
Unification in Description Logics
Part II: Unification in the DL EL

Oliver Fernández Gil

Chair of Automata Theory

ESSLLI’19

Riga, August 2019

1/26

The lightweight DL EL

• Fragment of ALC:

C ::= > | A | C u C | ∃r .C

• Subsumption is polynomial, even w.r.t. general TBoxes [BBL05].

• Underlies the OWL 2 EL profile and can be used to define large biomedical
ontologies, such as SNOMED CT.

2/26

The lightweight DL EL

• Fragment of ALC:

C ::= > | A | C u C | ∃r .C

• Subsumption is polynomial, even w.r.t. general TBoxes [BBL05].

• Underlies the OWL 2 EL profile and can be used to define large biomedical
ontologies, such as SNOMED CT.

2/26

The lightweight DL EL

• Fragment of ALC:

C ::= > | A | C u C | ∃r .C

• Subsumption is polynomial, even w.r.t. general TBoxes [BBL05].

• Underlies the OWL 2 EL profile and can be used to define large biomedical
ontologies, such as SNOMED CT.

2/26

Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .

3/26

Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .

3/26

Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .

3/26

Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .

3/26

Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .

3/26

Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .

3/26

Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .

3/26

EL has unification type zero

An EL unification problem of type zero

Γ := {X u ∃r .Y ≡? ∃r .Y }.

To show: every complete set of unifiers M of Γ is not minimal, i.e.,

M contains σ 6= γ such that σ � γ.

Proof sketch.

• It is easy to find “a” solution for Γ:

X → >
Y → Y

X → ∃r .>
Y → Y

X → ∃r .A
Y → A

• However, the green solution implies that M contains σ such that:

σ(X) 6≡ > and σ(X) 6≡ ∃r .>.

4/26

EL has unification type zero

An EL unification problem of type zero

Γ := {X u ∃r .Y ≡? ∃r .Y }.

To show: every complete set of unifiers M of Γ is not minimal, i.e.,

M contains σ 6= γ such that σ � γ.

Proof sketch.

• It is easy to find “a” solution for Γ:

X → >
Y → Y

X → ∃r .>
Y → Y

X → ∃r .A
Y → A

• However, the green solution implies that M contains σ such that:

σ(X) 6≡ > and σ(X) 6≡ ∃r .>.

4/26

EL has unification type zero

An EL unification problem of type zero

Γ := {X u ∃r .Y ≡? ∃r .Y }.

To show: every complete set of unifiers M of Γ is not minimal, i.e.,

M contains σ 6= γ such that σ � γ.

Proof sketch.

• It is easy to find “a” solution for Γ:

X → >
Y → Y

X → ∃r .>
Y → Y

X → ∃r .A
Y → A

• However, the green solution implies that M contains σ such that:

σ(X) 6≡ > and σ(X) 6≡ ∃r .>.

4/26

EL has unification type zero

An EL unification problem of type zero

Γ := {X u ∃r .Y ≡? ∃r .Y }.

To show: every complete set of unifiers M of Γ is not minimal, i.e.,

M contains σ 6= γ such that σ � γ.

Proof sketch.

• It is easy to find “a” solution for Γ:

X → >
Y → Y

X → ∃r .>
Y → Y

X → ∃r .A
Y → A

• However, the green solution implies that M contains σ such that:

σ(X) 6≡ > and σ(X) 6≡ ∃r .>.

4/26

EL has unification type zero

An EL unification problem of type zero

Γ := {X u ∃r .Y ≡? ∃r .Y }.

To show: every complete set of unifiers M of Γ is not minimal, i.e.,

M contains σ 6= γ such that σ � γ.

Proof sketch.

• It is easy to find “a” solution for Γ:

X → >
Y → Y

X → ∃r .>
Y → Y

X → ∃r .A
Y → A

• However, the green solution implies that M contains σ such that:

σ(X) 6≡ > and σ(X) 6≡ ∃r .>.

4/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

EL has unification type zero

• M contains σ of the form:

σ(X) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X) := σ(X) u ∃r1.Z and σ̂(Y) := σ(Y) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ

5/26

The decision problem. NP-hardness

Idea: reduce the propositional satisfiability problem to EL-unification.

SAT Problem

Instance: A propositional formula ϕ in CNF: ϕ = c1 ∧ . . . ∧ cm, where
each ci is a disjunction of literals.

Question: Is there an assignment t : Vars(ϕ)→ {t, f} satisfying ϕ?

Given ϕ, we build an EL-unification problem Γϕ such that:

ϕ is satisfiable if, and only if, Γϕ has a unifier.

6/26

The decision problem. NP-hardness

Idea: reduce the propositional satisfiability problem to EL-unification.

SAT Problem

Instance: A propositional formula ϕ in CNF: ϕ = c1 ∧ . . . ∧ cm, where
each ci is a disjunction of literals.

Question: Is there an assignment t : Vars(ϕ)→ {t, f} satisfying ϕ?

Given ϕ, we build an EL-unification problem Γϕ such that:

ϕ is satisfiable if, and only if, Γϕ has a unifier.

6/26

The decision problem. NP-hardness

Idea: reduce the propositional satisfiability problem to EL-unification.

SAT Problem

Instance: A propositional formula ϕ in CNF: ϕ = c1 ∧ . . . ∧ cm, where
each ci is a disjunction of literals.

Question: Is there an assignment t : Vars(ϕ)→ {t, f} satisfying ϕ?

Given ϕ, we build an EL-unification problem Γϕ such that:

ϕ is satisfiable if, and only if, Γϕ has a unifier.

6/26

The decision problem. NP-hardness

Idea: reduce the propositional satisfiability problem to EL-unification.

SAT Problem

Instance: A propositional formula ϕ in CNF: ϕ = c1 ∧ . . . ∧ cm, where
each ci is a disjunction of literals.

Question: Is there an assignment t : Vars(ϕ)→ {t, f} satisfying ϕ?

Given ϕ, we build an EL-unification problem Γϕ such that:

ϕ is satisfiable if, and only if, Γϕ has a unifier.

6/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi) = A ∧ σ(X̄i) = B) or (σ(Xi) = B ∧ σ(X̄i) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp) = A for at least one 1 ≤ p ≤ q.

7/26

The decision problem. NP-hardness (the reduction)

2 Simulate satisfiability of ϕ:

Cϕ := ∃s1.M u . . . u ∃sm.M

≡?

Pϕ := ∃s1.P1 u . . . u ∃sm.Pm

ϕ is satisfiable iff C u Cϕ ≡? D u Pϕ is unifiable

Theorem 6 [BK00]

EL-unification is NP-hard. Even for the special case of matching!

8/26

The decision problem. NP-hardness (the reduction)

2 Simulate satisfiability of ϕ:

Cϕ := ∃s1.M u . . . u ∃sm.M

≡?

Pϕ := ∃s1.P1 u . . . u ∃sm.Pm

ϕ is satisfiable iff C u Cϕ ≡? D u Pϕ is unifiable

Theorem 6 [BK00]

EL-unification is NP-hard. Even for the special case of matching!

8/26

The decision problem. NP-hardness (the reduction)

2 Simulate satisfiability of ϕ:

Cϕ := ∃s1.M u . . . u ∃sm.M

≡?

Pϕ := ∃s1.P1 u . . . u ∃sm.Pm

ϕ is satisfiable iff C u Cϕ ≡? D u Pϕ is unifiable

Theorem 6 [BK00]

EL-unification is NP-hard. Even for the special case of matching!

8/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}

• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}
• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.

9/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B,∃r .Y , ∃s.Y ,∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B,∃r .Y , ∃s.Y ,∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B,∃r .Y , ∃s.Y ,∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B,∃r .Y , ∃s.Y ,∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B, ∃r .Y , ∃s.Y , ∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B, ∃r .Y , ∃s.Y , ∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B, ∃r .Y , ∃s.Y , ∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B, ∃r .Y , ∃s.Y , ∃s.X}

• Consider assignments S : Nv → Atnv

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} S ′(X) := {B, ∃r .Y }, S ′(Y) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X).

X >S Y X >S Y ,Y >S X

10/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y , ∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y , ∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y , ∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y , ∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y , ∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y)} >S

+ = {(X ,Y), (Y ,X), (X ,X), (Y ,Y)}

• Any acyclic assignment S induces a substitution σS :

S(X) := {B,∃r .Y , ∃s.Y }, S(Y) := {∃r .A} use >S
+

Y is minimal σS (Y) :=
d

D∈S(Y)

D = ∃r .A

σS (Y) is defined
for all X>SY

σS (X) :=
d

D∈S(X)

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y , ∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.

11/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.

12/26

The decision problem. Upper bound (local unifiers)

σSθ is a unifier of Γ

We prove a more general claim.

Lemma 8

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) v θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) v σSθ (D).

Proof technique. Use induction on:

max{rd(σSθ (G)) | G ∈ {E1, . . . ,Em,D}},

together with the characterization of subsumption.

rd = role-depth of a concept description.

13/26

The decision problem. Upper bound (local unifiers)

σSθ is a unifier of Γ

We prove a more general claim.

Lemma 8

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) v θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) v σSθ (D).

Proof technique. Use induction on:

max{rd(σSθ (G)) | G ∈ {E1, . . . ,Em,D}},

together with the characterization of subsumption.

rd = role-depth of a concept description.

13/26

The decision problem. Upper bound (local unifiers)

σSθ is a unifier of Γ

We prove a more general claim.

Lemma 8

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) v θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) v σSθ (D).

Proof technique. Use induction on:

max{rd(σSθ (G)) | G ∈ {E1, . . . ,Em,D}},

together with the characterization of subsumption.

rd = role-depth of a concept description.

13/26

The decision problem. Upper bound (local unifiers)

σSθ is a unifier of Γ

We prove a more general claim.

Lemma 8

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) v θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) v σSθ (D).

Proof technique. Use induction on:

max{rd(σSθ (G)) | G ∈ {E1, . . . ,Em,D}},

together with the characterization of subsumption.

rd = role-depth of a concept description.

13/26

The decision problem. Upper bound (local unifiers)

σSθ is a unifier of Γ

We prove a more general claim.

Lemma 8

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) v θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) v σSθ (D).

Proof technique. Use induction on:

max{rd(σSθ (G)) | G ∈ {E1, . . . ,Em,D}},

together with the characterization of subsumption.

rd = role-depth of a concept description.

13/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X) ≡ σSθ (X).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X)

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.

14/26

The decision problem. More practical algorithms

Previous algorithm is a brutal “guess and then test”.

• A direct implementation is very unlikely to perform well in practice.

• More practical algorithms are needed.

• Goal-oriented algorithm [BM10b].

• SAT Encoding.

15/26

The decision problem. More practical algorithms

Previous algorithm is a brutal “guess and then test”.

• A direct implementation is very unlikely to perform well in practice.

• More practical algorithms are needed.

• Goal-oriented algorithm [BM10b].

• SAT Encoding.

15/26

The decision problem. More practical algorithms

Previous algorithm is a brutal “guess and then test”.

• A direct implementation is very unlikely to perform well in practice.

• More practical algorithms are needed.

• Goal-oriented algorithm [BM10b].

• SAT Encoding.

15/26

The decision problem. More practical algorithms

Previous algorithm is a brutal “guess and then test”.

• A direct implementation is very unlikely to perform well in practice.

• More practical algorithms are needed.

• Goal-oriented algorithm [BM10b].

• SAT Encoding.

15/26

The decision problem. More practical algorithms

Previous algorithm is a brutal “guess and then test”.

• A direct implementation is very unlikely to perform well in practice.

• More practical algorithms are needed.

• Goal-oriented algorithm [BM10b].

• SAT Encoding.

15/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→
Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→
Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→
Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→
Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y] → prevents ¬[X 6v ∃r .X]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→
Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X]→, → [X > Y] ∨ [X 6v ∃r .Y], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.

16/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X) v θ(X) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!

17/26

Computing minimal EL-unifiers [BBM12a]

The minimal unifier containment problem:

Instance: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ NC and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ s.t. σ(X) v A?

This problem is Σp
2-complete (Th. 4.1 [BBM12a]).

Assume there is an NP-algorithm A that computes exactly the set of X -minimal unifiers:

• Extend A with checking, for successful paths, whether σ(X) v A.

• The minimal unifier containment problem would be decidable in NP.

• NP=Σp
2 ⇒ the polynomial hierarchy collapses.

18/26

Computing minimal EL-unifiers [BBM12a]

The minimal unifier containment problem:

Instance: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ NC and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ s.t. σ(X) v A?

This problem is Σp
2-complete (Th. 4.1 [BBM12a]).

Assume there is an NP-algorithm A that computes exactly the set of X -minimal unifiers:

• Extend A with checking, for successful paths, whether σ(X) v A.

• The minimal unifier containment problem would be decidable in NP.

• NP=Σp
2 ⇒ the polynomial hierarchy collapses.

18/26

Computing minimal EL-unifiers [BBM12a]

The minimal unifier containment problem:

Instance: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ NC and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ s.t. σ(X) v A?

This problem is Σp
2-complete (Th. 4.1 [BBM12a]).

Assume there is an NP-algorithm A that computes exactly the set of X -minimal unifiers:

• Extend A with checking, for successful paths, whether σ(X) v A.

• The minimal unifier containment problem would be decidable in NP.

• NP=Σp
2 ⇒ the polynomial hierarchy collapses.

18/26

Computing minimal EL-unifiers [BBM12a]

The minimal unifier containment problem:

Instance: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ NC and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ s.t. σ(X) v A?

This problem is Σp
2-complete (Th. 4.1 [BBM12a]).

Assume there is an NP-algorithm A that computes exactly the set of X -minimal unifiers:

• Extend A with checking, for successful paths, whether σ(X) v A.

• The minimal unifier containment problem would be decidable in NP.

• NP=Σp
2 ⇒ the polynomial hierarchy collapses.

18/26

Computing minimal EL-unifiers [BBM12a]

The minimal unifier containment problem:

Instance: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ NC and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ s.t. σ(X) v A?

This problem is Σp
2-complete (Th. 4.1 [BBM12a]).

Assume there is an NP-algorithm A that computes exactly the set of X -minimal unifiers:

• Extend A with checking, for successful paths, whether σ(X) v A.

• The minimal unifier containment problem would be decidable in NP.

• NP=Σp
2 ⇒ the polynomial hierarchy collapses.

18/26

Computing minimal EL-unifiers [BBM12a]

The minimal unifier containment problem:

Instance: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ NC and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ s.t. σ(X) v A?

This problem is Σp
2-complete (Th. 4.1 [BBM12a]).

Assume there is an NP-algorithm A that computes exactly the set of X -minimal unifiers:

• Extend A with checking, for successful paths, whether σ(X) v A.

• The minimal unifier containment problem would be decidable in NP.

• NP=Σp
2 ⇒ the polynomial hierarchy collapses.

18/26

Unification Modulo EL-TBoxes

19/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.

20/26

Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X) = A, σ(X) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X) = ∃s.B vT ∃s.∃s.B = θ(∃s.X) ⇒ ∃s.X ∈ Sθ(X)

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do? Consider a restricted class of TBoxes.

20/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X) := {D ∈ Atnv | θ(X) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.

21/26

Restricting the TBox

Theorem 9 [BBM12b]

Let T be a flat cycle-restricted TBox and Γ a flat unification problem. If Γ has a unifier
w.r.t. T , then it also has a local unifier w.r.t. T .

The proof is similar as for T = ∅, i.e., we proof the corresponding more general claim:

Lemma 10

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) vT θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) vT σSθ (D).

To take into account T :

• A new characterization of subsumption is developed.

• A slightly modified induction hypothesis is used.

22/26

Restricting the TBox

Theorem 9 [BBM12b]

Let T be a flat cycle-restricted TBox and Γ a flat unification problem. If Γ has a unifier
w.r.t. T , then it also has a local unifier w.r.t. T .

The proof is similar as for T = ∅, i.e., we proof the corresponding more general claim:

Lemma 10

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) vT θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) vT σSθ (D).

To take into account T :

• A new characterization of subsumption is developed.

• A slightly modified induction hypothesis is used.

22/26

Restricting the TBox

Theorem 9 [BBM12b]

Let T be a flat cycle-restricted TBox and Γ a flat unification problem. If Γ has a unifier
w.r.t. T , then it also has a local unifier w.r.t. T .

The proof is similar as for T = ∅, i.e., we proof the corresponding more general claim:

Lemma 10

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) vT θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) vT σSθ (D).

To take into account T :

• A new characterization of subsumption is developed.

• A slightly modified induction hypothesis is used.

22/26

Restricting the TBox

Theorem 9 [BBM12b]

Let T be a flat cycle-restricted TBox and Γ a flat unification problem. If Γ has a unifier
w.r.t. T , then it also has a local unifier w.r.t. T .

The proof is similar as for T = ∅, i.e., we proof the corresponding more general claim:

Lemma 10

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) vT θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) vT σSθ (D).

To take into account T :

• A new characterization of subsumption is developed.

• A slightly modified induction hypothesis is used.

22/26

Restricting the TBox

Theorem 9 [BBM12b]

Let T be a flat cycle-restricted TBox and Γ a flat unification problem. If Γ has a unifier
w.r.t. T , then it also has a local unifier w.r.t. T .

The proof is similar as for T = ∅, i.e., we proof the corresponding more general claim:

Lemma 10

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) vT θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) vT σSθ (D).

To take into account T :

• A new characterization of subsumption is developed.

• A slightly modified induction hypothesis is used.

22/26

Restricting the TBox

Theorem 9 [BBM12b]

Let T be a flat cycle-restricted TBox and Γ a flat unification problem. If Γ has a unifier
w.r.t. T , then it also has a local unifier w.r.t. T .

The proof is similar as for T = ∅, i.e., we proof the corresponding more general claim:

Lemma 10

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) vT θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) vT σSθ (D).

To take into account T :

• A new characterization of subsumption is developed.

• A slightly modified induction hypothesis is used.

22/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:

• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.

23/26

References I

Franz Baader, Sebastian Brandt, and Carsten Lutz.
Pushing the EL envelope.
In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 364–369, Edinburgh (UK),
2005. Morgan Kaufmann, Los Altos.

Franz Baader, Stefan Borgwardt, and Barbara Morawska.
Computing minimal el-unifiers is hard.
In Advances in Modal Logic 9, papers from the ninth conference on ”Advances in
Modal Logic,” held in Copenhagen, Denmark, 22-25 August 2012, pages 18–35.
College Publications, 2012.

Franz Baader, Stefan Borgwardt, and Barbara Morawska.
Extending unification in EL towards general TBoxes.
In Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2012), pages 568–572. AAAI Press/The MIT Press, 2012.

Franz Baader and Ralf Küsters.
Matching in description logics with existential restrictions.
In Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2000), pages 261–272, 2000.

24/26

References II

Franz Baader and Barbara Morawska.
SAT encoding of unification in EL.
In Logic for Programming, Artificial Intelligence, and Reasoning - 17th International
Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings,
volume 6397 of Lecture Notes in Computer Science, pages 97–111. Springer, 2010.

Franz Baader and Barbara Morawska.
Unification in the description logic EL.
Logical Methods in Computer Science, 6(3), 2010.

Franz Baader and Barbara Morawska.
Matching with respect to general concept inclusions in the description logic EL.
In KI 2014: Advances in Artificial Intelligence - 37th Annual German Conference on
AI, Stuttgart, Germany, September 22-26, 2014. Proceedings, volume 8736 of
Lecture Notes in Computer Science, pages 135–146. Springer, 2014.

25/26

References III

Franz Baader, Julian Mendez, and Barbara Morawska.
UEL: unification solver for the description logic \mathcal{EL} - system
description.
In Automated Reasoning - 6th International Joint Conference, IJCAR 2012,
Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in
Computer Science, pages 45–51. Springer, 2012.

Ralf Küsters.
Non-Standard Inferences in Description Logics, volume 2100 of Lecture Notes in
Computer Science.
Springer, 2001.

26/26

