable” unifiers:

Γ = {f (x , y) =?
C f (a, b)} x 7→ a, y 7→ b x 7→ b, y 7→ a

• Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

• Unification type: cardinality of such sets.

• It can be infinite:

(associativity) A = {f (x , f (y , z)) ≈ f (f (x , y), z)} and Γ = {f (a, x) =?
A f (x , a)}

• minimal complete sets of unifiers may not exist (we will later see)
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Unification theory

It investigates:

• Decidability and complexity of E-unification problems.

• Computation of E-unifiers (if they exists).

• Unification type of equational theories.

Applications in many areas:

• Databases, Information retrieval, Planning Systems, . . .

• Description Logics: detecting redundancies in ontologies.

• Modal Logics: special case of recognizability of admissible inference rules.
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Description Logics

dl.kr.org
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What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way...”

Important notions of the domain → represented as concept descriptions:

... a human, that is an athlete,
plays baseball, wears a helmet or a cap,
is not lazy, only owns shiny baseball bats ...

Atomic properties → Concept names

Human,Athlete,Baseball,Helmet, . . .

Relations → Role names

plays,wears

Concept descriptions: built using the concept/role constructors provided by a DL.

Human u Athlete u ∃wears.(Helmet t Cap)u
∃plays.Baseball u ¬Lazy u ∀owns bat.Shiny
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What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I :

d1
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What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions

Baseball Player
.

=©
Concept inclusions (GCIs)

pitchers are baseball players
and throw fastball

−→ Pitcher v Baseball Playeru
∃throws.Fastball

A finite set of definitions/GCIs is called a TBox T

Semantics

(Baseball Player)I = (©)I

(Pitcher)I ⊆ (Baseball Player u ∃throws.Fastball)I
I |= T iff I satisfies

all definitions/GCIs in T

Assertional knowledge (knowledge about concrete situations)

Pitcher(pedro)

¬Lazy(omar)

Human(pedro)

Shiny(s)

owns bat(omar , s)

. . .

A finite set of assertions is called an ABox A

A knowledge base is a pair K = (T ,A)

Entailments of K: Pedro throws FastBall, . . .
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¬Lazy(omar)

Human(pedro)

Shiny(s)

owns bat(omar , s)

. . .

A finite set of assertions is called an ABox A
A knowledge base is a pair K = (T ,A)

Entailments of K: Pedro throws FastBall, . . .
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Reasoning in DLs

Standard Inferences

• Concept satisfiability.

• Subsumption.

Instance: Two concepts C ,D and a TBox T .

Question: Does CI ⊆ DI in all models I of T ?

• Knowledge base consistency, query answering.

Non-Standard Inferences

• Most specific generalizations.

• Least common subsumer.

• Unification.

• . . .
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More on DLs...
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Unification in Description Logics
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Detecting redundancies in ontologies

• Two developers of a medical ontology define finding of severe head injury in two
different ways:

a) ∃finding.(Head injury u ∃severity.Severe)

b) ∃finding.(Severe injury u ∃finding site.Head)

not equivalent, but meant to represent the same notion!

a) ∃finding.(Head injury u ∃severity.Severe)

b) ∃finding.(Severe injury u ∃finding site.Head)

• Can they be made equivalent?

1 Select Head injury and Severe injury as variables.

2 Apply the substitution (add definitions to the ontology):

Head injury 7→ Injury u ∃finding site.Head

Severe injury 7→ Injury u ∃severity.Severe

Unification of
concept descriptions

• Semi-automated process: suggests possible candidates to ontology engineers.
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Detecting redundancies in ontologies - TBoxes

• Suppose that the second developer uses a different definition, i.e., c) instead of b):

a) ∃finding.(Head injury u ∃severity.Severe)

c) ∃status.Emergency u ∃finding.(Severe injury u ∃finding site.Head)

not unifiable!

• But they are, in presence of background knowledge (TBox) containing the GCI:

∃finding.∃severity.Severe v ∃status.Emergency
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Unification in DLs. Formal definition

Let L be some description logic.

• The set NC of concept names is partitioned into two sets:
• Nv: concept variables (like Head injury and Severe injury).
• Nc: concept constants (like Severe,Head,Emergency).

• A substitution σ is a mapping of the form:

σ : Nv 7→ the set of all L concept descriptions.

σ is extended to arbitrary concepts inductively (in ALC):

σ(>) := > σ(A) := A, for all A ∈ Nc

σ(C u D) := σ(C) u σ(D) σ(C t D) := σ(C) t σ(D)

σ(∃r .C) := ∃r .σ(C) σ(∀r .C) := ∀r .σ(C)

Definition 1 (L-unification)

An L-unification problem is of the form:

Γ := {C1 ≡? D1, . . . ,Cn ≡? Dn}.

A substitution σ is a unifier of Γ if

σ(Ci ) ≡ σ(Di ), for all 1 ≤ i ≤ n.
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Unification in DLs. Formal definition - TBoxes

Restricted to ground TBoxes: a general TBox T is ground if it contains no variables.

Definition 2 (L-unification w.r.t. a general TBox)

Let T be a general TBox that is ground. An L-unification problem w.r.t. T is of the form:

Γ := {C1 ≡? D1, . . . ,Cn ≡? Dn}.

A substitution σ is a unifier of Γ w.r.t. T if

σ(Ci ) ≡T σ(Di ), for all 1 ≤ i ≤ n.

Definition 1 corresponds to the special case where T = ∅.

The decision problem

L-Unification Decision Problem

Instance: A ground general TBox T and an L-unification problem Γ.
Question: Is there a unifier σ of Γ w.r.t. T ?
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Unification in DLs. Additional notions from unification theory

• Comparing unifiers. Instantiation pre-order �.

Let θ, σ be two unifiers of an L-unification problem Γ. We define,

θ � σ iff exists λ s.t. σ(X ) ≡ λ(θ(X )) for all X ∈ Γ.

• Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of Γ iff
• σ ∈M implies σ is a unifier of Γ.

• if σ is a unifier of Γ, then θ � σ for some θ ∈M.

M is called minimal, iff M also satisfies:

• if σ, θ ∈M, then σ � θ implies σ = θ.

• Unification type

An L-unification problem Γ has type

• unitary iff it has a minimal complete M of size 1.

• finitary iff it has a finite minimal complete M.

• finitary iff it has an infinite minimal complete M.

• zero iff it does not have a minimal complete M.
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Additional motivation → Unification modulo an equational theory

• For many DLs, ≡ can be axiomatized using finitely many equational axioms.

• Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL FL0, only >,u, ∀r .C)

• Concept descriptions vs. terms:

concept var. → variable symbols
concept const. → free constants

concept constr. → function symbols
Σ = {∧2, hr1

1, . . . , hrn
1,1}

concept descriptions
over NR = {r1, . . . , rn} terms over Σ

A u ∀r1.> u ∀r2.(X u B) a∧hr1 (1) ∧ hr2 (x ∧ b)

• Equational theory ACUIh → axiomatizes equivalence in FL0

u is
commutative → x ∧ y ≈ y ∧ x ,
associative →(x ∧ y) ∧ z ≈ x ∧ (y ∧ z),
idempotent → x ∧ x ≈ x ,
has > as unit → x ∧ 1 = x .

∀ri satisfies
∀ri .> ≡ >→hri (1) = 1

∀ri (C u D) ≡ ∀ri .C u ∀ri .D
↓

hri (x ∧ y) ≈ hri (x) ∧ hri (y)
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Additional motivation → Unification modulo an equational theory

Lemma 3 [BN01]

Let C and D be two FL0 concept descriptions. Then,

C ≡ D iff τ(C) ≈ACUIh τ(D).

Results can be transferred

C ≡? D has a unifier iff τ(C) and τ(D) are unifiable.
⇒

Unification in ACUIh is ExpTime-complete.

FL0 has unification type zero (ACUIh has unification type zero [Baa93].)

Unification w.r.t. a TBox → unification w.r.t. an additional set of ground identities:

T = {C1 v D1, . . . ,Cn v Dn} → GT =
n⋃

i=1

{τ(Ci ) ∧ τ(Di ) ≈ τ(Di )}.

C ≡T D iff τ(C) ≈ACUIh∪GT τ(D).
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Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

• First investigated for FL0: ExpTime-complete w.r.t. the empty TBox.

• In EL, the problem is easier: NP-complete.

• Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

• Important open problem: unification in the nomal modal logic K (syntactic variant
of ALC).

• Undecidability results for very expressive DLs: transferred from research in Modal
Logics.
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