Automatic Decidability

Christopher Lynch and Barbara Morawska
Department of Mathematics and Computer Science Box 5815
Clarkson University, Potsdam, NY 13699-5815, USA
E-mail: clynch@clarkson.edu,morawskb@clarkson.edu

Abstract rules is a decision procedure far. Unfortunately, it is un-
decidable, in general, to decide the validity of any set of
We give a set of inference rules with constant constraints. ground equations and disequations modtlorherefore, it
Then we show how to extend a set of equational clauses, seannot be the case th&twill always halt. However, it often
that if the application of these inference rules halts on these does halt, and we give examples of theories where it does
clauses, then the theory is decidable by applying a standardhalt, such as the theory of lists and the theory of arfays.
set of Paramodulation inference rules. In addition, we can ~ WhenP halts, it not only shows that the theory is decid-
determine the number of clauses generated in this decisiorable, it gives a bound on the number of clauses that will be
procedure. For some theories, such as the theory of lists,generated in the inference procedure. For example, the the-
there areO(n x Ig(n)) clauses. For others it is polynomial. ory of lists is an example of a class of theories that we call
And for others it is simply exponential such as the theory of noncyclic In the theory of lists, only. x log(n) clauses are
(extensional) arrays. generated, wherne is the size of the set of ground equations
and disequations. In any theory whédtdnalts and no clause
has more than one equation, then only polynomially many
1 Introduction clauses are generated by the inference rules. In other the-
ories whereP halts, there are simply exponentially many
clauses generated.
o) = _ A This paper is based heavily on the work of [1], which
lidity of a universally quantified equational implicatibn provides a good background for the usefulness of this work.
modulo a background theory, such as the theory of g, paper is basically an automation of their result, with
lists or arrays or some other data structure. For ex- some additional complexity results. They showed that the
ample, in the theory of lists, we may want (0 prove gianqard Paramodulation inference will decide the validity
that Vay, 2, w3, 24, 25, 26 (21 = cons(zs,z4) Ay = of a conjunction of ground equations and disequations mod-
cons(zs, x5) Acar (1) = car(z2) Aedr(z1) = edr(z2) — ulo the theory of lists and (extensional) arrays. They proved
1= 3). B_y sko_lem|.zat|.on, validity of a universally quan- ¢ completeness of their method. Our improvement of their
tified equational implication modulo a theory can be shown ¢ it is to give an automated method of proving that the

equivalent to proving the unsatisfiability of a ground con- ganqarq Paramodulation inference rules will decide such
junction of equations and disequations modulo that theory,iheories. In addition, our inference rulésautomatically
which is the problem we will concern ourselves with in this give a bound on the number of clauses generated by the de-
paper. cision procedure.

In particular we have developed a set of inference rules o, hrocedurep is itself a set of inference rules, applied
P that takes a theory in first order logic with equality, 4, ¢j5,ses containingonstant constrainfawhich is a con-
represented as a set of clauses. If our procedure halts, theﬂmction of constraints of the formn.st (t), true if and only
it shows that the standard set of Paramodulation inferences , is 4 constant. Our inference rules are an extension of

rules ha!ts for any ground set of equations and di_sequations[he congruence closure algorithm given in [4] (see also [7]).
along with E[3]. Therefore, the standard set of inference The paper [4] proves a complexity bound@fn x Lg(n))

“This work was supported by NSF grant number CCR-0098270 and Pa@sed on the way the precedence of the constants is chosen.
ONR grant number N00014-01-1-0435. Contact the first auth@B15) We use the same technique as they do, and show how to
268-2384, fax number (315) 268-2371.

Ipredicates can be encoded with equations. There may bediinct 2See [1] to show how this also applies to the theory of exterasiar-
symbols. rays.

Verification problems often involve proving the va-

extend the congruence closure resultasmcylictheories. vide an algorithm to make the ground equations and dise-
This gives us better complexity results than those given in quationdlat.
[1].

Our results are in the spirit of automated decidability Definition 1 Define a new set of constants called ex-
and complexity results of theories saturated by orderedtension constants. Alat f-rule is a rule of the form
paramodulation [5]. fle1, -+, cn) = co, Where eacly; is an extension constant
andn > 0. An equation idlat if it is a flat f-rule or an
. . extension equation. A disequatiorfiat if it contains only
2 Preliminaries extension constants.

We use standard definitions as in [2]. Let S be a set of equations and disequations. THen
We considettermsbuilt out of function symbols, con- ~ ¢an be flattened by repeated application of the following
stants and variables. We will have a special designated seExtensionrule[4]:
of constants, calledxtension constantsrhich can only be
created by thdextensioninference rule given later in this
section. Ifs andt are terms, thes ~ t is anequation
An equation between two extension constants is called an
extension equationThe negation of an equation is called
a disequationand written in the forms % t. A clauseis
a disjunction of equations and dise_quations_. Predicates can 1 5 constant which is not an extension constant, or
be encoded by equations, by treating predicate symbols as

S U {A[H}
SU{A[d], t — ¢}

wherec is a fresh extension constavt]t] is not flat, and
t is either

function symbols, and adding a new constant symhbolf 2. of the formf(ci, ..., ¢,) such that, ..., ¢, are ex-
A'is a predicate, then we encodeas the equatiod ~ T, tension constants,

andnegA is encoded asl # T. Therefore, for simplicity,

we assume that is our only predicate symbol. i is a set The number of rules created by this will be the number
of clauses, then we designate the set of function symbolsof function (and constant) symbols fh

and constants appearingfhasXg. From now on, we assume thétis a set of ground, flat

An equations = t is called areal equationif s is not equations.
T andt is not T. A clause which contains at most one
real equation is called single equation clauseA set of 3 Saturation
single equation clauses is callecgsiagle equation theory
Note that any form of disequations are allowed in a single
equation clause.

We define a substitution as usual to be a mapping from
variables to terms which is almost everywhere the identity,
and we also identify a substitution with the homomorphic
extension of itself. In an abuse of notation, we also define a
substitution whose domain is the set of constants and write
Clc — d] to mean that every occurrence ofn C is re-
placed byd.

We assume a reduction ordering, which is total

In this section we will define a sound and complete set of
inference rules for determining the unsatisfiability of a set
of clauses. First we define some closure rules in Figure 1,
and some deletion rules in Figure 2. This are the same as
the standard inference rules given in [3], except for an addi-
tional rule calledOrient.

The inference rules usesalection rulewhich is a func-
tion that is applied to a clauge and returns a set of one or
more literals inC'. We write Sel(C) as the set of literals
. . selectedn C'. The selection rule is very important for our
on 9T°“”d terms, for_ ex.ample, the Iexmog_raphlc path purposes, because it restricts the literals needed to be in-
ordering[6]. This ordering is extended to equations by con- volved in an inference, and a clever selection rule may yield

S|der!ng Fhem as mulnset; of terms, anq then to claqses bya decision procedure where another selection rule does not.
considering them as multisets of equations. We define theFOr completeness, the selection rule must have the follow-

ordering in such a way that the negative literals are always; .

: . " ing properties:
slightly bigger than the positive ones, and the smallest terms Selection Rule
are the constant and the extension constants. Since the or- For all clauses”, Sel(C) contains
dering is total, we can always orient the ground equations, '
hence we treat them often as rewrite rules and wite ¢ 1. a negative literal i’ (“don’t care non-determinism”)
instead ofs ~ ¢. or

We want to to decide the satisfiability of a set of ground

equations and disequations, modulo a theory. First we pro- 2. all maximal literals inC' wrt <.

Right Paramodulation:

GU{u[s'|=vVvC(C,sx=tVvD}
G'U{(u[tj]~vVvCV D)o}

whereG’' = GU {u[s'] # vV (C,s = tV D},

o = mgu(s,s'),u[s'] =~ visselectedinits clause,
s & t is selected in its clause/s']o £ vo, so £
to, ands' is not a variable.

Left Paramodulation:

GU{u[s'| vV C,s=~tV D}
G'U{(ultjvVv CV D)o}

whereG’ = GU {u[s'] 2 vV C,s = tV D},
o = mgu(s,s’), u[s'] = visselectedinits clause,
s & t is selected in its clause/s']o £ vo, so £
to, ands' is not a variable.

Equational Resolution

GU{ugovVvC}
G'U{Co}

whereG' = GU {u % vV C}, 0 = mgu(u,v)
andu # v is selected.

Equational Factoring

GU{s=tVs ~uv(C}
G'U{(sruVtzuVv(C)o}

whereG' = GU{s ® tVs ~uVvC} o=
mgu(s,s'), s = t is selected{oc £ uo, so £ to
ands'c £ uo.

Orient

GU{c~d}
Glc — d]

where ¢ and d are extension constants and
depth(c) < depth(d). Then we set the
precedencec > d and setdepth(d) =
maz{depth(d), 1+ depth(c)}.

Figure 1. Rules for Closure

Subsumption:

Gu{c,c'}
GU{C}

whereCo C C' for some substitution.
Simplification:

GUu{Cl',l~r}
GU{C[ro],l = r}

wherel’ = lo, lo = ro, andC[l'] = (lo =~ ro).

Tautology Deletion:

GU{t~tVvC)} GU{s~tVsptvC}
G G

Figure 2. Rules for Deletion

Closure rules are necessary for completeness. Deletion
rules are optional but recommended, because they decrease
the search space. All of the closure rules excepCinent
add a new clauseOrient is also exceptional, because it is
a global, rather than a local rule. We require tRatent is
performed eagerly. In other words, as soon as an extension
equation is create@rient is performed immediately.

We will define a function calledepth, which will be ap-
plied to extension constants. When an extension constant
is created by th&xtensionrule, we setlepth(c) = 0. The
Orient rule will modify the depth of an extension constant.
The precedence of extension constants is not determined
by the original precedence. Precedence between these con-
stants will be determined by th@rient rule, by analyzing
depth. It will be determined in such a way that every ex-
tension constant has only logarithmically many extension
constants smaller than it, just as in the union-find algorithm.

An inference systend is a set of closure and deletion
rules. A (possibly infinite) set of clausé@sis considered to
be saturatedby an inference systerhif any application of
a closure rule fromV to T' results in a claus€' such that
either

1. CisinT, or

2. a sequence of deletion rules frafrto 7" U {C'} will
resultinT (i.e.,C could be removed, so the inference
is not necessary).

A set of clauses has thdfinite saturation propertyf 7" is
a saturation ofS, andT is finite. If 7" is a set of clauses,

3This nonstandard definition of redundancy is needed in tixe see-
tion.

thenT" is asaturation ofT" by I if T" is saturated by and

T' is obtained by a (possibly infinite) sequence of closure
and deletion rules frond applied to7'. This mimics what
happens in a real theorem prover, where closure migst

be applied and deletion rulesay be applied. In practice,

it is better to apply deletion rules whenever possible to cut

down on the size of the search space.

Let I be the inference system consisting of the closure

rules in Figure 1. and the deletion rules of Figure 2. We
have the following theorem|[3].

Theorem 1 A setT" of clauses is unsatisfiable if and only if
the empty clause is in a saturation Bfby I if and only if
the empty clause is in all saturationsBfby 1.

In particular, we will consider a set of clausésthat is
already saturated by, and a set of flat ground equations
and disequationS. We would like to know whethef halts
onEUS.

4 Meta-saturation

In this section, we consider to be a single equation
theory and show a sufficient condition faruU S to have the
finite saturation property for any sStof ground equations

G'g is defined as the following set of equations:

Gg :={f(z1,...,x,) = xg [const(zo) A -+ -
Neonst(z,) ||f € Lr} U{z = y[const(x) A const(y)]
x % y [const(z) A const(y)]}

Now we present an inference systéhior £ U G g, that
will simulate closure rules of applied toE U S. We can-
not simulate all deletion rules, because we cannot assume
that there will always exist ground clauses in the saturation
of E U S, on which such a deletion depends. The infer-
ence systen® is really the same ag expect that all clauses
now have constraints (unconstrained clauses have the empty
constraint), which are inherited by the conclusion of an in-
ference. Also, we no longer have tleient rule, and the
Deletion rules are more restrictive.

The closure rules aP are given in Figure 3 and the dele-
tion rules are in Figure 4.

Before presenting the theorem first important theorem of
this paper, we need a couple more definitions.

Definition 2 Let C'[¢] be a constrained claus&’o is a
constraint instancef C [¢] if Dom(o) = Vars(yp) and
the range ot only contains extension constants.

Notice that ifC'o is a constraint instance @f, then it is
also an instance @ [¢]|, because is satisfied. However,
C'o may not be ground, because unconstrained variables are

and disequations. To do this, we define an inference systenfi0t substituted for.

P, and then a certain set of equations is saturateé bif

Now we show that for a single equation theory, a finite

this set of equations has the finite saturation property undersaturation of” U G(E) implies a finite saturation of U S

P, then any sucliz U S will have the finite saturation prop-
erty underS. This means that any saturation®fu S will
halt, and moreover we show that it halts in polynomial time.
The case wher& is not a single equation theory is defined
in the next section by a different inference system, but in
that case it is only shown to halt in exponential time.

First we will define a set of constraint equations and dis-

equationg? g, that will in a sense represent any possible set

of flat, ground equations and disequati¢hs

The only constraints that we are going to impose on
terms in the equations i¥ i, areconstant constraintsAn
atomic constant constrairng of the formeonst(t), and it is
true if ¢ is an extension constant. éonstant constrainis
a conjunction of zero or more atomic constant constraints
which is true if each atomic constant constraint in the con-
junction is true. A substitutiomr satisfiesa constant con-
strainty if o is true. Aconstrained clauses of the form
Cl¢], whereC is an (unconstrained) clause apdis a
constant constraintC'o is aninstanceof C' [¢] if o is a
substitution satisfying. Orderings on constrained clauses
can be defined so that a clauSeis bigger than a clause
D if all ground instances of" are bigger than all ground
instances oD.

for any set of ground equations and disequati§nghich
gives a decidability result for the theo#.

Theorem 2 Let E be a single equation theory, finitely sat-
urated byl. LetG be the set of all clauses generated in a
finite saturation ofE U Gg by P (i.e., E has finite satura-
tion property). LetS be a set of flat ground equations and
disequations. Then we can saturdieJ S by I such that
every clause generated in the saturation is

e a constraint instance of a clause @, or

o aflat f-rule wheref ¢ Xg

Proof The proofis by induction on the length of saturation
'inferences in/. For the base case, we show that all clauses
in EU S satisfy the theorem. This is true, because, since the
equations and disequationsSrare flat, then each equation
and disequation i§' is a constraint instance of a member of
G, oris aflatf-rule wheref does not appear if.
Now, in the inductive part we have to show 2 facts:

1. Everyclause added #6US in the process of saturation
is a constraint instance of some clause in the saturation
of EUGg oraflatf-rule.

Right Paramodulation:

GU{uls'|=ovVvC[e]l,s=tVvD][¥]}
G'U{(u[t]~vVCVD[pAT])o}

whereG' = GU {ul|s'] ¥ vV C[p],s =tV
D[¥]}, 0 =mgu(s,s'), uls'] = vis selected in
its clauses = t is selected in its clause|s']|c £
vo, so £ to, ands’ is not a variable.

Left Paramodulation:

GU{u[s'1#¢vVC[p],s=tVvD[¥]}
G'U{(utj]2vVvCVD[eAT])o}

whereG' = GU {u[s'] ¢ vV C[p],s =tV
D[¥]}, 0 =mgu(s,s'), u[s'] = v is selected in
its clauses = t is selected in its clause|s'|o £
vo, so £ to, ands’ is not a variable.

Equational Resolution

GU{uzgoVvC[e]}
G'U{(Clel)a}

whereG' = GU{u % vV Cle]}, o =
mgu(u,v) andu % v is selected.

Equational Factoring

GU{s=tVs ~muVvC[e]}
G'U{(smuVtguVvC[y])o}

whereG' = GU{s ® tVs =~ uV C[p]},
o = mgu(s,s’), s =~ t is selectedfo £ uo,
so £ to ands'a £ uo.

Figure 3. Constrained Rules for Closure

Subsumption:

GU{C.C'[¢]}
Gu{C}
whereC is a member ofEf, andCo C ' for

some substitutior, or if C andC' are renamings
of each other.

Simplification:

GU{CI[]l ~ 1)
GU{C[ro][¢].l =T}

wherel ~ r is a memberofs, I’ = lo, lo > ro,
andC[l'] > (lo = ro).

Tautology Deletion:

GU{t=tVvC|[e]}
G

GU{s=tVsz#tvC[e]}
G

Also, a clause with an unsatisfiable constraint may
be removed.

Figure 4. Constrained Rules for Deletion

2. A deletion of a clause in the saturationofJ G g will
not leave some clauses in the saturatiozaf S that
were constraint instances of the deleted clause, with no
representative in the saturationBfU G (i.e. that all
these constraint instances will also be deleted from the
saturation ofE U Gg).

Hence in Part 1 of the argument we start by considering
the ruleOrient (Fig.1). Orient is an exceptional rule in the
set of closure rules, because it does not really add any clause
to the set (rather deletes one), but modifies the rest of the set.

Assume that all the clausesahin the premise of the rule
are constraint instances of some clauses in the saturation of
E U Gg orflat f-rules wheref ¢ Y. Hence in particular
let C' be such a clause which is a constraint instance of some
C’ in the saturation off U Gg. This means that’o = C.
Hence there is a substitutietsuch thatro’ = d, whenever
zo = c andyo’ = yo in all other cases. Thereforg[c —

d] will also be a constraint instance 6f.

Now letC be a flatf-rule, wheref does not appear if.

Then Orient convert§' to another flaff-rule with extension
constants replaced.

Now we consideRight Paramodulation (Fig.1.).

Assume that the first clause in the premise of the rule is a

constraint instance of some clause in the saturatiofl of
G ;. Then the other clause must be also.

Sinceu[s'] = v v C is a constraint instance of a clause
D, in the saturation o U Gg, Dio = u[s'] = vV C.
Similarly, Dyo = s =tV D.

We have two cases to consider:

~
~

~
~

1. If s’ is not an extension constant, then there is a term
s1 in Dy, such thats,o s' is not a variable, and
hence there is a Right Paramodulation inference from
D, andD, to D3 such thatDso = u[t] ® vV C V D.

~
~

. If ' is an extension constant, then, singe'] ~ v
is a constraint instance d;, D; = u[z] vV
C'[const(z) A ¢]. s ~ t must then be an exten-
sion equation. Since = t is selected in its clause,

~
~

~
~

~
~

Next we want to prove a result about the complexity. We
have shown that, for a single equation theéhyif £ U Gg
has the finite saturation property, then the theorya$ de-
cidable. We will now show that it is decidable in polynomial
time. First we define theidth of a constrained clause.

Definition 3 For a constrained claus€’' [¢], define the
width of C' [¢], written asw(C [¢]) to be the number of
constrained variables ii’. For a set of clauses$, define

thewidth of S to bew(S) = maz{w(C) | C € S}.

As a consequence of Theorem 2 we have the following.

Theorem 3 Let £ be a single equation theory, saturated
by I. LetG be the set of all clauses generated in a finite
saturation ofE U Gg by P. LetS be a set of flat ground
equations and disequations. Then the saturatiofv of S

the rest of the clause must also be extension equations,;, generateO(|S|*() clauses.

But thenD must be empty, since otherwise the clause
s & tV D is not a single equation clause, and the prop-

Proof Theorem 2 shows that every clause generated in the

erty is being a single equation clause is preserved bysaturation of’ U S will be a constraint instance of a clause

the inferences. So Orient applies.

Right Paramodulation involving flat f-rules
Assume that the equation in the premige’] ~ v of the
rule is a flatf-rule. In this case” is empty. We have two
cases here: eithar= ¢ is another flatf-rule ors ~ ¢ is an
extension equation.

1. Consider the case whesex t is an extension equa-
tion. ThenD must be empty. So Orient applies.

. If s = t is another flatf-rule, thenC and D are empty
and by Right Paramodulation we get an extension
equation, which is an instance of~ y [const(z) A
const(y)] in the saturation of U Gg.

The inferenced eft Paramodulation (Fig.1.), Equa-
tional Resolution (Fig.1.) and Equational Factoring
(Fig.1.) can also be lifted in a similar way.

For the second part of the inductive argument, let us con-
sider deletion rules in the saturation BfU Gg. Assume
that there is a clausP in the saturation oF U G g, which
is deleted by the first case 8ubsumption (Fig.4.) and a
clauseC is a constraint instance d. Notice that accord-
ing to the assumptions of the rule, there must be a claus
D' € E, suchthatD’c C D. Since all members of are
in the saturation offU S, there will be a substitutios’ such
thatD'c’ C C, andC will be also deleted by Subsumption
from the saturation o U S.

A similar argument may be made f@&implification
(Fig.4.). For Tautology Deletion (Fig.4.) it is enough to
notice that any instance of tautology is also a tautology,
hence will be deleted from the saturation BfU S. The
other case oSubsumptionis just a matter of deleting du-
plicates. Hence the second part of the proof is dane.

e

in G or a flat f-rule wheref does not appear if.

There are at mo$5| extension constants. Therefore(ifis

a clause inG, then there are at mos$|*(“) constraint in-
stances of”. If all symbols ofS appear inE, then this im-
mediately shows that there af¥|S|"“(%)) clauses appear-
ing in the saturation off U S, since the number of clauses
in G is constantins|.

But suppose there is a symhbplwhich appears iy but
notinS. ThenkE U S will contain some flaif-rules. But the
only way a new rule containing the symbptan be created
is if an extension constant is reduced in a ffatule, and
then a new flajf-rule results. These flgt-rules are the only
clauses generated that are not constraint instana@s 8b
we need to count how many times the extension constants
of a flat f-rule can be reduced. Note that the precedence
of the extension constants has been designed specifically so
that there is no reduction sequenge> ¢, = --- = ¢, of
extension constants that is longer tha(S|). Each clause
contains no more than a constant number of extension con-
stants (we are considering arity to be constant). Therefore,
the extension constants in that clause will be reduced by an
OrientruleO(lg(|S|)) times. Since there are at m¢St flat
f-rules, this gives u® (|S| x Lg(|S])) clauses that originate
from flat f-rules.

We have shown that there af¥|S|*()) constraint in-
stances of7, and there aré(|S| x 1g(|S|)) clauses origi-
nating from flatf-rules. So there ar@(|S|*(%) + (|S| x
lg(]S]))) clauses generated in the saturatioof S. Since
there is a clause ~ y [const(x) A const(y)] in Gg, then
w(@) is at least 2, so the first term dominates the second,
and therefore there a@(|S|*(%)) clauses generated.

This shows that in this case the theory is decidable in
polynomial time, but we can get a better bound on the poly-
nomial in some cases. We now give some definitions which

lead to a theorem giving a better bound on the decision pro-in a clause in the prodil. Note that if we consider an con-
cedure in some cases, for example the theory of lists. straint instancélo of I, then the value of;o is the same

A saturation can be viewed as a graph, so that each clausas the value of one of the parentsegfleading eventually
generated (modulo renaming) labels a node in the graph. Ifback to an identical value of one of the initial ancestors of
there is an inference in the saturation wdth, - - -, C,, as the C. Even if we consider an instance 6f that is reduced
premises and’ as the conclusion (modulo renaming), then by some applications of the Orient rule, there is a proof
there is an edge from each node labeled witho the node where all of its ancestors are similarly reduced by Orient.
labeled withC'. We call this graph a@aturation graph The So the number of potential instances®fin a proofll is
saturation is calledyclic if the saturation graph contains a the same as the number of possible initial ancestors in a
cycle, otherwise the saturation is calledncyclic constraint instance di. InII, there aré:(C, E) initial an-

We define groofof C inductively, as a tree of nodes la- cestors ofC. At the beginning of the saturation & U S,
beled with clauses, whose root is labetédIf C' € S then there areD(|S|¥(“F)) instances of the initial ancestors
a single node labeled witfi is aproofof C. Suppose there During the saturation, each of these sets of ancestors can

is an inference with premises;, ---,C, and conclusion be reduced by OrienD(lg(]S|) times. Therefore, there
C, and suppose that,, - - -, 11, are proofs ofCy,---,C, are O(S*(©-F) x 14(|S|) instances ofC derived from in-
respectively. Then the tree containifig, - - -, I1,,, plus the stances off. And since there are a constant number of

node labeled by’ and the edges from eadl} to C is a proofs of C, there areD (S*(“:¥) x 1g(|S|) instances of”
proof of C'. Note that a proof of” is just one way of deriv- in the saturation off U S. And since there are a constant
ing C. number of clauses in the saturation BfU G g, there are

Note that a proof could be also defined as a subgraph inO(S*(“-F) x 1g4(|S|) clauses generated in the saturation of
the saturation graph, that can be directed from the root toE U S.
the leaves (hence a dag) and then the tree is the expanded Now we have to count the instances of clauses in the sat-
dag with all nodes having at most one parent. If a saturationuration of EUG g, of the formz = y [const(x)Aconst(y) |.
graph is noncyclic, there are only a finite number of proofs There are onlyS of them, because every time one of them
of C. is created, it will be immediately used in an Orient rule, and
one extension constant is deleted. Since constants can only
be deleted)(|S|) times, then onlyO(|S]) extension equa-
tions can be created.

In order to complete the proof, we have to count the num-
ber of flat f-rules with f ¢ Y. But since each of them can

Definition 4 We call a clauseD an initial ancestorof a
clauseC in a proofII in the saturation ofE U G, if
D labels a leaf in the proofl of C', D is not of a form
x & y[const(z) A const(y)] andD ¢ E.

In a proof of a claus€ in the saturation off U G, be reduced onlp(Ig(|S])), there will beO(|S| x Ig(|S]))
let k(C, E) be the number of initial ancestors 6fwhich flat f-rules in the saturation af U S.
are not inE. Define k(E) asmaz{k(C,E) | C in the Since(|S|**) x Ig(|S|)) dominates ovefiS| x lg(|S|))
saturation ofE U G(E) and C is not of the formz ~ andsS, thismeans thatthere af|S|*(*) xlg(|S|)) clauses
y [const(z) A const(y)]}. in the saturationoF U S. O

Theorem 4 Let E be a single equation theory, saturated Note that any time a clauses is reduced by Orient, it can-
by I. Let@ be the set of all clauses generated in a finite not ever appear again, because the every occurrence of the
saturation of E U G by P. LetS be a set of flat ground extension constant that is reduced is removed from the set
equations and disequations. If the saturationfofJ G of clauses.

is noncyclic. Then the saturation & U S will generate

O(IS"") x 1g(|S])) clauses. 5 Extending the Procedure

Proof Consider a claus&€’ in the saturation graph of
E U Gg. Assume first thaC is not of the formz =~ The results in the previous section are for single equa-
y [const(x) A const(y)]. tion theories. In order to directly simulate more than single
We need to consider how many constraint instancés of equation theories, we would need to allow inferences into
will appear in the saturation df U S. Since the saturation variables in certain restricted cases. This would be possi-
graph is noncyclic, there is only a finite number of proofs of ble, but it ends up exploding the search space. If there are
C'in the saturation graph. And the since saturation graph istwo real variables in a clause, then inferences with flat rules
not dependent of, this number is not dependent 6n can reduce the clause to another clause containing two ex-
Let’s consider one of the proofH, of C. ThenC has at tension equations. These extension equations can be used in
mostk(C, E) initial ancestors which are constrained equa- inferences with other clause, which have the effect of con-
tions inII. Consider an equatiof{z1, ..., z,,] appearing tinuing to create larger clauses with more and more exten-

sion equations. Therefore, we would lose the finite satura-another flatf-rule, and if it affects the part with extension

tion property. equations, it will also preserve the form of the clause.
Therefore, we choose a different approach to handling Now we consideRight Paramodulation (Fig.1.).

general clauses. We use the same inference syBtesiin

the previous section, but we now allow a clause to repre- Assume that[s'] ~ v v C is a disjunction of extension

sent constraint instances as before, but now we also allowequations. Them/[s'] is just an extension constantand

constraint instances with some any possible disjunction of s — . s a ¢ must be an extension equation. Then-

~

extension equations disjoined to them. This makes the com+\, p must be a disjunction of extension equations, because
plexity of the procedure go from polynomial to exponential. otherwise there would be some bigger literal in the clause,
ands ~ t would not be selected. Hence the conclusion of

the rule will be:t = v v C' v D which is also a disjunction

of extension equations.

Assume thatu[s'] ~ v VvV C is a clause of the form
DyVeo~dyV...Vc, ~d,, whereD is a constraint in-
stance ofaclausP’inG,n > 0,andc; ~ di V... Ve, =
d, are extension equations.

Theorem 5 Let E be a set of clauses, finitely saturated by
I. LetG be the set of all clauses generated in a finite sat-
uration of E U Gg by P. (i.e. E has the finite saturation
property wrtP.) LetS be a set of flat ground equations and
disequations. Then we can saturdieJ S by I such that
every clause generated in the saturation is

« a disjunction of extension equations ~ d; V ...V If uls'] ~ v is an extension equation, théhmust also be a
¢n = dy,, Wheren > 1, or disjunction of such equations, because otherw|s§ ~ v
would be too small to be selected (the previous case ap-
e aclause of the forn® Ve, = dy V...V, = dy, plies). Hence assume thalts'] ~ v is in the D,-part. The
whereC' is a constraint instance of a claugg¢’ in G clause has the forms'] &~ vVC1 Ve, & diV.. Vey & dy,
andn > 0, or whereu[s'] = vV is a constraintinstance @f'. We have

two cases to consider here:x ¢ is an extension equation
or not. If s ~ ¢ is an extension equation, then eitheris
empty, but then Orient applies, & must be a disjunction
Proof The proof, as in the previous completeness theorem,©f €xtension constants (because otherwise ¢ would be
is by induction on the length of saturation inferencegin 00 Small to be selected). Then Right Paramodulation gen-
The base case is the same as in the previous case. erates the clauseft] ~ vV C1 Ve Rd V... Ve R dy.

For the first part we show that every clause added to Since€D’o = u[s'] ~ vV Dy, there is a substitution’ such
E U S in the process of saturation is one of the three kinds thatze’ = d, whenevers = c andyo’ = yo in all other

e aclause ofthefornC' Ve =~ di V... Ve, = d,,
whereC' is a flat f-rule wheref ¢ Y.y andn > 0.

named in the theorem. cases. Therefore[t] ~ v vV D, will also be a constraint
Let us consider an inference with the r@éent (Fig.1). instance ofD’ and the form of the clause will be preserved.
Assume that a clause in the saturationff) S is of the Consider now that ~ ¢ is not an extension equation.

forme; ~ dy V...V ¢, & d,, wheren > 1, and allthe Lets ~ ¢V D be of the forms ~ ¢V Dy V) = dy v

constants are extension constants. Then Orient may reduce: - V ¢m & dp,, Wheres ~ ¢ vV D, is a constraint instance
e . " 3 1 1
one constant, but the modified clause will be of the same0f & clauseD" in the saturation of U G'. There is a
form. substitutions such thatD’oc = u[s'| vV C;,D"o = s =
Assume now that there is a clause of the fafnv ¢; ~ tVv D; and there is an inference in the saturatioda G g

~

di V...V ¢, ~ d,, whereC is a constraint instance of ~from D" andD" to D" such thatD"'o = u[t] ~ o' v Cj.
aclauseC’' in G, n > 0ande, ~ di,...cn ~ d, are Hence the conclusion of the Right Paramodulation in the

extension equations_ Sin€gis a constraint instance (ﬁ” saturation ofE U S is still of the rlght form (the second case
there is a substitutiom, such thatC’c = C. Hence if ~ Of the theorem).
Orient modifies the clause in th@-part, we can see that It is not possible fos ~ ¢ to be a flatf-rule with f ¢
just as in the previous section, there will be a substitution X g, because’ cannot contain the symbdgl, sinceD. is a
such thatze’ = d, wheneveros = ¢ andyo’ = yo in all constraint instance of a clause in the saturatioh' of Gg.
other cases. Therefor@[c — d] will also be a constraint Assume then thau[s'] ~ v Vv C is of the form
instance ofC’. If Orient modifies the clause in one of the f(c},....c},) = ¢/ Ve =~ di V...Ve¢, = d,, where
extension equations, we will get still a clause of the sameu[s'] ~ v is f(c},...,c,) =~ ¢ is a flat f-rule where
form. f & Xgandn > 0. If §' is an extension constant' (= ¢;
Assume now that there is a clause of the farnv ¢; ~ for somei), thens ~ ¢ must be an extension equation, and
diV...Vcn =d,, whereC is aflatf-rule wheref ¢ ¥g, if D is empty, Orient applies, otherwises t v D must
n > 0ande; ~ dy, ..., ¢, =~ d, are extension equations. If be a disjunction of extension equations. From the Right

Orient affects the”-part of the clause, it will change itinto Paramodulation we get then another clause which is g flat

rule disjoined with extension equations. Now consider the Let E be the list theory defined by the following equa-
case where’ is not an extension constant, th€ris u itself, tions:
ands ~ t must be another flgf-rule. By Right Paramodu-
lationwe getw ~tV ey ~di V...Ve, ®d, VD, hence

the disjunction of extension equations.

The inferenced eft Paramodulation (Fig.1.), Equa- ThenG g consists of the following constrained equations
tional Resolution (Fig.1.) and Equational Factoring and disequations:

(Fig.1.) can also be lifted in a similar way.

For the second part of the inductive argument, let us con-

sider deletion rules in the saturation BfU Gg. Hence as-
sume that there is a claugein the saturation ot U G g,
which is deleted by the first case 8fibsumption (Fig.4.)
and thereisaclaus€ Ve, =~ diy V... Ve, = d, inthe
saturation ofE' U S, such thatC' is a constraint instance Consider a Right Paramodulation inference between the
of D ande; = dy,...,c, & d, are extension equations first member ofE and the third member aF :
(with n > 0). Hence there must be a clauBé € E, such
that D'oc C D. Since all members of/ are in the satu-
ration of £ U S, there will be a substitutioa’ such that
D'o’ CC,hencealsd'c’' CCVeixdiV...ch &dy,

car(cons(z,y)) ~
cdr(cons(z,y)) =~y

car(z) ~ y [const(z) A const(y)]

cdr(z) ~ y [const(x) A const(y)]

cons(x,y) =~ z[const(z) A const(y) A const(z)]
x &y [const(z) A const(y)]

x % y [const(z) A const(y)]

car(cons(z,y)) ~ x
cons(z',y") =~ z' [const(z') A const(y') A const(z')]
car(z') = o' [const(z") A const(z')]

andC Ve = di V...cn & d, will be also deleted by We removed the constraiabnst(y') from the conclu-
Subsumption from the saturation 8fU S. sion, since)’ does not appear in the clause. The conclusion
A similar argument may be made f@&implification will be immediately deleted because it is a renaming of a

(Fig.4.). For theTautology Deletion (Fig.4.) it is enough member ofG 5. However, this inference will determine two

to notice that any instance of tautology is also a tautology, edges in the saturation graph, one from the node labeled
hence will be deleted from the saturationfaflS. The other by the first premise to the node labeled by the conclusion,
case ofSubsumptionis just a matter of deleting duplicates. and the another one from the node labeled by the second
Hence, the second part of the proof is dome. premise to the node labeled by the conclusion.

That shows that these are decidable theories. Next we | N€re is also an inference between the second member
shown that the complexity of the decision procedure is sim- ©f £ and the third member af;, but that is also deleted
ply exponential because it is a renaming of somethingdg,. There are no

As a consequence of Theorem 5 we have the following. Other possible inferences. Therefdtel Gy is the satu-
ration of itself. There were some edges added to the satu-

Theorem 6 Let E be a finite set of clauses, saturatedlby yation graph, but it did not create a cycle. Therefore, this
Let G be the set of all clauses generated in a finite satura- shows that the problem of the satisfiability B S for any
tionof EUG by P. LetS be a set of flat ground equations gset of equations and disequatiofisan be decided in time
and disequations. Then the satisfiabilitylot S will gen- (|| x 14(|9])).
erateO(2/°") clauses. Now let us consider the case whefkis the theory of
Proof From the previous section we know that there are arrays, also from [1]. In this exampleglect is a function
O(]S|*(@)) constraint instances of clauses in the saturation that takes an array and an index position, and returns the
of G plus flatf-rules, wheref does not appear ify. element at that index positiortore is a function that takes

In this case we must also count all disjunctions of such an array, an index position and en element, and returns the
clauses with extension equations, and also disjunctions ofarray that results when that element is put in that position in
extension equations by themselves. There@(g5|) ex- the array.
tension constants in the saturation ®fU S, hence there
areO(|S|2) extension equations, and there @x@!5!") dis-

junctions of such equations. Hence there @t¢S|"(%) x
251"y = 0(25") clauses generated in the saturation of ThenG g consists of the following constrained equations

select(store(x,y, z),y) = z

3

y = wV select(store(z,y, z), w) = select(x,w)

EUS.O and disequations:
select(x,y) = z[const(x) A const(y) A const(z)]
6 Example store(x,y,z) = w [const(x) A const(y) A const(z)
Aconst(w) |
We illustrate our results with some examples from the z ~ y [const(z) A const(y)]
paper [1]. First is the theory of lists. z # y [const(x) A const(y) |

The only inference which generates a new clause Ganzinger for many helpful discussions. Also, this work
is an inference between the second member Fof is based heavily on the work of [1]. We thank Alessandro
and the second member of7g, which gives the Armando, Silvio Ranise and Michaél Rusinowitch for dis-
clauseselect(z, w) & select(z, w) V (y & w)[const(z) A cussions of their paper. We would also like to thank the
const(y) A const(z)] anonymous referees for helping us improve the quality of

The only inference which generates a new clause is anthis paper.
inference between this new clause and the first member of
G g, which givesselect(xz,w) & z V (y ~ w)[const(z) A References
const(y) A const(z) A const(w) |

Then there is an inference between this new clause an
the first member of7 g, plus an inference between this new
clause and itself. These two inference generate the two
clausese) =~z V z3 & x4 const(xi) A -+ A const(xs)]
and z; ~xo V3 & xg Vs X xglconst(zy) A -0 A
const(zg) | [2] F. Baader and T. Nipkowlerm Rewriting and All That.

All inference using these two clauses are inferences into Cambridge, 1998.

a variable position, so they are disallowed, and there are

no more inference. Therefor&] has the finite saturation [3] L. Bachmair and H. Ganzinger. Rewrite-based equa-
property. tional theorem proving with selection and simplifica-

tion. InJournal of Logic and Computatiof3), 1-31,
1994.

d[1] A. Armando, S. Ranise and M. Rusinowitch. Uni-
form Derivation of Decision Procedures by Superposi-
tion. In Proceedings 15th Workshop on Computer Sci-
ence Logic.LNCS vol. 2142, 513-527, 2001.

7 Conclusion

[4] L. Bachmairand A. Tiwari. Abstract Congruence Clo-
We consider our results to be an extension of previous syre and Specializations. Rroceedings 17th Confer-

results. In [9], there is an algorithm for deciding the the- ence on Automated DeductidtNICS vol. 1831, 64-78,
ory of lists. In [8] there is a decision procedure for the 2000.

theory of arrays, and in [10] a decision procedure for the

theory of arrays with extensionality. In [1], a general re- [5] D. Basin and H. Ganzinger. Automated complexity
sult is given which subsumes the previous results and gives ~ analysis based on ordered resolutionJlssociation

a general procedure which fits everything into a saturation ~ for Computing Machinerg8(1), 70-109, 2001.

theorem proving fra_mework. What we havg done is to au- [6] N. Dershowitz. Termination of Rewriting. [dournal
tomate and generalize the results of [1]. Given a theory for f Symbolic C taticB. 69-116. 1987

a data structure in first order logic with equality, we pro- ot Symbofic &.omputation, ' '

vide a set of inference rules such that when they halt, then[7] D. Kapur. Shostak’s Congruence Closure as Comple-
the standard Paramodulation rules will decide the theory of tion. In Proceedings 8th Conference on Rewriting Tech-

that data structure. Not only will they decide the theory, niques and Application&NCS vol. 1232, 23-37, 1997.
but they will also give a bound on the number of clauses

generated. For certaimoncyclictheories like lists, the com- [8] G. Nelson. Techniques for Program Verification.
plexity is O(n x lg(n)). For some other theories, includ- In Technical Report CSL-81-1(Xerox Palo Alto Re-
ing those that have no disjunctions, the complexity is poly- ~ search Center, June 1981.

nomial. For other theories, like the theory of arrays, it is
simply exponential. Our results are an extension of the con- L
gruence closure algorithm given in [4], which gives a nice gased on Cl\ﬁngrr]gence7 Célosétérg.sngfggglatlon for
proof of anO(n x Ig(n)) bound for the empty theory. We omputing Machinerg7(2), R '

showed that their algorithm can be extendedémcyclic [10] A. Stump, D. L. Dill, C. W. Barrett and J. Levitt.

theories, like the theory of arrays. Our work is also in the A Decision Procedure for an Extensional Theory of Ar-
spirit of [5], because it gives an automatic method to derive rays. InProceedings 16th IEEE Symposium on Logic in

decision procedures and complexity results, that of satura- Computer SciencéEEE Computer Society Press, 29-
tion of a particular theory. 37, 2001.

[9] G. Nelson and D. C. Oppen. Fast Decision Procedures

Acknowledgments

Many of these results were obtained while the first au-
thor was visiting MPI Saarbriicken, and we thank Harald

10

