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The lightweight DL EL

• Fragment of ALC:

C ::= > | A | C u C | ∃r .C

• Subsumption is polynomial, even w.r.t. general TBoxes [BBL05].

• Underlies the OWL 2 EL profile and can be used to define large biomedical
ontologies, such as SNOMED CT.
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Characterization of equivalence/subsumption

Characterization of equivalence

EL concept descriptions C can be translated into an equivalent reduced form C r :

Apply the rewrite rule C u D → C if C v D (as long as possible).

Theorem 4 [Küs01]

In EL, C ≡ D iff C r = D r (modulo associativity/commutativity of u).

Characterization of subsumption

Corollary 5 [BM10b]

Let C and D be

C = A1 u . . . u Ak u ∃r1.C1 u . . . u ∃rm.Cm, and
D = B1 u . . . u B` u ∃s1.D1 u . . . u ∃sn.Dn, where

A1, . . . ,Ak ,B1, . . . ,B` ∈ NC. Then C v D iff {B1, . . . ,B`} ⊆ {A1, . . . ,Ak} and for every
j , 1 ≤ j ≤ n, there exists an i , 1 ≤ i ≤ m, such that ri = sj and Ci v Dj .
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EL has unification type zero

An EL unification problem of type zero

Γ := {X u ∃r .Y ≡? ∃r .Y }.

To show: every complete set of unifiers M of Γ is not minimal, i.e.,

M contains σ 6= γ such that σ � γ.

Proof sketch.

• It is easy to find “a” solution for Γ:

X → >
Y → Y

X → ∃r .>
Y → Y

X → ∃r .A
Y → A

• However, the green solution implies that M contains σ such that:

σ(X ) 6≡ > and σ(X ) 6≡ ∃r .>.
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EL has unification type zero

• M contains σ of the form:

σ(X ) = ∃r1.C1 u . . . u ∃rn.Cn (n > 0)

σ(Y ) = D

• From σ, we build σ̂ using a new variable Z :

σ̂(X ) := σ(X ) u ∃r1.Z and σ̂(Y ) := σ(Y ) u Z .

• One can prove the following about σ̂:

• σ̂ is also a unifier of Γ (characterization of v),

• σ̂ � σ (Z → C1 and D v C1),

• σ 6= σ̂ (characterization of ≡).

• σ̂ need not be in M, but:

there is τ ∈M s.t.
τ � σ̂

⇒ τ � σ̂ � σ
τ 6= σ
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The decision problem. NP-hardness

Idea: reduce the propositional satisfiability problem to EL-unification.

SAT Problem

Instance: A propositional formula ϕ in CNF: ϕ = c1 ∧ . . . ∧ cm, where
each ci is a disjunction of literals.

Question: Is there an assignment t : Vars(ϕ)→ {t, f} satisfying ϕ?

Given ϕ, we build an EL-unification problem Γϕ such that:

ϕ is satisfiable if, and only if, Γϕ has a unifier.
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The decision problem. NP-hardness (the reduction)

1 Encoding of propositional assignments:

each variable
xi in ϕ

concept variables
Xi , X̄i

t and f
concept constants

A and B

C := ∃r1.A u ∃r1.B u . . . u ∃rn.A u ∃rn.B

≡?

D := ∃r1.X1 u ∃r1.X̄1 u . . . u ∃rn.Xn u ∃rn.X̄n

σ(C) ≡ σ(D) iff (σ(Xi ) = A ∧ σ(X̄i ) = B) or (σ(Xi ) = B ∧ σ(X̄i ) = A)

2 Simulate satisfiability of ϕ:

each clause
cj = `j1 ∨ . . . ∨ `jq

concept pattern
Pj := Zj1 u . . . u Zjq u B Zjp = Xi , if `jp = xi

X̄i , if `jp = ¬xi

M := A u B

match

B’s are important!

concept pattern
Pj := Zj1 u . . . u Zjqu B

M := Au B

σ(Pj) ≡ σ(M) iff σ(Zjp ) = A for at least one 1 ≤ p ≤ q.
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The decision problem. NP-hardness (the reduction)

2 Simulate satisfiability of ϕ:

Cϕ := ∃s1.M u . . . u ∃sm.M

≡?

Pϕ := ∃s1.P1 u . . . u ∃sm.Pm

ϕ is satisfiable iff C u Cϕ ≡? D u Pϕ is unifiable

Theorem 6 [BK00]

EL-unification is NP-hard. Even for the special case of matching!
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The decision problem. Upper bound (pre-processing)

• Consider unification problems of the form:

Γ = {C1 v? D1, . . . ,Cn v? Dn}

• Restrict the attention to flat unification problems:

• Atom: A ∈ NC or ∃r .C Flat atom: A, ∃r .A or ∃r .>, where A ∈ NC.

• Flat unification problem: contains only subsumptions of the form:

C1 u . . . u Cm v? D, where C1, . . . ,Cm,D are flat (m = 0⇒ > v? D).

• By introducing new variables, every Γ can be transformed into a flat Γ′:

A u ∃r .(B u ∃s.Y ) v? X u ∃s.B

A u ∃r .X ′ v? X u ∃s.B

X ′ v? B u ∃s.Y

B u ∃s.Yv? X ′

rule 1

A u ∃r .X ′ v? X

A u ∃r .X ′ v? ∃s.B

rule 2
X ′ v? B

X ′ v? ∃s.Y

• The transformation is polynomial (time and size of Γ′ w.r.t. Γ); and

Γ has a unifier iff Γ′ is unifiable.
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The decision problem. Upper bound (local unifiers)

Idea of “in NP” upper bound:

Every unifiable flat EL-unification problem has a local unifier.

Local unifiers

Let Γ be a unification problem, Nv the variables in Γ and Atnv its non-variable atoms.

Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Nv = {X ,Y } Atnv = {A,B, ∃r .A, ∃s.B,∃r .Y , ∃s.Y ,∃s.X}

• Consider assignments S : Nv → Atnv

S(X ) := {B,∃r .Y , ∃s.Y }, S(Y ) := {∃r .A} S ′(X ) := {B, ∃r .Y }, S ′(Y ) := {A,∃s.X}

• Every assignment S induces the following relation >S on Nv:

X >S Y iff Y occurs in S(X ).

X >S Y X >S Y ,Y >S X
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The decision problem. Upper bound (local unifiers)

• An assignment S is called acyclic if >S
+ is irreflexive

>S
+ = {(X ,Y )} >S

+ = {(X ,Y ), (Y ,X ), (X ,X ), (Y ,Y )}

• Any acyclic assignment S induces a substitution σS :

S(X ) := {B,∃r .Y , ∃s.Y }, S(Y ) := {∃r .A} use >S
+

Y is minimal σS (Y ) :=
d

D∈S(Y )

D = ∃r .A

σS (Y ) is defined
for all X>SY

σS (X ) :=
d

D∈S(X )

σS (D) = B u ∃r .∃r .A u ∃s.∃r .A

• A substitution is local if there exists an acyclic assignment S s.t. σ = σS .

σS is a local unifier of Γ := {Y v? ∃r .A,X v? ∃r .Y u ∃s.Y ,∃s.X v ∃s.B}

Theorem 7 [BM10b, BBM12b]

Let Γ be a flat unification problem. If Γ has a unifier, then it also has a local unifier.
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The decision problem. Upper bound (local unifiers)

Proof of Theorem 7 (Sketch)

Let Γ be a flat unification problem that has a unifier θ.

• Define the assignment Sθ as:

Sθ(X ) := {D ∈ Atnv | θ(X ) v θ(D)}, for all X ∈ Nv.

• Sθ is acyclic. If not, we have:

X1 >Sθ X2 >Sθ . . . >Sθ Xn >Sθ X1

⇒

∃r2.X2 ∈ Sθ(X1), ∃r3.X3 ∈ Sθ(X2), . . . ,∃r1.X1 ∈ Sθ(Xn)

⇒

θ(X1) v ∃r2.θ(X2) v . . . v ∃r1 . . . ∃rn.θ(X1)

Not true! Hence, σSθ is a local substitution.

• It remains to show that σSθ is a solution of Γ.
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The decision problem. Upper bound (local unifiers)

σSθ is a unifier of Γ

We prove a more general claim.

Lemma 8

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) v θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) v σSθ (D).

Proof technique. Use induction on:

max{rd(σSθ (G)) | G ∈ {E1, . . . ,Em,D}},

together with the characterization of subsumption.

rd = role-depth of a concept description.
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The decision problem. Upper bound (NP-algorithm)

Decision procedure

1 Guess an assignment S.

2 If S is cyclic FAIL.

3 If σS solves Γ then SUCCESS.

Soundness. It is obvious.

Completeness. If Γ is unifiable, then it has a local unifier θ.

• Sθ is acyclic.

• It is easy to show that θ(X ) ≡ σSθ (X ).

The procedure runs in non-deterministic polynomial time.

• An acyclic assignment S can be guessed in polynomial time.

• How to check that σS is a unifier of Γ in polynomial time?

σS can be of
exponential size!

acyclic TBox TS :

X
.

=
d

D∈S(X )

D
solution

σS (C) v σS (D) iff C vTS
D

Subsumption w.r.t. TS can be checked in polynomial time.
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The decision problem. More practical algorithms

Previous algorithm is a brutal “guess and then test”.

• A direct implementation is very unlikely to perform well in practice.

• More practical algorithms are needed.

• Goal-oriented algorithm [BM10b].

• SAT Encoding.
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More practical algorithms - SAT Encoding [BM10a]

Given a flat EL-unification problem Γ, construct a propositional formula ϕΓ s.t.:

• the size of ϕΓ is polynomial in the size of Γ, and

• Γ has a unifier if, and only if, ϕΓ is satisfiable.

Idea.

unif. problem
Γ = {C1 u . . . u Cn v? D}

prop. variables
[A 6v B] → σ(A) 6v σ(B)

[X > Y ] → prevents ¬[X 6v ∃r .X ]

Γ has a solution: [C1 6v D] ∧ . . . ∧ [Cn 6v D]→

Subsumption properties in EL: → [A 6v B],→ [∃r .A 6v ∃s.B], transitivity, . . .

Properties of >: [X > X ]→, → [X > Y ] ∨ [X 6v ∃r .Y ], transitivity

Advantages

• a new in NP proof (maybe much simpler).

• allows to employ highly optimized SAT solvers to implement an EL-unification
algorithm.
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Computing minimal EL-unifiers [BBM12a]

All the existent algorithms have in common:

• they compute all minimal unifiers (this is not �):

Let X be a set of variables, we define

σ ≥X θ iff σ(X ) v θ(X ) holds for all X ∈ X .

A unifier σ is X -minimal if no other unifier is strictly smaller.

• they also compute local unifiers that are not minimal.

• very small unification problems can have hundreds of local unifiers.

Minimal unifiers represent a significantly smaller (in many cases) subset of the set of
local unifiers.

Is it possible to have an NP-algorithm that computes only (and all) X -minimal unifiers?

• Answer: seems unlikely!
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Computing minimal EL-unifiers [BBM12a]

The minimal unifier containment problem:

Instance: A flat EL-unification problem Γ, a set X ⊆ Nv, a concept constant
A ∈ NC and a concept variable X ∈ X .

Question: Is there an X -minimal unifier σ of Γ s.t. σ(X ) v A?

This problem is Σp
2-complete (Th. 4.1 [BBM12a]).

Assume there is an NP-algorithm A that computes exactly the set of X -minimal unifiers:

• Extend A with checking, for successful paths, whether σ(X ) v A.

• The minimal unifier containment problem would be decidable in NP.

• NP=Σp
2 ⇒ the polynomial hierarchy collapses.
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Extension to general TBoxes - locality is lost

• The presence of a non-empty TBoxes adds new information

Γ = {X v? ∃r .X} has solutions w.r.t. T = {A v ∃r .A}

↓

σ(X ) = A, σ(X ) = ∃r .A, . . .

• The previous notion of locality does not work.

T = {B v ∃s.D,D v B} Γ = {A1 u B ≡? Y1,A2 u B ≡? Y2, ∃s.Y1 v? X

∃s.Y2 v? X ,X v? ∃s.X}

A unifier θ = {Y1 7→ A1 u B,Y2 7→ A2 u B,X 7→ ∃s.B}

The construction of σSθ w.r.t. vT yields a cyclic assignment.

θ(X ) = ∃s.B vT ∃s.∃s.B = θ(∃s.X ) ⇒ ∃s.X ∈ Sθ(X )

One can show that Γ does not have local unifiers!

• Decidability of EL-unification w.r.t. general TBoxes remains an open problem.

• What can we do?

Consider a restricted class of TBoxes.
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Restricting the TBox

Cycle-restricted TBoxes

A general TBox T is called cycle-restricted
iff

there is no word w ∈ NR
+ and EL concept C such that C vT ∃w .C .

Some remarks:

• cycles ∃w .C vT C are allowed.

• cycle-restrictedness can be checked in polynomial time.

Locality is regained under cycle-restrictedness

• Define the assignment Sθ as:

Sθ(X ) := {D ∈ Atnv | θ(X ) vT θ(D)}, for all X ∈ Nv.

• Sθ must be acyclic, for otherwise:

θ(X1) vT ∃r2.θ(X2) vT . . . vT ∃r1 . . .∃rn.θ(X1)

• σSθ is a local substitution.
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Restricting the TBox

Theorem 9 [BBM12b]

Let T be a flat cycle-restricted TBox and Γ a flat unification problem. If Γ has a unifier
w.r.t. T , then it also has a local unifier w.r.t. T .

The proof is similar as for T = ∅, i.e., we proof the corresponding more general claim:

Lemma 10

Let E1, . . . ,Em,D be atoms in Γ. Then,

θ(E1) u . . . u θ(Em) vT θ(D)

⇒

σSθ (E1) u . . . u σSθ (Em) vT σSθ (D).

To take into account T :

• A new characterization of subsumption is developed.

• A slightly modified induction hypothesis is used.
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Summary - Unification in the DL EL

Investigated in detail for the case where T = ∅

• The problem is NP-complete. NP-hardness holds even for the special case of
matching.

• Development of practical algorithms: goal oriented algorithm and SAT encoding.

• Unification Solver UEL: based on the SAT encoding [BMM12].

• Computing minimal EL-unifiers is hard.

Unification modulo an arbitrary TBox

• Decidability is an open problem.

• Positive results exist only if the TBox or the unification problem are restricted:
• Matching w.r.t. a general TBox is NP-complete [BM14].

• Unification w.r.t. cycle-restricted TBoxes is NP-complete.

• Goal oriented algorithm and SAT encoding.
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