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Let x1, x2, ... be propositional variables and ps, ..., pm modal parameters.

Basic modal propositional formulas
AB:=x|T|-A| AANB | OA,

where x is a propositional variable and p a modal parameter.

Axiom system L

A set of formulas closed under substitutions such that it contains:

e all classical tautologies (e.g. —(x A —x)).
e the Aristotle axiom O(x — y) — (Ox — Oy).
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o Kripke frame. A pair F = (W, (Rp,, ..., Rp,)) where:
e W is a non-empty set of states (or possible worlds).

® (Rpy,---,Rp,) is a tuple of binary relations over W (accessibility relations).

o Kripke model. A pair M = (F, V) where V is a valuation of the propositional
variables:

V : Vars = 2%,
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M,wpET
M, w = —A iff M, w [~ A

M,wE=AABIiff Mw = Aand M,w = B
M, w = OpA iff for all w' : Ry(w,w') = M,w’ = B.

Ais valid in a model M (M = A) iff it is valid in all its worlds.

A is valid in a frame F (F = A) iff it is valid in all the models based on F.

Ais valid in a class of Kripke frames K (K |= A) iff it is valid in all F € K.

e [(K) is called the modal logic induced by the class of frames K.
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Derivability vs Semantics (or k-, vs. validity)

In many cases -, corresponds to validity in a class of frames K.

o Minimum modal logic K:
Fk Aiff K = A (K is the class of all frames).

e Modal logic K4 (Ox — OOx)
Fka Aiff Tl=A (T is the class of all transitive frames.)

There are modal logics that cannot be obtained from a class of Kripke frames [VB84].
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The DL ALC is a notational variant of K, (K plus m modal parameters).

o Bijective translation between ALC concepts C and K, formulas Ac.

A—xp r; — modal parameter p; Vri — Op,

o Bijective translation between interpretations and Kripke models:

T — Mzst AT = Vi (xa) and (rn)* =R,

e Inference problems
Acisvalidin K, iff C=T

C =D iff Ac <> Ap is valid in Kp,.
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e Let L be a modal logic. The unification problem in L is defined as follows.

Instance: A formula A in L.

Question: s there a substitution o such that -, o(A)?

The set of all unifiers of A in L is denoted as U (A).

e Unifiers are ordered using the relation <i*.
o is more general than 7 w.r.t. the variables in X
iff
36 such that F; 7(X) <> 0(c(X)), for all X € X.

o Unification type of A: defined w.r.t. (U (A), <;*").
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From ALC to Km: o(C) = o(D) iff Fx, o(Ac) < o(Ap) iff Fx, o(Ac < Ap).

From Kn, to ALC: Fk,, o(A) iff o(A)=T.

Yet another subtle/significant difference

e For DLs, concept constants are allowed in the unification problem.

e For MLs, all variables are eligible to be substituted.
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Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.

e An algorithm to solve the problem in a DL, solves the problem in its ML variant.

e A lower bound for the unification problem in a ML also applies to the corresponding
DL (if any).

Single equation vs. a system of equations

e In DLs, {G ="Dy,...,C =’ D,} can be transformed into:
Vn.GiN .. .NVrR.C =" VYn.DiM...MVr.D,}.

o In uni-modal logics, like K, the previous trick is not possible. However,
o solves {Ay,...,Ap} iff it solves {A1 A ... A An}.
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A positive answer means that g can be added to L without changing the logic.

How can unification help?

e |t is a particular instance of the admissibility problem:
Jo s.t. b1 o(A) iff the rule 2 is not admissible.

lower bounds/undecidability of unification transfer to the admissibility problem.
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Motivation for unification in MLs

Recognizability of admissible rules
Instance: A modal logic L and a rule g.
Question: Does -, o(A) implies i, o(B) for every substitution o7

How can unification help?

e In certain cases unification can be used to solve the admissibility problem.
Suppose a modal logic L has:

o finitary unification type.

o there is an effective algorithm computing a complete set of unifiers for a unification
problem A.

Then,

g is admissible

iff
F. o(B) for all o € U.(A).
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Some results

Positive results

e For K4, 54 and other modal systems:

e Unification is finitary and finite complete sets of unifiers can be computed.
o Recognizability of admissible rules is decidable.

Negative results [WZ08]
e Undecidable for any modal logic L with universal modality between Ky and K4y.

o Implies undecidability of unification in expressive and relevant DLs, like SHZ Q.

Main open problem

e Unification and admissibility in K. K has unification type zero [Jer15]!
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