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Abstract. We give a general goal directed method for solving the E-
unification problem. Our inference system is a generalization of the in-
ference rules for Syntactic Theories, except that our inference system is
proved complete for any equational theory. We also show how to easily
modify our inference system into a more restricted inference system for
Syntactic Theories, and show that our completeness techniques prove
completeness there also.

1 Introduction

E-unification [1] is a problem that arises in several areas of computer science,
including automated deduction, formal verification and type inference. The prob-
lem is, given an equational theory E and a goal equation u ≈ v, to find the set of
all substitutions θ such that uθ and vθ are identical modulo E. In practice, it is
not necessary to find all such substitution. We only need to find a set from which
all such substitutions can be generated, called a complete set of E-unifiers.

The decision version of E-unification (Does an E-unifier exist?) is an unde-
cidable problem, even for the simpler word problem which asks if all substitutions
θ will make uθ and vθ equivalent modulo E. However there are procedures which
are complete for the problem. Complete, in this sense, means that each E-unifier
in a complete set will be generated eventually. However, because of the undecid-
ability, the procedure may continue to search for an E-unifier forever, when no
E-unifier exists.

One of the most successful general methods for solving the E-unification
problem has been Knuth-Bendix Completion[12] (in particular, Unfailing
Completion[2]) plus Narrowing[7]. This procedure deduces new equalities from
E. If the procedure ever halts, it solves the word problem. However, because of
the undecidability, Knuth-Bendix Completion cannot always halt.

Our goal in this paper is to develop an alternative E-unification procedure.
Why do we want an alternative to Knuth-Bendix Completion? There are several
reasons. First, there are simple equational theories for which Completion does
not halt. An example is the equational theory E = {f(g(f(x))) ≈ g(f(x))}. So
then it is impossible to decide any word problem in this theory, even a simple
example like a ≈ b, which is obviously not true. Using our method, examples
like this will quickly halt and say there is no solution.
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A related deficiency of Completion is that it is difficult to identify classes of
equational theories where the procedure halts, and to analyze the complexity
of solving those classes. That is our main motivation for this line of research.
We do not pursue that subject in this paper, since we first need to develop a
complete inference system. That subject is addressed in [14,15], where we deal
classes of equations where the E-unification is decidable in an inference system
similar to the one given in this paper.

Another aspect of Completion is that it is insensitive to the goal. It is possi-
ble to develop heuristics based on the goal, but problems like the example above
still exist, because of the insensitivity to the goal. The method we develop in this
paper is goal directed, in the sense that every inference step is a step backwards
from the goal, breaking the given goal into separate subgoals. Therefore we call
our method a goal directed inference system for equational reasoning. This qual-
ity of goal-directedness is especially important when combining an equational
inference system with another inference system. Most of the higher order in-
ference systems used for formal verification have been goal directed inference
systems. Even most inference systems for first order logic, like OTTER, are of-
ten run with a set of support strategy. For things like formal verification, we
need equality inference systems that can be added as submodules of previously
existing inference systems. We believe that the best method for achieving this is
to have a goal directed equality inference system.

We do not claim that our procedure is the first goal directed equational in-
ference system. Our inference system is similar to the inference system Syntactic
Mutation first developed by Claude Kirchner [8,10]. That inference system ap-
plies to a special class of equational theories called Syntactic Theories. In such
theories, any true equation has an equational proof with at most one step at
the root. The problem of determining if an equational theory is syntactic is
undecidable[11]. In the Syntactic Mutation inference system, it is possible to de-
termine which inference rule to apply next by looking at the root symbols on the
two sides of a goal equation. This restricts which inference rules can be applied
at each point, and makes the inference system more efficient than a blind search.

Our inference system applies to every equational theory, rather than just
Syntactic Theories. Therefore, it would be incomplete for us to examine the root
symbol at both sides of a goal equation. However, we do prove that we may ex-
amine the root symbol of one side of an equation to decide which inference rule
to apply. Other than that, our inference system is similar to Syntactic Mutation.
We prove that our inference system is complete. The Syntactic Mutation rules
were never proved to be complete. In [9], it is stated that there is a problem
proving completeness because the Variable Elimination rule (called “Replace-
ment” there) does not preserve the form of the proof. We think we effectively
deal with that problem.

There is still an open problem of whether the Variable Elimination rule can
be applied eagerly.1 We have not solved that problem. But we have avoided those
problems as much as possible. The inefficiency of the procedure comes from cases

1 See [16] for a discussion of the problem and a solution for a very specific case.
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where one side of a goal equation is a variable. We prove that any equation where
both sides are variables may be ignored without losing completeness. We also
orient equations so that inference rules are applied to the nonvariable side of an
equation. This gives some of the advantages of Eager Variable Elimination.

Other similar goal-directed inference procedures are given in [4,5]. The in-
ference system from [4] is called BT. The one in [5] is called Trans. The main
difference between our results and the results in those papers all of our inference
rules involve a root symbol of a term in the goal. This limits the number of
inference rules that can be applied at any point. For BT and Trans there are
inference rules that only involve variables in the goal. These rules allow an explo-
sion of inferences at each step, which expands the search space. This is similar to
the situation in Paramodulation completeness proofs required paramodulation
into variables until Brand[3] proved that this was not necessary for complete-
ness. We believe that the completeness results in this paper are analogous to the
results of Brand, but for goal-directed E-unification. In the case of Paramodula-
tion, the results of Brand prove essential in practice. Another difference between
our results and BT and Trans is that those papers require Variable Elimination,
while ours do not. Gallier and Snyder[4] pointed out the problem of inference
rules involving variables. However, their solution was to design a different infer-
ence system, called T, that allows inferences below the root. Our results solve
this problem without requiring inferences below the root. The problem of Eager
Variable Elimination was first presented in [4].

The format of the paper is to first give some preliminary definitions. Then
present our inference system. After a discussion of normal form, we present
soundness results. In order to prove completeness, we first give a bottom-up
method for deducing ground equations, then use that method to prove com-
pleteness of our goal-directed method. After that we show how our completeness
technique can be applied to Syntactic Theories to show completeness of a proce-
dure similar to Syntactic Mutation. Finally, we conclude the paper. All missing
proofs are in [13].

2 Preliminaries

We assume we are given a set of variables and a set of uninterpreted function
symbols of various arities. An arity is a non-negative integer. Terms are defined
recursively in the following way: each variable is a term, and if t1, · · · , tn are
terms, and f is of arity n ≥ 0, then f(t1, · · · , tn) is a term, and f is the symbol
at the root of f(t1, · · · , tn). A term (or any object) without variables is called
ground. We consider equations of the form s ≈ t, where s and t are terms. Please
note that throughout this paper these equations are considered to be oriented,
so that s ≈ t is a different equation that t ≈ s. Let E be a set of equations, and
u ≈ v be an equation, then we write E |= u ≈ v (or u =E v) if u ≈ v is true
in any model containing E. If G is a set of equations, then E |= G means that
E |= e for all e in G.
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A substitution is a mapping from the set of variables to the set of terms,
such that it is almost everywhere the identity. We identify a substitution with
its homomorphic extension. If θ is a substitution then Dom(θ) = {x | xθ 6= x}.
A substitution θ is an E-unifier of an equation u ≈ v if E |= uθ ≈ vθ. θ is an
E-unifier of a set of equations G if θ is an E-unifier of all equations in G.

If σ and θ are substitutions, then we write σ ≤E θ[V ar(G)] if there is a
substitution ρ such that E |= xσρ ≈ xθ for all x appearing in G. If G is a set
of equations, then a substitution θ is a most general unifier of G, written θ =
mgu(G) if θ is an E unifier of G, and for all E unifiers σ of G, θ ≤E σ[V ar(G)].
A complete set of E-unifiers of G, is a set of E-unifiers Θ of G such that for all
E-unifiers σ of G, there is a θ in Θ such that θ ≤E σ[V ar(G)].

3 The Goal Directed Inference Rules

In this section, we will give a set of inference rules for finding a complete set of
E-unifiers of a goal G, and in the following sections we prove that, for every goal
G and substitution θ such that E |= Gθ, G can be converted into a normal form
(see Section 4), which determines a substitution which is more general than θ.
The inference rules decompose an equational proof by choosing a potential step
in the proof and leaving what is remaining when that step is removed.

We define two special kinds of equations appearing in the goal G. An equation
of the form x ≈ y where x and y are both variables is called a variable-variable
equation. An equation x ≈ t appearing in G where x only appears once in G is
called solved.

As in Logic Programming, we can have a selection rule for goals. For each
goal G, we don’t-care nondeterministically select an equation u ≈ v from G,
such that u ≈ v is not a variable-variable equation and u ≈ v is not solved. We
say that u ≈ v is selected in G. If there is no such equation u ≈ v in the goal,
then nothing is selected. We will prove that if nothing is selected, then the goal
is in normal form and a most general-E unifier can be easily determined.

There is a Decomposition rule.

Decomposition
{f(s1, · · · , sn) ≈ f(t1, · · · , tn)} ∪ G

{s1 ≈ t1, · · · , sn ≈ tn} ∪ G

where f(s1, · · · , sn) ≈ f(t1, · · · , tn) is selected in the goal.
This is just an application of the Congruence Axiom, in a goal-directed way.

If f is of arity 0 (a constant) then this is a goal-directed application of Reflexivity.
We additionally add a second inference rule that is applied when one side of

an equation is a variable.

Variable Decomposition

{x ≈ f(t1, · · · , tn)} ∪ G

{x ≈ f(x1, · · · , xn)} ∪ ({x1 ≈ t1, · · · , xn ≈ tn} ∪ G)[x 7→ f(x1, · · · , xn)]

where x is a variable, and x ≈ f(t1, · · · , tn) is selected in the goal.
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This is similar to the Variable Elimination rule for syntactic equalities. It can
be considered a gradual form of Variable Elimination, since it is done one step
at a time. This rule is the same as the rule that is called Imitation in Trans and
Root Imitation in BT. We have chosen our name to emphasize its relationship
with the Decomposition rule.

Now we add a rule called Mutate. We call it Mutate, because it is very similar
to the inference rule Mutate that is used in the inference procedure for syntactic
theories. Mutate is a kind of goal-directed application of Transitivity, but only
transitivity steps involving equations from the theory.

Mutate
{u ≈ f(v1, · · · , vn)} ∪ G

{u ≈ s, t1 ≈ v1, · · · , tn ≈ vn} ∪ G

where u ≈ f(v1, · · · , vn) is selected in the goal, and s ≈ f(t1, · · · , tn) ∈ E. 2 3

This rule assumes that there is an equational proof of the goal equation at
the root of the equation (see Section 7). If one of the equations in this proof is
s ≈ t then that breaks up the proof at the root into two separate parts. We have
performed a Decomposition on one of the two equations that is created. Contrast
this with the procedure for Syntactic Theories[8] which allows a Decomposition
on both of the newly created equations. However, that procedure only works for
Syntactic Theories, whereas our procedure is complete for any equational theory.
The names of our inference rules are chosen to coincide with the names from [8].
In Trans the Mutate rule is called Lazy Narrowing, and in BT it is called Root
Rewriting.

Next we give a Mutate rule for the case when one side of the equation from
E is a variable.

Variable Mutate

{u ≈ f(v1, · · · , vn)} ∪ G

{u ≈ s}[x 7→ f(x1, · · · , xn)] ∪ {x1 ≈ v1, · · · , xn ≈ vn} ∪ G

where s ≈ x ∈ E, x is a variable, and u ≈ f(v1, · · · , vn) is selected in the goal.
This is called Application of a Trivial Clause in Trans, and it is a special case
of Root Rewriting in BT.

We will write G −→ G′ to indicate that G goes to G′ by one application of
an inference rule. Then ∗−→ is the reflexive, transitive closure of −→.

When an inference is performed, we may eagerly reorient any new equations
in the goal. The way they are reoriented is don’t-care nondeterministic, except
that any equation of the form t ≈ x, where t is not a variable and x is a
variable, must be reoriented to x ≈ t. This way there is never an equation with
a nonvariable on the left hand side and a variable on the right hand side.
2 For simplicity, we assume that E is closed under symmetry.
3 s ≈ f(t1, · · · , tn) is actually a variant of an equation in E such that it has no variables

in common with the goal. We assume this throughout the paper.
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We will prove that the above inference rules solve a goal G by transforming it
into normal forms representing a complete set of E-unifiers of G. There are two
sources of non-determinism involved in the procedure defined by the inference
rules. The first is “don’t-care” non-determinism in deciding which equation to
select in the goal, and in deciding which way to orient equations with non-
variable terms on both sides. The second is “don’t-know” non-determinism in
deciding which rule to apply. Not all paths of inference steps will lead us to the
normal form, and we do not know beforehand which ones do.

4 Normal Form

Notice that there are no inference rules that apply to an equation x ≈ y, where
x and y are both variables.4 In fact, such an equation can never be selected. The
reason is that so many Mutate and Variable Decomposition inferences could
possibly apply to variable-variable pairs (as in BT) that we have designed the
system to avoid them. That changes the usual definition of normal form, as in
Standard Unification, and shows that inferences with variable-variable pairs are
unnecessary.

Let G be a goal of the form {x1 ≈ t1, · · · , xn ≈ tn, y1 ≈ z1, · · · , ym ≈ zm},
where all xi, yi and zi are variables, the ti are not variables, and for all i and j,

1. xi 6∈ V ar(tj),
2. xi 6= yj and
3. xi 6= zj .

Then G is said to be in normal form. Let σG be the substitution [x1 7→
t1, · · ·xn 7→ tn]. Let τG be a most general (syntactic) unifier of y1 = z1, · · · , ym =
zm, with no new variables, such as what is calculated by a syntactic unification
procedure. We know an mgu of only variable-variable equations must exist. Any
such unifier effectively divides the variables into equivalence classes such that
for each class E, there is some variable z in E such that yτG = z for all y ∈ E.
Then we write ŷ = z. Note that for any E-unifier θ of G, yθ =E ŷθ. Finally,
define θG to be the substitution σGτG.

Proposition 1. A goal with nothing selected is in normal form.

Proof. Let G be a goal with nothing selected. Then all equations in G have a
variable on the left hand side. So G is of the form x1 ≈ t1, · · · , xn ≈ tn, y1 ≈
z1, · · · , ym ≈ zm. Since nothing is selected, each equation x1 ≈ t1 must be solved.
So each xi appears only once in G. Therefore the three conditions of normal form
are satisfied. ut

Now we will prove that the substitution represented by a goal in normal form
is a most general E-unifier of that goal.
4 This is similar to the flex-flex pairs for higher order unification in [6].
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Lemma 1. Let G be a set of equations in normal form. Then θG is a most
general E-unifier of G.

Proof. Let G be the goal {x1 ≈ t1, · · · , xn ≈ tn, y1 ≈ z1, · · · , ym ≈ zm}, such that
for all i and j, xi 6∈ tj , xi 6= yj and xi 6= zj . Let σG = [x1 7→ t1, · · · , xn 7→ tn].
Let τG = mgu(y1 = z1, · · · , ym = zm). Let θG = σGτG. We will prove that θG is
a most general E unifier of G.

Let i and j be integers such that 1 ≤ i ≤ n and 1 ≤ j ≤ n. First we need to
show that θG is a unifier of G, i.e. that xiθG = tiθG and yjθG = zjθG. In other
words, prove that xiσGτG = tiσGτG and yjσGτG = zjσGτG. Since ti, yj and zj

are not in the domain of σ, this is equivalent to tiτG = tiτG and yjτG = zjτG,
which is trivially true, since τG is mgu of {y1 ≈ z1, · · · , ym ≈ zm}.

Next we need to show that θG is more general than all other unifiers of G. So
let θ be an E-unifier of G. In other words, xiθ =E tiθ and yjθ =E zjθ. We need
to show that θG ≤E θ[V ar(G)]. In particular, we will show that GθGθ =E Gθ.

Then xiθGθ = xiσGτGθ = tiτGθ =E tiθ =E xiθ. The only step that needs
justification is the fact that tiτGθ =E tiθ. This can be verified by examining
the variables of ti. So let w be a variable in ti. If w 6∈ Dom(τG) then obviously
wτGθ = wθ. If w ∈ Dom(τG) then w is some yk. Note that ykτGθ = ŷkθ =E ykθ.
So tiτGθ =E tiθ.

Also, yjθGθ = yjσGτGθ = yjτGθ = ŷjθ =E yjθ. Similarly for zj . ut

5 An Example

Here is an example of the procedure. (The selected equations are underlined.)

Example 1. Let E = E0 = {ffx ≈ gfx}, G = G0 = {fgfy ≈ ggfz}.
By rule Mutate applied to G0 we have
G1 = {fgfy ≈ ffx1, fx1 ≈ gfz}.
After Decomposition,
G2 = {gfy ≈ fx1, fx1 ≈ gfz}.
After Mutate,
G3 = {gfy ≈ gfx2, x1 ≈ fx2, fx1 ≈ gfz}
After Decomposition is used 2 times on G3,
G4 = {y ≈ x2, x1 ≈ fx2, fx1 ≈ gfz}.
Variable Decomposition:
G5 = {y ≈ x2, x1 ≈ fx3, x3 ≈ x2, ffx3 ≈ gfz}.
Mutate:
G6 = {y ≈ x2, x1 ≈ fx3, x3 ≈ x2, ffx3 ≈ ffx4, fx4 ≈ fz}.
2× Decomposition:
G7 = {y ≈ x2, x1 ≈ fx3, x3 ≈ x2, x3 ≈ x4, fx4 ≈ fz}.
Decomposition:
G8 = {y ≈ x2, x1 ≈ fx3, x3 ≈ x2, x3 ≈ x4, x4 ≈ z}.

The extended θ′ that unifies the goal G0 is equal to: [x1 7→ fx3][y 7→ z, x3 7→
z, x2 7→ z, x4 7→ z]. θ′ is equivalent on the variables of G to θ equal to: [y 7→ z].
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6 Soundness

Theorem 1. The above procedure is sound, i.e. if G′ ∗−→ G and G is in normal
form, then E |= G′θG.

7 A Bottom Up Inference System

In order to prove the completeness of this procedure, we first define a bottom-up
equational proof using Congruence and Equation Application rules. We prove
that this equational proof is equivalent to the usual definition of equational
proof for ground terms, which involves Reflexivity, Symmetry, Transitivity and
Congruence.

Congruence:
s1 ≈ t1 · · · sn ≈ tn

f(s1, · · · , sn) ≈ f(t1, · · · , tn)

Equation Application:
u ≈ s t ≈ v

u ≈ v
,

if s ≈ t is a ground instance of an equation in E.

We define E ` u ≈ v if there is a proof of u ≈ v using the Congruence and
Equation Application rules. If π is a proof, then |π| is the number of steps in the
proof. |u ≈ v|E is the number of steps in the shortest proof of u ≈ v.

We need to prove that {u ≈ v |E ` u ≈ v} is closed under Reflexivity,
Symmetry and Transitivity. First we prove Reflexivity.

Lemma 2. Let E be an equational theory. Then E ` u ≈ u for all ground u.

Next we prove closure under symmetry.

Lemma 3. Let E be an equational theory such that E ` u ≈ v and |u ≈ v|E = n.
Then E ` v ≈ u, and |v ≈ u|E = n.

Next we show closure under Transitivity.

Lemma 4. Let E be an equational theory such that E ` s ≈ t and E ` t ≈ u.
Suppose that |s ≈ t|E = m and |t ≈ u|E = n. Then E ` s ≈ u, and |s ≈ u|E ≤
m + n.

Closure under Congruence is trivial. Now we put these lemmas together to
show that anything true under the semantic definition of Equality is also true
under the syntactic definition given here.

Theorem 2. If E |= u ≈ v, then E ` u ≈ v, for all ground u and v.

We can restrict our proofs to only certain kinds of proofs. In particular, if the
root step of a proof tree is an Equation Application, then we can show there is a
proof such that the proof step of the right child is not an Equation Application.



Goal-Directed E-Unification 239

Lemma 5. Let π be a proof of u ≈ v in E, which is derived by Equation Ap-
plication, and whose right child is also derived by Equation Application. Then
there is a proof π′ of u ≈ v in E such that the root of π′ is Equation Application
but the right child is derived by Congruence, and |π′| = |π|.

Proof. Let π be a proof of u ≈ v in E such that the step at the top is Equation
Application, and the step at the right child is also Equation Application. We
will show that there is another proof π′ of u ≈ v in E such that |π′| = |π|, and
the size of the right subtree of π′ is smaller than the size of the right subtree of
π. So this proof is an induction on the size of the right subtree of the proof.

Suppose u ≈ v is at the root of π and u ≈ s labels the left child n1. Suppose
the right child n2 is labeled with t ≈ v. Further suppose that the left child of
n2 is labeled with t ≈ w1 and the right child of n2 is labeled with w2 ≈ v. Then
s ≈ t and w1 ≈ w2 must be ground instances of members of E.

π1 π2 π3

...

...
t ≈ w1

...
w2 ≈ v

n1: u ≈ s n2: t ≈ v
Eq. App.

u ≈ v
Eq. App.

Then we can let π′ be the proof whose root is labeled with u ≈ v, whose left
child n3 is labeled with u ≈ w1. Let the left child of n3 be labeled with u ≈ s
and the right child of n3 be labeled with t ≈ w1. Also let the right child of the
root n4 be labeled with w2 ≈ v.

π1 π2 π3

...
u ≈ s

...
t ≈ w1

...
Eq. App.

n3: u ≈ w1 n4: w2 ≈ v
Eq. App.

u ≈ v

By induction, π′ is a proof of u ≈ v of the same size as π. ut

8 Completeness of the Goal-Directed Inference System

Now we finally get to the main theorem of this paper, which is the completeness
of the inference rules given in section 3. But first we need to define a measure
on the equations in the goal.

Definition 1. Let E be an equational theory and G be a goal. Let θ be a substi-
tution such that E |= Gθ. We will define a measure µ, parameterized by θ and
G. Define µ(G, θ) as the multiset {|uθ ≈ vθ|E | u ≈ v is an unsolved equation in
G}.
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The intension of the definition is that the measure of an equation in a goal is
the number of steps it takes to prove that equation. However, solved equations
are ignored.

Now, finally, the completeness theorem:

Theorem 3. Suppose that E is an equational theory, G is a set of goal equa-
tions, and θ is a ground substitution. If E |= Gθ then there exists a goal H in
normal form such that G

∗−→ H and θH ≤E θ[V ar(G)].

Proof. Let G be a set of goal equations, and θ a ground substitution such that
E |= Gθ. Let µ(G, θ) = M . We will prove by induction on M that there exists a
goal H such that G

∗−→ H and θH ≤E θ[V ar(G)].
If nothing is selected in G, then G must be in normal form, by Proposition

1. By Lemma 1, θG is the most general E-unifier of G, so θG ≤E θ[V ar(G)].
If some equation is selected in G, we will prove that there is a goal G′ and a

substitution θ′ such that G −→ G′, θ′ ≤E θ[V ar(G)], and µ(G′, θ′) ≤ µ(G, θ).
So assume that some equation u ≈ v is selected in G. Then G is of the form

{u ≈ v} ∪ G1. We assume that v is not a variable, because any term-variable
equation t ≈ x is immediately reoriented to x ≈ t. By Lemma 3, |vθ ≈ uθ|E =
|uθ ≈ vθ|E . Also, according to our selection rule, a variable-variable equation
is never selected. Since v is not a variable, it is in the form f(v1, · · · , vn). Let
|uθ ≈ vθ|E = m.

Consider the rule used at the root of the smallest proof tree that E ` uθ ≈ vθ.
This was either an application of Congruence or Equation Application.

Case 1: Suppose the rule at the root of the proof tree of E ` uθ ≈ vθ is an
Equation Application. Then there exists an extension θ′ of θ and a ground
instance sθ′ ≈ tθ′ of an equation s ≈ t in E, such that E ` uθ′ ≈ sθ′ and
E ` tθ′ ≈ vθ′. Let |uθ′ ≈ sθ′|E = p. Let |tθ′ ≈ vθ′|E = q. Then m = p+q+1.
We now consider two subcases, depending on whether or not t is a variable.

Case 1A: Suppose that t is not a variable. Then, we can assume that the rule
at the root of the proof tree of E ` tθ′ ≈ vθ′, is Congruence. Otherwise,
by Lemma 5, it could be converted into one, without making the proof any
longer. So then t is of the form f(t1, · · · , tn), and the previous nodes of the
proof tree are labeled with t1θ

′ ≈ v1θ
′, · · · , tnθ′ ≈ vnθ′. And, for each i,

|tiθ′ ≈ viθ
′|E = qi such that 1 + Σ1≤i≤nqi = q.

Therefore, there is an application of Mutate that can be applied to u ≈ v,
resulting in the new goal G′ = {u ≈ s, t1 ≈ v1, · · · , tn ≈ vn} ∪ G1. Then
|uθ′ ≈ sθ′|E = p, and |tiθ′ ≈ viθ

′|E = qi for all i, so µ(G′θ′) < µ(G, θ). By
the induction assumption there is an H such that G′ ∗−→ H with θH ≤E

θ′[V ar(G′)]. This implies that G
∗−→ H. Also, θH ≤E θ′[V ar(G)], since the

variables of G are a subset of the variables of G′. Since Gθ′ = Gθ, we know
that θH ≤E θ[V ar(G)].

Case 1B: Suppose that t is a variable. Then, by Lemma 5, we can assume that
the rule at the root of the proof tree of E ` tθ′ ≈ vθ′ is Congruence. So then
tθ′ is of the form f(t1, · · · , tn), and the previous nodes of the proof tree are
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labeled with t1 ≈ v1θ
′, · · · , tn ≈ vnθ′. And, for each i, |ti ≈ viθ

′|E = qi such
that 1 + Σ1≤i≤nqi = q.
Therefore, there is an application of Variable Mutate that can be applied
to u ≈ v, resulting in the new goal G′ = {u ≈ s[t 7→ f(x1, · · · , xn)], x1 ≈
v1, · · · , xn ≈ vn} ∪ G1}. We will extend θ′ so that xiθ

′ = ti for all i. Then
|uθ′ ≈ sθ′|E = p, and |xiθ

′ ≈ viθ
′|E = qi for all i, so µ(G′θ′) < µ(G, θ). By

the induction assumption there is an H such that G′ ∗−→ H with θH ≤E

θ′[V ar(G′)]. This implies that G
∗−→ H. Also, θH ≤E θ′[V ar(G)], since the

variables of G are a subset of the variables of G′. Since Gθ′ = Gθ, we know
that θH ≤E θ[V ar(G)].

Case 2: Now suppose that the rule at the root of the proof tree of E ` uθ ≈ vθ
is an application of Congruence. There are two cases here: u is a variable or
u is not a variable.

Case 2A: First we will consider the case where u is not a variable. Then u =
f(u1, · · · , un), v = f(v1, · · · , vn) and E ` uiθ ≈ viθ for all i. There is an
application of Decomposition that can be applied to u ≈ v, resulting in the
new goal G′ = {u1 ≈ v1, · · · , un ≈ vn} ∪ G1. Then |uiθ ≈ viθ|E < |uθ ≈ vθ|
for all i, so µ(G′, θ) < µ(G, θ). By the induction assumption there is an H

such that G′ ∗−→ H with θH ≤E θ[V ar(G′)]. This implies that G
∗−→ H and

θH ≤E θ[V ar(G)].
Case 2B: Now we consider the final case, where u is a variable and the rule at

the root of the proof tree of E ` uθ ≈ vθ is an application of Congruence.
Let uθ = f(u1, · · · , un). Then, for each i, E ` ui ≈ viθ, and |ui ≈ viθ|E <
|uθ ≈ vθ|E . There is an application of Variable Decomposition that can be
applied to u ≈ v, resulting in the new goal G′ = {u ≈ f(x1, · · · , xn)} ∪
({x1 ≈ v1, · · · , xn ≈ vn}∪G1)[u 7→ f(x1, · · · , xn)]. Let θ′ be the substitution
θ ∪ [x1 7→ u1, · · · , xn 7→ un]. Then u ≈ f(x1, · · · , xn) is solved in G′. Also
|xiθ

′ ≈ viθ
′|E < |uθ ≈ vθ|E for all i. Therefore µ(G, θ) < µ(G′, θ′). By

the induction assumption there is an H such that G′ ∗−→ H with θH ≤E

θ′[V ar(G′)]. This implies that G
∗−→ H. Also, θH ≤E θ′[V ar(G)], since the

variables of G are a subset of the variables of G′. Since Gθ′ = Gθ, we know
that θH ≤E θ[V ar(G)].

ut

The fact that we required θ to be ground in the theorem does not limit our
results. This implies that any substitution will work

Corollary 1. Suppose that E is an equational theory, G is a set of goal equa-
tions, and θ is any substitution. If E |= Gθ then there exists a goal H such that
G

∗−→ H and θH ≤E θ[V ar(G)].

Proof. Let θ′ be a skolemized version of θ, i.e., θ′ is the same as θ except that
every variable in the range of θ is replaced by a new constant. Then θ′ is ground,
so by Theorem 3 there exists a goal H such that G

∗−→ H and θH ≤E θ′[V ar(G)].
Then θH cannot contain any of the new constants, so θH ≤E θ[V ar(G)]. ut
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9 E-Unification for Syntactic Theories

In this section we will show how we can restrict our inference rules further to get
a set of inference rules that resembles the Syntactic Mutation rules of Kirchner.
Then we prove that that set of inference rules is complete for syntactic theories.

The definition of a syntactic theory is in terms of equational proofs. The
definition of a proof is as follows.

Definition 2. An equational proof of u ≈ v from E is a sequence u0 ≈ u1 ≈
uw ≈ · · · ≈ un, for n ≥ 0 such that u0 = u, un = v and for all i ≥ 0, ui = ui[sθ]
and ui+1 = ui[tθ] for some s ≈ t ∈ E and some substitution θ.

Now we give Kirchner’s definition of syntactic theory.

Definition 3. An equational theory E is resolvent if every equation u ≈ v with
E |= u ≈ v has an equational proof such that there is at most one step at the
root. A theory is syntactic if it has an equivalent finite resolvent presentation.

From now on, when we discuss a Syntactic Theory E, we will assume that E
is the resolvent presentation of that theory.

In this paper, we are considering bottom-up proofs instead of equational
replacement proofs. We will call a bottom-up proof resolvent if whenever an
equation appears as a result of Equation Application, then its left and right
children must have appeared as a result of an application of Congruence at
the root. We will call E bottom-up resolvent if every ground equation u ≈ v
implied by E has a bottom-up resolvent proof. Now we show that the definition
of resolvent for equational proofs is equivalent to the definition of resolvent for
bottom-up proofs.

Theorem 4. E is resolvent if and only if E is bottom-up resolvent.

Proof. We need to show how to transform a resolvent equational proof into a
resolvent bottom-up proof and vice versa.

Case 1: First consider transforming a resolvent equational proof into a resolvent
bottom-up proof. We will prove this can be done by induction on the the
lexicographic combination of the number of steps in the equational proof
and the number of symbols appearing in the equation.

Case 1A: Suppose u ≈ v has an equational proof with no steps at the root.
Then u ≈ v is of the form f(u1, · · · , un) ≈ f(v1, · · · , vn), and there are
equational proofs of ui ≈ vi for all i. Since each equation ui ≈ vi has fewer
symbols than u ≈ v and does not have a longer proof, then, by the induction
argument there is a resolvent bottom-up proof of each ui ≈ vi, and by adding
one more congruence step to all the ui ≈ vi, we get a resolvent bottom-up
proof of u ≈ v.

Case 1B: Now suppose u ≈ v has an equational proof with one step at the
root. Then there is a ground instance s ≈ t of something in E such that the
proof of u ≈ v is a proof of u ≈ s with no steps at the top, followed by a
replacement of s with t, followed by a proof of t ≈ v with no steps at the root.



Goal-Directed E-Unification 243

By induction, each child in the proof of u ≈ s has a resolvent bottom-up
proof. Therefore u ≈ s has a resolvent bottom-up proof with a Congruence
step at the root. Similarly, t ≈ v has a resolvent bottom-up proof with a
Congruence step at the root. If we apply Equation Application to those two
proofs, we get a bottom-up resolvent proof of u ≈ v.

Case 2: Now we will transform a resolvent bottom-up proof of u ≈ v to an
equational proof of u ≈ v, by induction on |u ≈ v|E .

Case 2A: Suppose u ≈ v has a bottom-up resolvent proof with an application
of Congruence at the root. Then u ≈ v is of the form f(u1, · · · , un) ≈
f(v1, · · · , vn), and there are bottom-up resolvent proofs of ui ≈ vi for all
i. Since each equational proof of ui ≈ vi is shorter than the proof of u ≈ v,
then, by the induction argument there is a resolvent equational proof of each
ui ≈ vi, and they can be combined to give a resolvent equational proof of
u ≈ v.

Case 2B: Now suppose u ≈ v has a resolvent bottom-up proof with one Equa-
tion Application step at the root. Then there is some s ≈ t in E such that
the proof of u ≈ v is a proof of u ≈ s with a Congruence step at the root,
and a proof of t ≈ v with a Congruence step at the root, then an Equation
Application using the equation s ≈ t from E. By induction, the correspond-
ing equalities of subterms of u ≈ s have resolvent equational proofs. So u ≈ s
has a resolvent equational proof with no steps at the root. Similarly, t ≈ v
also has a resolvent equational proof with no steps at the root. So u ≈ v has
a resolvent equational proof with one step at the root.

ut

Now we give the inference rules for solving E-unification problems in Syntac-
tic Theories. The rules for Decomposition and Variable Decomposition remain
the same, but Mutate becomes more restrictive. We replace Mutate and Variable
Mutate with one rule that covers several cases.

Mutate
{u ≈ v} ∪ G

{Dec(u ≈ s), Dec(v ≈ t)} ∪ G

where u ≈ v is selected in the goal, s ≈ t ∈ E, v is not a variable, if both u
and s are not variables then they have the same root symbol, and if t is not a
variable then v and t have the same root symbol. We also introduce a function
Dec, which when applied to an equation indicates that the equation should be
decomposed eagerly according to the following rules:

{Dec(f(u1, · · · , un) ≈ f(s1, · · · , sn))} ∪ G

{u1 ≈ s1, · · · , un ≈ sn} ∪ G

{Dec(x ≈ f(s1, · · · , sn)} ∪ G

{x ≈ f(x1, · · · , xn)} ∪ G[x 7→ f(x1, · · · , xn)] ∪ {x1 ≈ s1, · · · , xn ≈ sn}
where the xi are fresh variables.



244 C. Lynch and B. Morawska

{Dec(x ≈ y)} ∪ G

{x ≈ y} ∪ G

{Dec(f(s1, · · · , sn) ≈ x)} ∪ G

G[x 7→ f(x1, · · · , xn)] ∪ {x1 ≈ s1, · · · , xn ≈ sn}
where the xi are fresh variables.

Now we prove a completeness theorem for this new set of inference rules,
which is Decomposition, Variable Decomposition, and the Mutate rule given
above.

Theorem 5. Suppose that E is a resolvent presentation of an equational theory,
G is a set of goal equations, and θ is a ground substitution. If E |= Gθ then there
exists a goal H in normal form such that G

∗−→ H and θH ≤E θ[V ar(G)].

Proof. The proof is the same as the proof of Theorem 3, except for Case 1.
In this case, we can show that one of the forms of the Mutate rules from this
section is applicable. Here, instead of using Lemma 5 to say that an Equation
Application must have a Congruence as a right child, we instead use the definition
of bottom-up resolvent to say that an Equation Application has a Congruence
as both children. The full proof is in [13]. ut

10 Conclusion

We have given a new goal-directed inference system for E-unification. We are
interested in goal-directed E-unification for two reasons. One is that many other
inferences systems for which E-unification would be useful are goal directed, and
so a goal-directed inference system will be easier to combine with other inference
systems. The second reason is that we believe this particular inference system is
such that we can use it to find some decidable classes of equational theories for
E-unification and analyze their complexity. We have already made progress in
this direction in [14,15].

Our inference system is an improvement over the inference systems BT of [4]
and Trans of [5] for Equational Unification. There are two important differences
between our inference system an those other two. The first is that those inference
systems require the Variable Elimination rule. This blows up the search space,
because, for an equation x ≈ t, both Variable Elimination and (Root) Imitation
will be applicable. We do not require Variable Elimination. The second difference
is that both of those inference systems require an inference with a variable in
the goal. In BT, Root Rewriting inferences are performed on variable-variable
pairs. This blows up the search space, because everything unifies with a variable.
Similarly, in BT, Root Imitation inferences are performed on variable-variable
pairs. That blows up the search space because it must be attempted for every
function symbol and constant. In Trans, there is a rule called Paramodulation
at Variable Occurence. This is like a Mutate (Lazy Paramodulation) inference
applied to a variable x in a goal equation x ≈ t. Again, every equation will
unify with x, so the search space will blow up. Gallier and Snyder recognize the
above-mentioned problems of BT . There solution is to create another inference
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system called T , but that one is different because Root Rewriting inferences are
now allowed at non-root positions.

The inference system we have given is similar to the Syntactic Mutation
inference system of [9]. The difference is that our inference system can be applied
to all equational theories, not just Syntactic Theories as in their case. Also,
we show how our results are easily adapted to give an inference similar to the
Syntactic Mutation rules of [9]. While the rules in [9] have not been proved
complete, we prove that ours are complete.
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