
Automatic Decidability

Christopher Lynch and Barbara Morawska
Department of Mathematics and Computer Science Box 5815

Clarkson University, Potsdam, NY 13699-5815, USA
E-mail: clynch@clarkson.edu,morawskb@clarkson.edu�

Abstract

We give a set of inference rules with constant constraints.
Then we show how to extend a set of equational clauses, so
that if the application of these inference rules halts on these
clauses, then the theory is decidable by applying a standard
set of Paramodulation inference rules. In addition, we can
determine the number of clauses generated in this decision
procedure. For some theories, such as the theory of lists,
there areO(n� lg(n)) clauses. For others it is polynomial.
And for others it is simply exponential such as the theory of
(extensional) arrays.

1 Introduction

Verification problems often involve proving the va-
lidity of a universally quantified equational implication1

modulo a background theory, such as the theory of
lists or arrays or some other data structure. For ex-
ample, in the theory of lists, we may want to prove
that 8x1; x2; x3; x4; x5; x6(x1 = cons(x3; x4) ^ x2 =cons(x5; x6)^car(x1) = car(x2)^cdr(x1) = cdr(x2)!x1 = x2). By skolemization, validity of a universally quan-
tified equational implication modulo a theory can be shown
equivalent to proving the unsatisfiability of a ground con-
junction of equations and disequations modulo that theory,
which is the problem we will concern ourselves with in this
paper.

In particular we have developed a set of inference rulesP that takes a theoryE in first order logic with equality,
represented as a set of clauses. If our procedure halts, then
it shows that the standard set of Paramodulation inference
rules halts for any ground set of equations and disequations
along withE[3]. Therefore, the standard set of inference�This work was supported by NSF grant number CCR-0098270 and
ONR grant number N00014-01-1-0435. Contact the first authorat (315)
268-2384, fax number (315) 268-2371.

1Predicates can be encoded with equations. There may be function
symbols.

rules is a decision procedure forE. Unfortunately, it is un-
decidable, in general, to decide the validity of any set of
ground equations and disequations moduloE. Therefore, it
cannot be the case thatP will always halt. However, it often
does halt, and we give examples of theories where it does
halt, such as the theory of lists and the theory of arrays.2

WhenP halts, it not only shows that the theory is decid-
able, it gives a bound on the number of clauses that will be
generated in the inference procedure. For example, the the-
ory of lists is an example of a class of theories that we call
noncyclic. In the theory of lists, onlyn� log(n) clauses are
generated, wheren is the size of the set of ground equations
and disequations. In any theory whereP halts and no clause
has more than one equation, then only polynomially many
clauses are generated by the inference rules. In other the-
ories whereP halts, there are simply exponentially many
clauses generated.

This paper is based heavily on the work of [1], which
provides a good background for the usefulness of this work.
Our paper is basically an automation of their result, with
some additional complexity results. They showed that the
standard Paramodulation inference will decide the validity
of a conjunction of ground equations and disequations mod-
ulo the theory of lists and (extensional) arrays. They proved
the completeness of their method. Our improvement of their
result is to give an automated method of proving that the
standard Paramodulation inference rules will decide such
theories. In addition, our inference rulesP automatically
give a bound on the number of clauses generated by the de-
cision procedure.

Our procedureP is itself a set of inference rules, applied
to clauses containingconstant constraints, which is a con-
junction of constraints of the formconst(t), true if and only
if t is a constant. Our inference rules are an extension of
the congruence closure algorithm given in [4] (see also [7]).
The paper [4] proves a complexity bound ofO(n� lg(n)),
based on the way the precedence of the constants is chosen.
We use the same technique as they do, and show how to

2See [1] to show how this also applies to the theory of extensional ar-
rays.

1

extend the congruence closure results tononcylictheories.
This gives us better complexity results than those given in
[1].

Our results are in the spirit of automated decidability
and complexity results of theories saturated by ordered
paramodulation [5].

2 Preliminaries

We use standard definitions as in [2].
We considertermsbuilt out of function symbols, con-

stants and variables. We will have a special designated set
of constants, calledextension constants, which can only be
created by theExtension inference rule given later in this
section. Ifs and t are terms, thens � t is an equation.
An equation between two extension constants is called an
extension equation. The negation of an equation is called
a disequationand written in the forms 6� t. A clauseis
a disjunction of equations and disequations. Predicates can
be encoded by equations, by treating predicate symbols as
function symbols, and adding a new constant symbol>. IfA is a predicate, then we encodeA as the equationA � >,
andnegA is encoded asA 6= >. Therefore, for simplicity,
we assume that� is our only predicate symbol. IfE is a set
of clauses, then we designate the set of function symbols
and constants appearing inE as�E .

An equations � t is called areal equationif s is not> and t is not>. A clause which contains at most one
real equation is called asingle equation clause. A set of
single equation clauses is called asingle equation theory.
Note that any form of disequations are allowed in a single
equation clause.

We define a substitution as usual to be a mapping from
variables to terms which is almost everywhere the identity,
and we also identify a substitution with the homomorphic
extension of itself. In an abuse of notation, we also define a
substitution whose domain is the set of constants and writeC[c 7! d] to mean that every occurrence ofc in C is re-
placed byd.

We assume a reduction ordering�, which is total
on ground terms, for example, the lexicographic path
ordering[6]. This ordering is extended to equations by con-
sidering them as multisets of terms, and then to clauses by
considering them as multisets of equations. We define the
ordering in such a way that the negative literals are always
slightly bigger than the positive ones, and the smallest terms
are the constant> and the extension constants. Since the or-
dering is total, we can always orient the ground equations,
hence we treat them often as rewrite rules and writes ! t
instead ofs � t.

We want to to decide the satisfiability of a set of ground
equations and disequations, modulo a theory. First we pro-

vide an algorithm to make the ground equations and dise-
quationsflat.

Definition 1 Define a new set of constants called ex-
tension constants. Aflat f -rule is a rule of the formf(c1; � � � ; cn)! c0, where eachci is an extension constant
andn � 0. An equation isflat if it is a flat f -rule or an
extension equation. A disequation isflat if it contains only
extension constants.

Let S be a set of equations and disequations. ThenS
can be flattened by repeated application of the following
Extensionrule[4]: S [fA[t]gS [fA[c]; t! cg

wherec is a fresh extension constant,A[t] is not flat, andt is either

1. a constanta which is not an extension constant, or

2. of the formf(c1; : : : ; cn) such thatc1; : : : ; cn are ex-
tension constants,

The number of rules created by this will be the number
of function (and constant) symbols inS.

From now on, we assume thatS is a set of ground, flat
equations.

3 Saturation

In this section we will define a sound and complete set of
inference rules for determining the unsatisfiability of a set
of clauses. First we define some closure rules in Figure 1,
and some deletion rules in Figure 2. This are the same as
the standard inference rules given in [3], except for an addi-
tional rule calledOrient .

The inference rules use aselection rule, which is a func-
tion that is applied to a clauseC and returns a set of one or
more literals inC. We writeSel(C) as the set of literals
selectedin C. The selection rule is very important for our
purposes, because it restricts the literals needed to be in-
volved in an inference, and a clever selection rule may yield
a decision procedure where another selection rule does not.
For completeness, the selection rule must have the follow-
ing properties:

Selection Rule
For all clausesC, Sel(C) contains

1. a negative literal inC (“don’t care non-determinism”)
or

2. all maximal literals inC wrt �.

2

Right Paramodulation:G [fu[s0] � v _ C; s � t _DgG0 [f(u[t] � v _ C _D)�g
whereG0 = G [fu[s0] � v _ C; s � t _ Dg,� = mgu(s; s0), u[s0] � v is selected in its clause,s � t is selected in its clause,u[s0]� 6� v�, s� 6�t�, ands0 is not a variable.

Left Paramodulation:G [fu[s0] 6� v _ C; s � t _DgG0 [f(u[t] 6� v _ C _D)�g
whereG0 = G [fu[s0] 6� v _ C; s � t _ Dg,� = mgu(s; s0), u[s0] � v is selected in its clause,s � t is selected in its clause,u[s0]� 6� v�, s� 6�t�, ands0 is not a variable.

Equational ResolutionG [fu 6� v _ CgG0 [fC�g
whereG0 = G [fu 6� v _ Cg, � = mgu(u; v)
andu 6� v is selected.

Equational FactoringG [fs � t _ s0 � u _ CgG0 [f(s � u _ t 6� u _ C)�g
whereG0 = G [fs � t _ s0 � u _ Cg, � =mgu(s; s0), s � t is selected,t� 6� u�, s� 6� t�
ands0� 6� u�.

Orient G [fc � dgG[c 7! d]
where c and d are extension constants anddepth(c) � depth(d). Then we set the
precedencec � d and set depth(d) =maxfdepth(d); 1 + depth(c)g.

Figure 1. Rules for Closure

Subsumption: G [fC;C 0gG [fCg
whereC� � C 0 for some substitution�.

Simplification:G [fC[l0]; l � rgG [fC[r�]; l � rg
wherel0 = l�, l� � r�, andC[l0] � (l� � r�).
Tautology Deletion:G [ft � t _ CgG ; G [fs � t _ s 6� t _ CgG

Figure 2. Rules for Deletion

Closure rules are necessary for completeness. Deletion
rules are optional but recommended, because they decrease
the search space. All of the closure rules except forOrient
add a new clause.Orient is also exceptional, because it is
a global, rather than a local rule. We require thatOrient is
performed eagerly. In other words, as soon as an extension
equation is created,Orient is performed immediately.

We will define a function calleddepth, which will be ap-
plied to extension constants. When an extension constantc
is created by theExtensionrule, we setdepth(c) = 0. The
Orient rule will modify the depth of an extension constant.
The precedence of extension constants is not determined
by the original precedence. Precedence between these con-
stants will be determined by theOrient rule, by analyzing
depth. It will be determined in such a way that every ex-
tension constant has only logarithmically many extension
constants smaller than it, just as in the union-find algorithm.

An inference systemI is a set of closure and deletion
rules. A (possibly infinite) set of clausesT is considered to
besaturatedby an inference systemI if any application of
a closure rule fromI to T results in a clauseC such that
either

1. C is in T , or

2. a sequence of deletion rules fromI to T [fCg will
result inT (i.e.,C could be removed, so the inference
is not necessary).3

A set of clausesS has thefinite saturation propertyif T is
a saturation ofS, andT is finite. If T is a set of clauses,

3This nonstandard definition of redundancy is needed in the next sec-
tion.

3

thenT 0 is asaturation ofT by I if T 0 is saturated byI andT 0 is obtained by a (possibly infinite) sequence of closure
and deletion rules fromI applied toT . This mimics what
happens in a real theorem prover, where closure rulesmust
be applied and deletion rulesmay be applied. In practice,
it is better to apply deletion rules whenever possible to cut
down on the size of the search space.

Let I be the inference system consisting of the closure
rules in Figure 1. and the deletion rules of Figure 2. We
have the following theorem[3].

Theorem 1 A setT of clauses is unsatisfiable if and only if
the empty clause is in a saturation ofT by I if and only if
the empty clause is in all saturations ofT byI .

In particular, we will consider a set of clausesE that is
already saturated byI , and a set of flat ground equations
and disequationsS. We would like to know whetherI halts
onE [S.

4 Meta-saturation

In this section, we considerE to be a single equation
theory and show a sufficient condition forE [S to have the
finite saturation property for any setS of ground equations
and disequations. To do this, we define an inference systemP , and then a certain set of equations is saturated byP . If
this set of equations has the finite saturation property underP , then any suchE [S will have the finite saturation prop-
erty underS. This means that any saturation ofE [S will
halt, and moreover we show that it halts in polynomial time.
The case whereE is not a single equation theory is defined
in the next section by a different inference system, but in
that case it is only shown to halt in exponential time.

First we will define a set of constraint equations and dis-
equationsGE , that will in a sense represent any possible set
of flat, ground equations and disequationsS.

The only constraints that we are going to impose on
terms in the equations inGE , areconstant constraints. An
atomic constant constraintis of the formconst(t), and it is
true if t is an extension constant. Aconstant constraintis
a conjunction of zero or more atomic constant constraints,
which is true if each atomic constant constraint in the con-
junction is true. A substitution� satisfiesa constant con-
straint' if '� is true. Aconstrained clauseis of the formC [[']], whereC is an (unconstrained) clause and' is a
constant constraint.C� is an instanceof C [[']] if � is a
substitution satisfying'. Orderings on constrained clauses
can be defined so that a clauseC is bigger than a clauseD if all ground instances ofC are bigger than all ground
instances ofD.

GE is defined as the following set of equations:GE := ff(x1; : : : ; xn) � x0 [[const(x0) ^ � � �^const(xn)]]jf 2 �Eg [fx � y [[const(x) ^ const(y)]];x 6� y [[const(x) ^ const(y)]]g
Now we present an inference systemP for E [GE , that

will simulate closure rules ofI applied toE [S. We can-
not simulate all deletion rules, because we cannot assume
that there will always exist ground clauses in the saturation
of E [S, on which such a deletion depends. The infer-
ence systemP is really the same asI , expect that all clauses
now have constraints (unconstrained clauses have the empty
constraint), which are inherited by the conclusion of an in-
ference. Also, we no longer have theOrient rule, and the
Deletion rules are more restrictive.

The closure rules ofP are given in Figure 3 and the dele-
tion rules are in Figure 4.

Before presenting the theorem first important theorem of
this paper, we need a couple more definitions.

Definition 2 Let C [[']] be a constrained clause.C� is a
constraint instanceof C [[']] if Dom(�) = V ars(') and
the range of� only contains extension constants.

Notice that ifC� is a constraint instance ofC, then it is
also an instance ofC [[']], because' is satisfied. However,C� may not be ground, because unconstrained variables are
not substituted for.

Now we show that for a single equation theory, a finite
saturation ofE [G(E) implies a finite saturation ofE [S
for any set of ground equations and disequationsS, which
gives a decidability result for the theoryE.

Theorem 2 LetE be a single equation theory, finitely sat-
urated byI . LetG be the set of all clauses generated in a
finite saturation ofE [GE byP (i.e.,E has finite satura-
tion property). LetS be a set of flat ground equations and
disequations. Then we can saturateE [S by I such that
every clause generated in the saturation is� a constraint instance of a clause inG, or� a flatf -rule wheref 62 �E
Proof. The proof is by induction on the length of saturation
inferences inI . For the base case, we show that all clauses
in E[S satisfy the theorem. This is true, because, since the
equations and disequations inS are flat, then each equation
and disequation inS is a constraint instance of a member ofGE , or is a flatf -rule wheref does not appear inE.

Now, in the inductive part we have to show 2 facts:

1. Every clause added toE[S in the process of saturation
is a constraint instance of some clause in the saturation
of E [GE or a flatf -rule.

4

Right Paramodulation:G [fu[s0] � v _ C [[']]; s � t _D [[]]gG0 [f(u[t] � v _ C _D [[' ^]])�g
whereG0 = G [fu[s0] � v _ C [[']]; s � t _D [[]]g, � = mgu(s; s0), u[s0] � v is selected in
its clause,s � t is selected in its clause,u[s0]� 6�v�, s� 6� t�, ands0 is not a variable.

Left Paramodulation:G [fu[s0] 6� v _ C [[']]; s � t _D [[]]gG0 [f(u[t] 6� v _ C _D [[' ^]])�g
whereG0 = G [fu[s0] 6� v _ C [[']]; s � t _D [[]]g, � = mgu(s; s0), u[s0] � v is selected in
its clause,s � t is selected in its clause,u[s0]� 6�v�, s� 6� t�, ands0 is not a variable.

Equational ResolutionG [fu 6� v _ C [[']]gG0 [f(C [[']])�g
where G0 = G [fu 6� v _ C [[']]g, � =mgu(u; v) andu 6� v is selected.

Equational FactoringG [fs � t _ s0 � u _ C [[']]gG0 [f(s � u _ t 6� u _ C [[']])�g
whereG0 = G [fs � t _ s0 � u _ C [[']]g,� = mgu(s; s0), s � t is selected,t� 6� u�,s� 6� t� ands0� 6� u�.

Figure 3. Constrained Rules for Closure

Subsumption: G [fC;C 0 [[']]gG [fCg
whereC is a member ofE, andC� � C 0 for
some substitution�, or if C andC 0 are renamings
of each other.

Simplification:G [fC[l0] [[']]; l � rgG [fC[r�] [[']]; l � rg
wherel � r is a member ofE, l0 = l�, l� � r�,
andC[l0] � (l� � r�).
Tautology Deletion:G [ft � t _ C [[']]gG ;G [fs � t _ s 6� t _ C [[']]gG
Also, a clause with an unsatisfiable constraint may
be removed.

Figure 4. Constrained Rules for Deletion

2. A deletion of a clause in the saturation ofE [GE will
not leave some clauses in the saturation ofE [S that
were constraint instances of the deleted clause, with no
representative in the saturation ofE [GE (i.e. that all
these constraint instances will also be deleted from the
saturation ofE [GE).

Hence in Part 1 of the argument we start by considering
the ruleOrient (Fig.1). Orient is an exceptional rule in the
set of closure rules, because it does not really add any clause
to the set (rather deletes one), but modifies the rest of the set.

Assume that all the clauses inG in the premise of the rule
are constraint instances of some clauses in the saturation ofE [GE or flat f -rules wheref 62 �E . Hence in particular
letC be such a clause which is a constraint instance of someC 0 in the saturation ofE [GE . This means thatC 0� = C.
Hence there is a substitution�0 such thatx�0 = d, wheneverx� = c andy�0 = y� in all other cases. ThereforeC[c 7!d] will also be a constraint instance ofC 0.

Now letC be a flatf -rule, wheref does not appear inE.
Then Orient convertsC to another flatf -rule with extension
constants replaced.

Now we considerRight Paramodulation (Fig.1.).
Assume that the first clause in the premise of the rule is a

5

constraint instance of some clause in the saturation ofE [GE . Then the other clause must be also.
Sinceu[s0] � v _ C is a constraint instance of a clauseD1 in the saturation ofE [GE , D1� = u[s0] � v _ C.

Similarly,D2� = s � t _D.
We have two cases to consider:

1. If s0 is not an extension constant, then there is a terms1 in D1, such thats1� = s0 is not a variable, and
hence there is a Right Paramodulation inference fromD1 andD2 toD3 such thatD3� = u[t] � v _ C _D.

2. If s0 is an extension constant, then, sinceu[s0] � v
is a constraint instance ofD1, D1 = u[x] � v0 _C 0 [[const(x) ^ ']]. s � t must then be an exten-
sion equation. Sinces � t is selected in its clause,
the rest of the clause must also be extension equations.
But thenD must be empty, since otherwise the clauses � t_D is not a single equation clause, and the prop-
erty is being a single equation clause is preserved by
the inferences. So Orient applies.

Right Paramodulation involving flat f -rules
Assume that the equation in the premiseu[s0] � v of the
rule is a flatf -rule. In this caseC is empty. We have two
cases here: eithers � t is another flatf -rule ors � t is an
extension equation.

1. Consider the case wheres � t is an extension equa-
tion. ThenD must be empty. So Orient applies.

2. If s � t is another flatf -rule, thenC andD are empty
and by Right Paramodulation we get an extension
equation, which is an instance ofx � y [[const(x) ^const(y)]] in the saturation ofE [GE .

The inferencesLeft Paramodulation (Fig.1.), Equa-
tional Resolution (Fig.1.) and Equational Factoring
(Fig.1.) can also be lifted in a similar way.

For the second part of the inductive argument, let us con-
sider deletion rules in the saturation ofE [GE . Assume
that there is a clauseD in the saturation ofE [GE , which
is deleted by the first case ofSubsumption (Fig.4.) and a
clauseC is a constraint instance ofD. Notice that accord-
ing to the assumptions of the rule, there must be a clauseD0 2 E, such thatD0� � D. Since all members ofE are
in the saturation ofE[S, there will be a substitution�0 such
thatD0�0 � C, andC will be also deleted by Subsumption
from the saturation ofE [S.

A similar argument may be made forSimplification
(Fig.4.). For Tautology Deletion (Fig.4.), it is enough to
notice that any instance of tautology is also a tautology,
hence will be deleted from the saturation ofE [S. The
other case ofSubsumption is just a matter of deleting du-
plicates. Hence the second part of the proof is done.ut

Next we want to prove a result about the complexity. We
have shown that, for a single equation theoryE, if E [GE
has the finite saturation property, then the theory ofE is de-
cidable. We will now show that it is decidable in polynomial
time. First we define thewidth of a constrained clause.

Definition 3 For a constrained clauseC [[']], define the
width of C [[']], written asw(C [[']]) to be the number of
constrained variables inC. For a set of clausesS, define
thewidth ofS to bew(S) = maxfw(C) j C 2 Sg.

As a consequence of Theorem 2 we have the following.

Theorem 3 Let E be a single equation theory, saturated
by I . LetG be the set of all clauses generated in a finite
saturation ofE [GE by P . LetS be a set of flat ground
equations and disequations. Then the saturation ofE [S
will generateO(jSjw(G)) clauses.

Proof. Theorem 2 shows that every clause generated in the
saturation ofE [S will be a constraint instance of a clause
in G or a flatf -rule wheref does not appear inE.
There are at mostjSj extension constants. Therefore, ifC is
a clause inG, then there are at mostjSjw(C) constraint in-
stances ofC. If all symbols ofS appear inE, then this im-
mediately shows that there areO(jSjw(G)) clauses appear-
ing in the saturation ofE [S, since the number of clauses
in G is constant injSj.

But suppose there is a symbolf which appears inE but
not inS. ThenE[S will contain some flatf -rules. But the
only way a new rule containing the symbolf can be created
is if an extension constant is reduced in a flatf -rule, and
then a new flatf -rule results. These flatf -rules are the only
clauses generated that are not constraint instances ofG. So
we need to count how many times the extension constants
of a flat f -rule can be reduced. Note that the precedence
of the extension constants has been designed specifically so
that there is no reduction sequencec1 � c2 � � � � � cn of
extension constants that is longer thanlg(jSj). Each clause
contains no more than a constant number of extension con-
stants (we are considering arity to be constant). Therefore,
the extension constants in that clause will be reduced by an
Orient ruleO(lg(jSj)) times. Since there are at mostjSj flatf -rules, this gives usO(jSj� lg(jSj)) clauses that originate
from flat f -rules.

We have shown that there areO(jSjw(G)) constraint in-
stances ofG, and there areO(jSj � lg(jSj)) clauses origi-
nating from flatf -rules. So there areO(jSjw(G) + (jSj �lg(jSj))) clauses generated in the saturation ofE[S. Since
there is a clausex � y [[const(x) ^ const(y)]] in GE , thenw(G) is at least 2, so the first term dominates the second,
and therefore there areO(jSjw(G)) clauses generated.ut

This shows that in this case the theory is decidable in
polynomial time, but we can get a better bound on the poly-
nomial in some cases. We now give some definitions which

6

lead to a theorem giving a better bound on the decision pro-
cedure in some cases, for example the theory of lists.

A saturation can be viewed as a graph, so that each clause
generated (modulo renaming) labels a node in the graph. If
there is an inference in the saturation withC1; � � � ; Cn as the
premises andC as the conclusion (modulo renaming), then
there is an edge from each node labeled withCi to the node
labeled withC. We call this graph asaturation graph. The
saturation is calledcyclic if the saturation graph contains a
cycle, otherwise the saturation is callednoncyclic.

We define aproofof C inductively, as a tree of nodes la-
beled with clauses, whose root is labeledC. If C 2 S then
a single node labeled withC is aproofof C. Suppose there
is an inference with premisesC1; � � � ; Cn and conclusionC, and suppose that�1; � � � ;�n are proofs ofC1; � � � ; Cn
respectively. Then the tree containing�1; � � � ;�n, plus the
node labeled byC and the edges from eachCi to C is a
proof ofC. Note that a proof ofC is just one way of deriv-
ingC.

Note that a proof could be also defined as a subgraph in
the saturation graph, that can be directed from the root to
the leaves (hence a dag) and then the tree is the expanded
dag with all nodes having at most one parent. If a saturation
graph is noncyclic, there are only a finite number of proofs
of C.

Definition 4 We call a clauseD an initial ancestorof a
clauseC in a proof � in the saturation ofE [GE , ifD labels a leaf in the proof� of C, D is not of a formx � y [[const(x) ^ const(y)]] andD 62 E.

In a proof of a clauseC in the saturation ofE [GE ,
let k(C;E) be the number of initial ancestors ofC which
are not inE. Definek(E) asmaxfk(C;E) j C in the
saturation ofE [G(E) andC is not of the formx �y [[const(x) ^ const(y)]]g.
Theorem 4 Let E be a single equation theory, saturated
by I . LetG be the set of all clauses generated in a finite
saturation ofE [GE by P . LetS be a set of flat ground
equations and disequations. If the saturation ofE [GE
is noncyclic. Then the saturation ofE [S will generateO(jSjk(E) � lg(jSj)) clauses.

Proof. Consider a clauseC in the saturation graph ofE [GE . Assume first thatC is not of the formx �y [[const(x) ^ const(y)]].
We need to consider how many constraint instances ofC

will appear in the saturation ofE [S. Since the saturation
graph is noncyclic, there is only a finite number of proofs ofC in the saturation graph. And the since saturation graph is
not dependent onS, this number is not dependent onS.

Let’s consider one of the proofs,�, of C. ThenC has at
mostk(C;E) initial ancestors which are constrained equa-
tions in�. Consider an equatione[x1; : : : ; xm] appearing

in a clause in the proof�. Note that if we consider an con-
straint instance�� of �, then the value ofxi� is the same
as the value of one of the parents ofe, leading eventually
back to an identical value of one of the initial ancestors ofC. Even if we consider an instance ofC that is reduced
by some applications of the Orient rule, there is a proof
where all of its ancestors are similarly reduced by Orient.
So the number of potential instances ofC in a proof� is
the same as the number of possible initial ancestors in a
constraint instance of�. In �, there arek(C;E) initial an-
cestors ofC. At the beginning of the saturation ofE [S,
there areO(jSjk(C;E)) instances of the initial ancestorsE.
During the saturation, each of these sets of ancestors can
be reduced by OrientO(lg(jSj) times. Therefore, there
areO(Sk(C;E) � lg(jSj) instances ofC derived from in-
stances of�. And since there are a constant number of
proofs ofC, there areO(Sk(C;E) � lg(jSj) instances ofC
in the saturation ofE [S. And since there are a constant
number of clauses in the saturation ofE [GE , there areO(Sk(C;E) � lg(jSj) clauses generated in the saturation ofE [S.

Now we have to count the instances of clauses in the sat-
uration ofE[GE of the formx � y [[const(x)^const(y)]].
There are onlyS of them, because every time one of them
is created, it will be immediately used in an Orient rule, and
one extension constant is deleted. Since constants can only
be deletedO(jSj) times, then onlyO(jSj) extension equa-
tions can be created.

In order to complete the proof, we have to count the num-
ber of flatf -rules withf 62 �E . But since each of them can
be reduced onlyO(lg(jSj)), there will beO(jSj � lg(jSj))
flat f -rules in the saturation ofE [S.

Since(jSjk(E)� lg(jSj)) dominates over(jSj� lg(jSj))
andS, this means that there areO(jSjk(E)�lg(jSj)) clauses
in the saturation ofE [S. ut

Note that any time a clauses is reduced by Orient, it can-
not ever appear again, because the every occurrence of the
extension constant that is reduced is removed from the set
of clauses.

5 Extending the Procedure

The results in the previous section are for single equa-
tion theories. In order to directly simulate more than single
equation theories, we would need to allow inferences into
variables in certain restricted cases. This would be possi-
ble, but it ends up exploding the search space. If there are
two real variables in a clause, then inferences with flat rules
can reduce the clause to another clause containing two ex-
tension equations. These extension equations can be used in
inferences with other clause, which have the effect of con-
tinuing to create larger clauses with more and more exten-

7

sion equations. Therefore, we would lose the finite satura-
tion property.

Therefore, we choose a different approach to handling
general clauses. We use the same inference systemP as in
the previous section, but we now allow a clause to repre-
sent constraint instances as before, but now we also allow
constraint instances with some any possible disjunction of
extension equations disjoined to them. This makes the com-
plexity of the procedure go from polynomial to exponential.

Theorem 5 LetE be a set of clauses, finitely saturated byI . LetG be the set of all clauses generated in a finite sat-
uration ofE [GE by P . (i.e. E has the finite saturation
property wrtP .) LetS be a set of flat ground equations and
disequations. Then we can saturateE [S by I such that
every clause generated in the saturation is� a disjunction of extension equationsc1 � d1 _ : : : _cn � dn, wheren � 1, or� a clause of the formC _ c1 � d1 _ : : : _ cn � dn,

whereC is a constraint instance of a clauseC 0 in G
andn � 0, or� a clause of the formC _ c1 � d1 _ : : : _ cn � dn,
whereC is a flatf -rule wheref 62 �E andn � 0.

Proof. The proof, as in the previous completeness theorem,
is by induction on the length of saturation inferences inI .
The base case is the same as in the previous case.

For the first part we show that every clause added toE [S in the process of saturation is one of the three kinds
named in the theorem.

Let us consider an inference with the ruleOrient (Fig.1).
Assume that a clause in the saturation ofE [S is of the
form c1 � d1 _ : : : _ cn � dn, wheren � 1, and all the
constants are extension constants. Then Orient may reduce
one constant, but the modified clause will be of the same
form.

Assume now that there is a clause of the formC _ c1 �d1 _ : : : _ cn � dn, whereC is a constraint instance of
a clauseC 0 in G, n � 0 and c1 � d1; : : : cn � dn are
extension equations. SinceC is a constraint instance ofC 0,
there is a substitution�, such thatC 0� = C. Hence if
Orient modifies the clause in theC-part, we can see that
just as in the previous section, there will be a substitution�0
such thatx�0 = d, wheneverx� = c andy�0 = y� in all
other cases. ThereforeC[c 7! d] will also be a constraint
instance ofC 0. If Orient modifies the clause in one of the
extension equations, we will get still a clause of the same
form.

Assume now that there is a clause of the formC _ c1 �d1 _ : : :_ cn � dn, whereC is a flatf -rule wheref 62 �E ,n � 0 andc1 � d1; : : : ; cn � dn are extension equations. If
Orient affects theC-part of the clause, it will change it into

another flatf -rule, and if it affects the part with extension
equations, it will also preserve the form of the clause.

Now we considerRight Paramodulation (Fig.1.).

Assume thatu[s0] � v _ C is a disjunction of extension
equations. Thenu[s0] is just an extension constantc, ands = c. s � t must be an extension equation. Thens �t_D must be a disjunction of extension equations, because
otherwise there would be some bigger literal in the clause,
ands � t would not be selected. Hence the conclusion of
the rule will be:t � v _ C _D which is also a disjunction
of extension equations.

Assume thatu[s0] � v _ C is a clause of the formD2 _ c1 � d1 _ : : : _ cn � dn, whereD is a constraint in-
stance of a clauseD0 in G, n � 0 , andc1 � d1_ : : :_cn �dn are extension equations.
If u[s0] � v is an extension equation, thenC must also be a
disjunction of such equations, because otherwiseu[s0] � v
would be too small to be selected (the previous case ap-
plies). Hence assume thatu[s0] � v is in theD2-part. The
clause has the formu[s0] � v_C1_c1 � d1_: : :_cn � dn,
whereu[s0] � v_C1 is a constraint instance ofD0. We have
two cases to consider here:s � t is an extension equation
or not. If s � t is an extension equation, then eitherD is
empty, but then Orient applies, orD must be a disjunction
of extension constants (because otherwises � t would be
too small to be selected). Then Right Paramodulation gen-
erates the clause:u[t] � v _C1 _ c1 � d1 _ : : :_ cn � dn.
SinceD0� = u[s0] � v _D1, there is a substitution�0 such
thatx�0 = d, wheneverx� = c andy�0 = y� in all other
cases. Thereforeu[t] � v _ D1 will also be a constraint
instance ofD0 and the form of the clause will be preserved.

Consider now thats � t is not an extension equation.
Let s � t _ D be of the forms � t _ D1 _ c01 � d01 _: : : _ c0m � d0m wheres � t _ D1 is a constraint instance
of a clauseD00 in the saturation ofE [GE . There is a
substitution� such thatD0� = u[s0] � v_C1,D00� = s �t_D1 and there is an inference in the saturation ofE [GE
from D0 andD00 to D000 such thatD000� = u[t] � v0 _ C 01.
Hence the conclusion of the Right Paramodulation in the
saturation ofE[S is still of the right form (the second case
of the theorem).

It is not possible fors � t to be a flatf -rule with f 62�E , becauses0 cannot contain the symbolf , sinceD2 is a
constraint instance of a clause in the saturation ofE [GE .

Assume then thatu[s0] � v _ C is of the formf(c01; : : : ; c0m) � c0 _ c1 � d1 _ : : : _ cn � dn, whereu[s0] � v is f(c01; : : : ; c0m) � c0 is a flat f -rule wheref 62 �E andn � 0. If s0 is an extension constant (s0 = c0i
for somei), thens � t must be an extension equation, and
if D is empty, Orient applies, otherwises � t _ D must
be a disjunction of extension equations. From the Right
Paramodulation we get then another clause which is a flatf -

8

rule disjoined with extension equations. Now consider the
case wheres0 is not an extension constant, thens0 isu itself,
ands � t must be another flatf -rule. By Right Paramodu-
lation we getv � t _ c1 � d1 _ : : : _ cn � dn _D, hence
the disjunction of extension equations.

The inferencesLeft Paramodulation (Fig.1.), Equa-
tional Resolution (Fig.1.) and Equational Factoring
(Fig.1.) can also be lifted in a similar way.

For the second part of the inductive argument, let us con-
sider deletion rules in the saturation ofE [GE . Hence as-
sume that there is a clauseD in the saturation ofE [GE ,
which is deleted by the first case ofSubsumption (Fig.4.)
and there is a clauseC _ c1 � d1 _ : : : _ cn � dn in the
saturation ofE [S, such thatC is a constraint instance
of D andc1 � d1; : : : ; cn � dn are extension equations
(with n � 0). Hence there must be a clauseD0 2 E, such
thatD0� � D. Since all members ofE are in the satu-
ration ofE [S, there will be a substitution�0 such thatD0�0 � C, hence alsoD0�0 � C _ c1 � d1 _ : : : cn � dn,
andC _ c1 � d1 _ : : : cn � dn will be also deleted by
Subsumption from the saturation ofE [S.

A similar argument may be made forSimplification
(Fig.4.). For theTautology Deletion (Fig.4.), it is enough
to notice that any instance of tautology is also a tautology,
hence will be deleted from the saturation ofE[S. The other
case ofSubsumptionis just a matter of deleting duplicates.
Hence, the second part of the proof is done.ut

That shows that these are decidable theories. Next we
shown that the complexity of the decision procedure is sim-
ply exponential

As a consequence of Theorem 5 we have the following.

Theorem 6 LetE be a finite set of clauses, saturated byI .
LetG be the set of all clauses generated in a finite satura-
tion ofE[GE byP . LetS be a set of flat ground equations
and disequations. Then the satisfiability ofE [S will gen-
erateO(2jSj2) clauses.

Proof. From the previous section we know that there areO(jSjw(G)) constraint instances of clauses in the saturation
of G plus flatf -rules, wheref does not appear inE.

In this case we must also count all disjunctions of such
clauses with extension equations, and also disjunctions of
extension equations by themselves. There areO(jSj) ex-
tension constants in the saturation ofE [S, hence there
areO(jSj2) extension equations, and there areO(2jSj2) dis-
junctions of such equations. Hence there areO(jSjw(G) �2jSj2) = O(2jSj2) clauses generated in the saturation ofE [S. ut
6 Example

We illustrate our results with some examples from the
paper [1]. First is the theory of lists.

Let E be the list theory defined by the following equa-
tions: car(cons(x; y)) � xcdr(cons(x; y)) � y

ThenGE consists of the following constrained equations
and disequations:car(x) � y [[const(x) ^ const(y)]]cdr(x) � y [[const(x) ^ const(y)]]cons(x; y) � z [[const(x) ^ const(y) ^ const(z)]]x � y [[const(x) ^ const(y)]]x 6� y [[const(x) ^ const(y)]]

Consider a Right Paramodulation inference between the
first member ofE and the third member ofGE :car(cons(x; y)) � xcons(x0; y0) � z0 [[const(x0) ^ const(y0) ^ const(z0)]]car(z0) � x0 [[const(x0) ^ const(z0)]]

We removed the constraintconst(y0) from the conclu-
sion, sincey0 does not appear in the clause. The conclusion
will be immediately deleted because it is a renaming of a
member ofGE . However, this inference will determine two
edges in the saturation graph, one from the node labeled
by the first premise to the node labeled by the conclusion,
and the another one from the node labeled by the second
premise to the node labeled by the conclusion.

There is also an inference between the second member
of E and the third member ofGE , but that is also deleted
because it is a renaming of something inGE . There are no
other possible inferences. ThereforeE [GE is the satu-
ration of itself. There were some edges added to the satu-
ration graph, but it did not create a cycle. Therefore, this
shows that the problem of the satisfiability ofE [S for any
set of equations and disequationsS can be decided in timeO(jSj � lg(jSj)).

Now let us consider the case whereE is the theory of
arrays, also from [1]. In this example,select is a function
that takes an array and an index position, and returns the
element at that index position.store is a function that takes
an array, an index position and en element, and returns the
array that results when that element is put in that position in
the array. select(store(x; y; z); y) � zy � w _ select(store(x; y; z); w) = select(x;w)

ThenGE consists of the following constrained equations
and disequations:select(x; y) � z [[const(x) ^ const(y) ^ const(z)]]store(x; y; z) � w [[const(x) ^ const(y) ^ const(z)^const(w)]]x � y [[const(x) ^ const(y)]]x 6� y [[const(x) ^ const(y)]]

9

The only inference which generates a new clause
is an inference between the second member ofE
and the second member ofGE , which gives the
clauseselect(x;w) � select(z; w) _ (y � w)[[const(x) ^const(y) ^ const(z)]]

The only inference which generates a new clause is an
inference between this new clause and the first member ofGE , which givesselect(x;w) � z _ (y � w)[[const(x) ^const(y) ^ const(z) ^ const(w)]]

Then there is an inference between this new clause and
the first member ofGE , plus an inference between this new
clause and itself. These two inference generate the two
clausesx1 � x2 _ x3 � x4[[const(x1) ^ � � � ^ const(x4)]]
and x1 � x2 _ x3 � x4 _ x5 � x6[[const(x1) ^ � � � ^const(x6)]]

All inference using these two clauses are inferences into
a variable position, so they are disallowed, and there are
no more inference. Therefore,E has the finite saturation
property.

7 Conclusion

We consider our results to be an extension of previous
results. In [9], there is an algorithm for deciding the the-
ory of lists. In [8] there is a decision procedure for the
theory of arrays, and in [10] a decision procedure for the
theory of arrays with extensionality. In [1], a general re-
sult is given which subsumes the previous results and gives
a general procedure which fits everything into a saturation
theorem proving framework. What we have done is to au-
tomate and generalize the results of [1]. Given a theory for
a data structure in first order logic with equality, we pro-
vide a set of inference rules such that when they halt, then
the standard Paramodulation rules will decide the theory of
that data structure. Not only will they decide the theory,
but they will also give a bound on the number of clauses
generated. For certainnoncyclictheories like lists, the com-
plexity is O(n � lg(n)). For some other theories, includ-
ing those that have no disjunctions, the complexity is poly-
nomial. For other theories, like the theory of arrays, it is
simply exponential. Our results are an extension of the con-
gruence closure algorithm given in [4], which gives a nice
proof of anO(n � lg(n)) bound for the empty theory. We
showed that their algorithm can be extended tononcyclic
theories, like the theory of arrays. Our work is also in the
spirit of [5], because it gives an automatic method to derive
decision procedures and complexity results, that of satura-
tion of a particular theory.

Acknowledgments

Many of these results were obtained while the first au-
thor was visiting MPI Saarbrücken, and we thank Harald

Ganzinger for many helpful discussions. Also, this work
is based heavily on the work of [1]. We thank Alessandro
Armando, Silvio Ranise and Michaël Rusinowitch for dis-
cussions of their paper. We would also like to thank the
anonymous referees for helping us improve the quality of
this paper.

References

[1] A. Armando, S. Ranise and M. Rusinowitch. Uni-
form Derivation of Decision Procedures by Superposi-
tion. In Proceedings 15th Workshop on Computer Sci-
ence Logic., LNCS vol. 2142, 513-527, 2001.

[2] F. Baader and T. Nipkow.Term Rewriting and All That.
Cambridge, 1998.

[3] L. Bachmair and H. Ganzinger. Rewrite-based equa-
tional theorem proving with selection and simplifica-
tion. In Journal of Logic and Computation4(3), 1-31,
1994.

[4] L. Bachmair and A. Tiwari. Abstract Congruence Clo-
sure and Specializations. InProceedings 17th Confer-
ence on Automated Deduction.LNCS vol. 1831, 64-78,
2000.

[5] D. Basin and H. Ganzinger. Automated complexity
analysis based on ordered resolution. InJ. Association
for Computing Machinery48(1), 70-109, 2001.

[6] N. Dershowitz. Termination of Rewriting. InJournal
of Symbolic Computation3, 69-116, 1987.

[7] D. Kapur. Shostak’s Congruence Closure as Comple-
tion. InProceedings 8th Conference on Rewriting Tech-
niques and Applications.LNCS vol. 1232, 23-37, 1997.

[8] G. Nelson. Techniques for Program Verification.
In Technical Report CSL-81-10, Xerox Palo Alto Re-
search Center, June 1981.

[9] G. Nelson and D. C. Oppen. Fast Decision Procedures
Based on Congruence Closure. InJ. Association for
Computing Machinery27(2), 356-364, 1980.

[10] A. Stump, D. L. Dill, C. W. Barrett and J. Levitt.
A Decision Procedure for an Extensional Theory of Ar-
rays. InProceedings 16th IEEE Symposium on Logic in
Computer Science,IEEE Computer Society Press, 29-
37, 2001.

10

