
Unification in Description Logics
Part IV: Related work in Modal Logics

Oliver Fernández Gil

Chair of Automata Theory

ESSLLI’19

Riga, August 2019

1/15



Basic modal systems

Let x1, x2, . . . be propositional variables and p1, . . . , pm modal parameters.

Basic modal propositional formulas

A,B ::= x | > | ¬A | A ∧ B | �pA,

where x is a propositional variable and p a modal parameter.

Axiom system L

A set of formulas closed under substitutions such that it contains:

• all classical tautologies (e.g. ¬(x ∧ ¬x)).

• the Aristotle axiom �(x → y)→ (�x → �y).
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Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L (`L A) iff there is a seq. of formulas B1, . . . ,Bn = A s.t.:

• Bi ∈ L, or

• it can be obtained from previous elements in the sequence by applying the rules:
x,x→y

y
(MP) or x

�x
(necessitation).

Modal Logic L

The set of formulas which are derivable from the axiom system L.

Examples of modal logics

• The minimum modal logic called K (with only one modal parameter).

• The logic K4: includes the axiom �x → ��x .

• The logic S4: consists of K4 plus the axiom �x → x .

• . . .
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Modal Logic. Semantics

Kripke structures

• Kripke frame. A pair F = (W , (Rp1 , . . . ,Rpn )) where:

• W is a non-empty set of states (or possible worlds).

• (Rp1 , . . . ,Rpn ) is a tuple of binary relations over W (accessibility relations).

• Kripke model. A pair M = (F ,V ) where V is a valuation of the propositional
variables:

V : Vars → 2W .
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Modal Logic. Semantics

Validity

• A is valid in a world w of a model M (M,w |= A) iff

M,w |= >
M,w |= ¬A iff M,w 6|= A

M,w |= A ∧ B iff M,w |= A and M,w |= B

M,w |= �pA iff for all w ′ : Rp(w ,w ′) =⇒ M,w ′ |= B.

• A is valid in a model M (M |= A) iff it is valid in all its worlds.

• A is valid in a frame F (F |= A) iff it is valid in all the models based on F .

• A is valid in a class of Kripke frames K (K |= A) iff it is valid in all F ∈ K .

• L(K) is called the modal logic induced by the class of frames K .
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Derivability vs Semantics (or `L vs. validity)

In many cases `L corresponds to validity in a class of frames K .

• Minimum modal logic K:

`K A iff K |= A (K is the class of all frames).

• Modal logic K4 (�x → ��x)

`K4 A iff T |= A (T is the class of all transitive frames.)

There are modal logics that cannot be obtained from a class of Kripke frames [VB84].
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Correspondence with DLs [Sch91]

The DL ALC is a notational variant of Km (K plus m modal parameters).

• Bijective translation between ALC concepts C and Km formulas AC .

A→xA ri → modal parameter pi ∀ri → �pi

• Bijective translation between interpretations and Kripke models:

I → MI s.t: AI = VMI (xA) and (ri )
I = Rpi .

• Inference problems

AC is valid in Km iff C ≡ >

C ≡ D iff AC ↔ AD is valid in Km.
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Unification in Modal Logics

• Let L be a modal logic. The unification problem in L is defined as follows.

Instance: A formula A in L.

Question: Is there a substitution σ such that `L σ(A)?

The set of all unifiers of A in L is denoted as UL(A).

• Unifiers are ordered using the relation ≤X
L .

σ is more general than τ w.r.t. the variables in X
iff

∃θ such that `L τ(X )↔ θ(σ(X )), for all X ∈ X .

• Unification type of A: defined w.r.t. (UL(A),≤Vars(A)
L ).
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Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that `L σ(A).

DLs: find σ such that σ(C) ≡ σ(D).

They “coincide” (if ↔ is expressible in the logic):

From ALC to Km: σ(C) ≡ σ(D) iff `Km σ(AC )↔ σ(AD) iff `Km σ(AC ↔ AD).

From Km to ALC: `Km σ(A) iff σ(A) ≡ >.

Yet another subtle/significant difference

• For DLs, concept constants are allowed in the unification problem.

• For MLs, all variables are eligible to be substituted.
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Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.

• An algorithm to solve the problem in a DL, solves the problem in its ML variant.

• A lower bound for the unification problem in a ML also applies to the corresponding
DL (if any).

Single equation vs. a system of equations

• In DLs, {C1 ≡? D1, . . . ,Cn ≡? Dn} can be transformed into:

{∀r1.C1 u . . . u ∀rn.Cn ≡? ∀r1.D1 u . . . u ∀rn.Dn}.

• In uni-modal logics, like K, the previous trick is not possible. However,

σ solves {A1, . . . ,An} iff it solves {A1 ∧ . . . ∧ An}.
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Motivation for unification in MLs

Unification in MLs is a special case of the recognizability of admissible rules problem.

Recognizability of admissible rules

Instance: A modal logic L and a rule A
B

.

Question: Does `L σ(A) implies `L σ(B) for every substitution σ?

A positive answer means that A
B

can be added to L without changing the logic.

How can unification help?

• It is a particular instance of the admissibility problem:

∃σ s.t. `L σ(A) iff the rule A
⊥ is not admissible.

lower bounds/undecidability of unification transfer to the admissibility problem.
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Some results

Positive results

• For K4, S4 and other modal systems:
• Unification is finitary and finite complete sets of unifiers can be computed.
• Recognizability of admissible rules is decidable.

Negative results [WZ08]

• Undecidable for any modal logic L with universal modality between KU and K4U.

• Implies undecidability of unification in expressive and relevant DLs, like SHIQ.

Main open problem

• Unification and admissibility in K. K has unification type zero [Jer15]!
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