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Abstract. Ontology-based data access (OBDA) generalizes query an-
swering in relational databases. It allows to query a database by using
the language of an ontology, abstracting from the actual relations of the
database. For ontologies formulated in Description Logics of the DL-Lite
family, OBDA can be realized by rewriting the query into a classical
first-order query, e.g. an SQL query, by compiling the information of
the ontology into the query. The query is then answered using classical
database techniques.
In this paper, we consider a temporal version of OBDA. We propose
a temporal query language that combines a linear temporal logic with
queries over DL-Litecore-ontologies. This language is well-suited to ex-
press temporal properties of dynamical systems and is useful in context-
aware applications that need to detect specific situations. Using a first-
order rewriting approach, we transform our temporal queries into queries
over a temporal database. We then present three approaches to answer-
ing the resulting queries, all having different advantages and drawbacks.

1 Introduction

Context-aware applications try to detect specific situations within a changing
environment (e.g. a computer system or air traffic observed by radar) to be able
to react accordingly. To gain information, the environment is observed by sensors
(for a computer system, data about its resources is gathered by the operating
system), and the results of sensing are stored in a database. A context-aware
application then detects specific predefined situations based on this data (e.g. a
high system load) and reacts accordingly (e.g. by increasing the CPU frequency).

In a simple setting, such an application can be realized by using standard
database techniques: the sensor information is stored in a database, and the
situations to be recognized are specified as database queries [1]. In general, we
cannot assume, however, that the sensors provide a complete description of the
current state of the environment. For example, a sensor for certain information
might not be available for a moment or not even exist. Thus, the closed world
assumption employed by database systems (i.e. facts not present in the database
are assumed to be false) is not appropriate since there may be facts of which it
is unknown whether they hold or not.
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In addition, though a complete specification of the environment usually does
not exist, often some knowledge about its behavior is available. This knowledge
can be used to formulate constraints on the interpretation of the predicates used
in the queries, to detect more complex situations. In ontology-based data access
(OBDA) [10], domain knowledge is encoded in ontologies using a Description
Logic (DL). In this paper, we consider logics of the DL-Lite family, which are
light-weight DLs with a low complexity for many reasoning problems [10]. This
low complexity is due to the fact that reasoning problems in DL-Lite can often
be reduced to answering a first-order query over a relational database.

In order to recognize situations that evolve over time, we propose to add a
temporal logical component to the queries. We use the operators of the temporal
logic LTL, which allows to reason about a linear and discrete flow of time [20].
Usual temporal operators include next (#φ), which asserts that a property φ is
true at the next point in time, eventually (3φ), which asks for φ to be satisfied
at some point in the future, and always (2φ), which forces φ to be true at all
time points in the future. We also use the corresponding past operators #−, 3−,
and 2−.

Consider, for example, a collection of servers providing several services. An
important task is to migrate services between servers to balance the load. To
decide when to migrate, we want to detect certain critical situations. We consider
a process to be critical if it has an increasing workload, and at the same time the
server it is running on is almost overloaded. Suppose that we want to detect those
processes and servers that were in a critical situation at least twice within the
past ten time units. This can be expressed by the query #−10(3(Critical(x, y) ∧
#3Critical(x, y))), where

Critical(x, y) := Server(x) ∧ Process(y) ∧ executes(x, y) ∧ Running(y) ∧
IncreasingWorkload(y) ∧ AlmostOverloaded(x).

In this example, it is essential that future and past operators can be nested arbi-
trarily. One might argue that, as we are looking at the time line from the point
of view of the current time point, and nothing is known about the future, it is
sufficient to have only past operators. We will even show that in our setting it
is indeed always possible to construct an equivalent query using only past oper-
ators. However, the resulting query is not very concise and it is not easy to see
the situation that is to be recognized. Indeed, for propositional LTL eliminating
the past operators from a query results in a blowup that is at least exponential
and no constructions of size less than triply exponential are known [18].

Temporal extensions of DL-Lite [11] have been considered in the context
of conceptual modeling [2,3,4], where the focus lies on checking concept satis-
fiability instead of query answering. Investigations of temporalized OBDA, the
second major use case of DL-Lite, with temporal query answering as the most
important reasoning problem [10], have started only quite recently. In [16], a
framework is developed that combines conjunctive queries in an arbitrary DL
and the temporal logic LTL. The algorithm for query answering in this setting
is an LTL-satisfiability test using a sub-procedure to answer (atemporal) CQs.



In [6], a similar query language, a combination of LTL and CQs over the DLALC,
is proposed. In contrast to [16], its temporal component is allowed to influence
the DL queries via the notion of rigid names, which are names whose interpreta-
tion does not change over time. The complexity increases depending on whether
only rigid concept names or also rigid role names are allowed. Additionally, the
latter paper also studies the so-called data complexity, where the complexity is
measured only w.r.t. the size of the sensor data, i.e. the observations, but not
w.r.t. the size of the query or the ontology. Another recent paper [5] examines
temporal query answering in an extension of DL-Lite in which linear tempo-
ral operators are allowed to occur inside DL concepts, and proves first-order
rewritability for query answering in this logic.

In this paper, we follow an approach suggested in [16] to combine the first-
order rewriting techniques for atemporal query answering in logics of the DL-Lite
family with a temporal component. The main idea is to use optimized database
techniques to answer the actual queries. However, the existing techniques for
answering temporal queries over temporal databases do not perfectly suit our
purposes. In [14], the authors describe a temporal extension of the SQL query
language that can answer temporal queries over a complete temporal database.
However, in our setting the database containing all previous observations may
grow huge very fast, but not all past observations are relevant for a particular
query. In [13], an approach is described that reduces the amount of space needed;
but the query language considered there allows only for past operators. In ad-
dition to describing how these approaches can be applied to our problem, we
propose a new algorithm that extends the one from [13] and can also deal with
future operators. All three approaches have different advantages and drawbacks.

Additionally, we show how the new algorithm can be extended to deal with
rigid concept names for a specific subclass of queries. Unfortunately, there seems
to be no simple way to adapt the algorithm to deal with rigid role names.

This paper is an extension of the recently appeared workshop paper [8]. The
formal proofs of our results can be found in the technical report [9].

2 Preliminaries

We first describe the DL component, and then the temporal component of our
query language. The DL-Lite family consists of various DLs that are tailored
towards conceptual modeling and allow to realize query answering using classical
database techniques. We only consider DL-Litecore as a prototypical example.

Definition 1. Let NC, NR, and NI be non-empty, pairwise disjoint sets of con-
cept, role, and individual names, respectively. A role expression is either a role
name P1 ∈ NR or an inverse role P−2 with P2 ∈ NR. A basic concept is of the
form A or ∃R, where A ∈ NC and R is a role expression. A general concept is
of the form B or ¬B, where B is a basic concept.

A concept inclusion is of the form B v C, where B is a basic concept and C
is a general concept. An assertion is of the form A(a) or P (a, b), where A ∈ NC,



P ∈ NR, and a, b ∈ NI. A TBox (or ontology) is a finite set of concept inclusions,
and an ABox is finite set of assertions.

The semantics of DL-Litecore is defined through the notion of an interpretation.

Definition 2. An interpretation is a pair I = (∆I , ·I), where ∆I is a non-
empty set (called domain) and ·I is a function that assigns to every A ∈ NC
a set AI ⊆ ∆I , to every P ∈ NR a binary relation P I ⊆ ∆I × ∆I , and to
every a ∈ NI an element aI ∈ ∆I . This function is extended to role expressions,
basic concepts, and general concepts as follows: (P−)I := {(e, d) | (d, e) ∈ P I},
(∃R)I := {d | there is an e ∈ ∆I such that (d, e) ∈ RI}, and (¬C)I := ∆I \CI .
I is a model of B v C if BI ⊆ CI , of A(a) if aI ∈ AI , and of P (a, b) if

(aI , bI) ∈ P I . We write I |= T if I is a model of all concept inclusions in the
TBox T , and I |= A if I is a model of all assertions in the ABox A. An ABox
A is consistent (w.r.t. a TBox T ) if there is an I with I |= A and I |= T .

We assume that all interpretations I satisfy the unique name assumption (UNA),
i.e. for all a, b ∈ NI with a 6= b, we have aI 6= bI .

We now introduce the notion of temporal knowledge bases. Intuitively, they
contain sensor data (ABoxes) for all previous time points, and a global TBox.

Definition 3. A temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉 consists
of a finite sequence of ABoxes Ai and a TBox T , where the ABoxes Ai can only
contain concept names that also occur in T . Let I = (Ii)0≤i≤n be a sequence
of interpretations Ii = (∆, ·Ii) over a fixed non-empty domain ∆. Then I is a
model of K (written I |= K) if Ii |= Ai and Ii |= T for all i, 0 ≤ i ≤ n.

Similar to what was done in [6,16], our temporal query language is based on con-
junctive queries [1,12]. The main difference is that we do not allow for negation,
as in DL-Lite arbitrary negation is disallowed. In contrast to [5], we also do not
allow temporal operators inside concepts. These restrictions allow us to apply
first-order rewritability of (atemporal) conjunctive queries in a black-box fashion
to obtain a similar result for our temporal query language (see Section 3).

Definition 4. Let NV be a set of variables. A conjunctive query (CQ) is of the
form φ = ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a (possibly empty)
finite conjunction of atoms of the form A(z) for A ∈ NC and z ∈ NV ∪ NI
( concept atom); or r(z1, z2) for r ∈ NR and z1, z2 ∈ NV ∪ NI ( role atom). The
empty conjunction is denoted by true.

Temporal conjunctive queries (TCQs) are built from CQs as follows: each
CQ is a TCQ, and if φ1 and φ2 are TCQs, then so are φ1 ∧ φ2 (conjunction),
φ1 ∨ φ2 (disjunction), #φ1 (strong next), •φ1 (weak next), #−φ1 (strong previ-
ous), •−φ1 (weak previous), φ1 Uφ2 (until), and φ1 Sφ2 (since).

The symbols #−, •−, and S are called past operators, the symbols #, • , and
U are future operators. All results also hold in the presence of the additional
temporal operators 2 (always), 2− (always in the past), 3 (eventually), and
3− (some time in the past) [9], but we omit them here for space reasons.



We denote the set of individuals occurring in a TCQ φ by Ind(φ), the set of
variables occurring in φ by Var(φ), the set of free variables in φ by FVar(φ), and
the set of atoms occurring in φ by At(φ). A TCQ φ is called Boolean if FVar(φ) =
∅. We further denote by Sub(φ) the set of all TCQs occurring as subqueries in
φ (including φ itself). A union of conjunctive queries (UCQ) is a disjunction of
CQs. For our purposes, it is sufficient to define the semantics for Boolean CQs
and TCQs. As usual, it is given using the notion of a homomorphism [12].
Definition 5. Let I = (∆, ·I) be an interpretation and ψ be a Boolean CQ. A
mapping π : Var(ψ) ∪ NI → ∆ is a homomorphism of ψ into I if π(a) = aI for
all a ∈ NI, π(z) ∈ AI for all concept atoms A(z) in ψ, and (π(z1), π(z2)) ∈ rI
for all role atoms r(z1, z2) in ψ. We say that I is a model of ψ (written I |= ψ)
if there is such a homomorphism.

Let now φ be a Boolean TCQ. For a sequence of interpretations I = (Ii)0≤i≤n
and i with 0 ≤ i ≤ n, we define I, i |= φ by induction on the structure of φ:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= φ1 ∨ φ2 iff I, i |= φ1 or I, i |= φ2
I, i |= #φ1 iff i < n and I, i+ 1 |= φ1
I, i |= •φ1 iff i < n implies I, i+ 1 |= φ1
I, i |= #−φ1 iff i > 0 and I, i− 1 |= φ1
I, i |= •−φ1 iff i > 0 implies I, i− 1 |= φ1
I, i |= φ1 Uφ2 iff there is some k, i ≤ k ≤ n such that I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1 Sφ2 iff there is some k, 0 ≤ k ≤ i such that I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i.
Here we assume that there is no time point before 0 or after n, similar to the
temporal semantics used for LTL in [23] or for temporal query languages for
databases [13,17,21]. As in classical LTL, one can show that φ1 Sφ2 is equivalent
to φ2 ∨ (φ1 ∧#−(φ1 Sφ2)), and a similar equivalence holds for U.

We are now ready to introduce the central reasoning problem of this paper,
namely to find certain answers to TCQs.
Definition 6. Let φ be a TCQ, I = (Ii)0≤i≤n a sequence of interpretations,
and i ≥ 0. The mapping a : FVar(φ) → NI is an answer to φ w.r.t. I at time
point i if I, i |= a(φ), where a(φ) denotes the Boolean TCQ that is obtained from
φ by replacing the free variables according to a. Let further K = 〈(Ai)0≤i≤n, T 〉
be a TKB. A mapping a : FVar(φ)→ NI is a certain answer to φ w.r.t. K at time
point i if for every J |= K, we have J, i |= a(φ).
The set of all answers to φ w.r.t. I at time point i is denoted by Ans(φ, I, i), and
the set of all certain answers to φ w.r.t. K is denoted by Cert(φ,K, i). Recall that
our main interest lies in finding answers to queries at the current time point, i.e.
computing the sets Ans(φ, I) := Ans(φ, I, n) or Cert(φ,K) := Cert(φ,K, n).

We will sometimes use the abbreviation false := A(x) ∧ A′(x), where A,A′
are new concept names for which we assume that the concept inclusion A v ¬A′
is contained in the global TBox T .



3 Answering Temporal Conjunctive Queries

For computing the set of certain answers for a conjunctive query, the rewrit-
ing approach [10] can be employed. It compiles the information contained in
the TBox into the query and evaluates the query w.r.t. the ABox (viewed as
database) using classical database techniques. A similar approach is possible for
TCQs.

Definition 7. For an ABox A, the interpretation DB(A) := (NI, ·DB(A)) is de-
fined as follows:

– aDB(A) := a for all a ∈ NI;
– ADB(A) := {a | A(a) ∈ A} for all A ∈ NC; and
– PDB(A) := {(a, b) | P (a, b) ∈ A} for all P ∈ NR.

As shown in [10], this interpretation is the smallest model of A. In order to
employ database techniques, we must assume DB(A), and thus NI, to be finite.

Proposition 8 ([10]). Let ψ be a CQ, A be an ABox, and T be a TBox. There
is a canonical model IA,T of A and T and a UCQ ψT such that

Cert(ψ, 〈A, T 〉) = Ans(ψ, IA,T ) = Ans(ψT ,DB(A)).

We now use this proposition to show a similar result for TCQs. Let φ be a TCQ
and K = 〈(Ai)0≤i≤n, T 〉 be a TKB. The TCQ φT is obtained by replacing each
CQ ψ occurring in φ by ψT . Note that φT is again a TCQ since ψT is always a
UCQ. Let furthermore IK := (IAi,T )0≤i≤n and DB(K) := (DB(Ai))0≤i≤n. The
following theorem can be shown by a straightforward induction on the structure
of φ.

Theorem 9. For every TCQ φ, TKB K = 〈(Ai)0≤i≤n, T 〉, and i ≥ 0, we have
Cert(φ,K, i) = Ans(φ, IK, i) = Ans(φT ,DB(K), i).

More importantly, for every TCQ φ and TKB K = 〈(Ai)0≤i≤n, T 〉, it holds
that Cert(φ,K) = Ans(φT ,DB(K)). It thus remains to show how to compute the
set Ans(φ, I) for a TCQ φ and a sequence I = (Ii)0≤i≤n of interpretations
over a finite domain. A first possibility is to view I as a temporal database
and rewrite φ into an ATSQL query [14]. However, since our goal is to monitor
processes that produce new data in very short time intervals, storing all the data
for all previous time points is not feasible. Therefore, we describe two different
approaches that reduce the amount of space necessary to compute Ans(φ, I).
Since we are interested in the answers at the last time point, the idea is to keep
only the past information necessary to answer the query φ.

In the first approach (Section 4), we rewrite φ into a TCQ φ′ without fu-
ture operators, employing a construction described in [15]. We then compute
Ans(φ′, I) using an algorithm described in [13,22] that uses a so-called bounded
history encoding, which means that the space required by the algorithm is con-
stant w.r.t. the number n of previous time points. Only the current state of the
database and some auxiliary relations have to be stored.



In Section 5, we generalize the algorithm from [13] to directly deal with the
future operators. The main difference is that we do not consider negation or
arbitrary first-order queries. Unfortunately, the space required by this algorithm
is in general exponential in n and thus does not constitute a bounded history
encoding in the sense of [13,22]. However, it allows us to circumvent the non-
elementary blow-up of the formula resulting from the reduction in [15].

4 Eliminating Future Operators

To rewrite a TCQ φ into an equivalent TCQ that does not contain future opera-
tors, we employ the separation theorem for propositional LTL [15]. We describe
here only the general idea, details can be found in the technical report [9].

The separation theorem cannot be applied directly since our temporal se-
mantics differs from that in [15]: the only temporal operators in [15] are strict
versions of U and S, and the semantics is defined w.r.t. bounded past and un-
bounded future. To apply this theorem, we replace the CQs in φ by propositional
variables, rewrite U and S into their restrict counterparts, and use an additional
propositional variable to delimit the time interval from 0 to n.

We can then apply the separation theorem to the resulting LTL-formula φ̂.
We obtain an equivalent LTL-formula φ̂′ with negation which is a Boolean com-
bination of temporal subformulae that either contain only strict S operators or
only strict U operators. In this construction, subformulae of φ̂ are copied and
rearranged, but no additional propositional variables are introduced.

Since we are interested in evaluating φ at n, we can replace all variables
in φ̂′ that are in the scope of a strict U by false. The reason for this is that
such variables are only evaluated at time points after n, where all variables are
false. The resulting formula is then simplified to eliminate all strict U operators,
and then translated back into a Boolean TCQ φ′ by replacing the propositional
variables by the corresponding CQs. Note that φ′ contains no future operators.

We then apply the algorithm described in [13] to iteratively compute the
answers to φ′ at each time point.1 The main advantage of this approach is
that we can compute this set iteratively and such that the required memory
is independent of the length of the sequence I. More formally, let I = (Ii)i≥0
be an infinite sequence of interpretations representing the observations over all
time points. In our setting, these interpretations are generated from an infinite
sequence of ABoxes that represent the observed sensor data using the construc-
tion of Section 3. At each time point i ≥ 0, we only have access to the finite
prefix I(i) := (Ij)0≤j≤i of I of length i+ 1. Let ∆ be the shared domain of the
interpretations in I.

The algorithm from [13] works on φ′ as follows. On input I0, it computes a
first-order interpretation I ′0 of several auxiliary predicates. Intuitively, for each
subformula ψ of φ′ beginning with a past operator, the algorithm stores the
answers Ans(ψ, I(0)) ⊆ ∆FVar(ψ) for ψ in a new relation AI

′
0
ψ of arity |FVar(ψ)|.

1 Before we can use the algorithm presented in [13], we need another rewriting step
since in that paper the semantics of S is slightly different (see [9] for details).



The set Ans(φ′, I(0)) can then easily be computed from I0 and I ′0. Afterwards,
the algorithm disregards I0 and keeps only the information computed in I ′0.
On input I1, it then updates I ′0 to a new interpretation I ′1, which allows it to
compute Ans(φ′, I(1)), and so on.

The memory requirements of this algorithm are bounded polynomially in
the size of ∆, in the number of concept and role names, and in the number of
past operators occurring in φ′, and exponentially in the number of free variables
occurring below past operators. However, the memory requirements do not de-
pend on the length of the sequence of interpretations seen so far. This is called
a bounded history encoding in [13].

Overall, the presented approach has, however, several drawbacks. First, the
rewritings from φ to φ̂ and from φ̂′ to φ′ may duplicate subformulae, which can
cause exponential blowups in the size of φ. This could be avoided by applying a
reduction similar to the one for propositional LTL in [15] directly to φ. However,
since the reduction in [15] is already non-elementary in the size of the formula,
this is not much more efficient. Hence, the presented approach is best suited for
answering simple, small queries φ over large databases.

5 A New Algorithm

In this section, we present an algorithm that computes the set Ans(φ, I) without
the need to eliminate the future operators beforehand, thereby avoiding the
non-elementary blowup of the construction described in the previous section.
However, the memory requirements of this new algorithm are not independent
of the number of previous time points. From now on, let φ be a fixed TCQ and
I = (Ii)i≥0 be a fixed infinite sequence of interpretations over the same finite
domain ∆. For i ≥ 0, we denote by I(i) := (Ij)0≤j≤i the finite prefix of I of
length i+ 1. Our algorithm iteratively computes the sets Ans(φ, I(i)). It uses as
data structure so-called answer formulae, which represent TCQs in which some
parts have already been evaluated. In particular, they do not contain CQs any
more, but sets of already computed answers to subqueries. Additionally, they
may contain variables (different from those in NV) that serve as place-holders
for subqueries that have to be evaluated at the next time point.

For ease of presentation, we assume in the following that NV is finite and that
answers are of the form a : NV → ∆ instead of a : FVar(φ)→ ∆. Thus, when we
talk about answers, we mean mappings a : NV → ∆, and in particular Ans(. . .)
refers to a set of such mappings, i.e. a subset of ∆NV .2

Definition 10. Let FSub(φ) denote the set of all subqueries of φ of the form
#ψ1, •ψ1, or ψ1 Uψ2. For j ≥ 0, we denote by Varφj the set of all variables of
the form xψj for ψ ∈ FSub(φ). The set AFiφ of all answer formulae for φ at i ≥ 0
is the smallest set satisfying the following conditions:
2 In an implementation, one should restrict the intermediate computations of answers
for subqueries ψ to FVar(ψ). But then one has to be more careful when combining
answers to different subqueries.



Table 1. Computing answer formulae for a TCQ
φ Φ0(φ) Φ0

i (φ)

CQ ψ1 Ans(ψ1, I
(0)) Ans(ψ1, I

(i))
ψ1 ∧ ψ2 Φ0(ψ1) ∩ Φ0(ψ2) Φ0

i (ψ1) ∩ Φ0
i (ψ2)

ψ1 ∨ ψ2 Φ0(ψ1) ∪ Φ0(ψ2) Φ0
i (ψ1) ∪ Φ0

i (ψ2)
#ψ1 x#ψ1

0 x#ψ1
i

#−ψ1 ∅ Φi−1(ψ1)
•ψ1 x•ψ1

0 x•ψ1
i•−ψ1 ∆NV Φi−1(ψ1)

ψ1 Uψ2 Φ0(ψ2) ∪ (Φ0(ψ1) ∩ xψ1 Uψ2
0 ) Φ0(ψ2) ∪ (Φ0

i (ψ1) ∩ xψ1 Uψ2
i )

ψ1 Sψ2 Φ0(ψ2) Φ0
i (ψ2) ∪ (Φ0

i (ψ1) ∩ Φi−1(ψ1 Sψ2))

– Every set A ⊆ ∆NV is an answer formula for φ at i.
– Every xψj ∈ Varφj with j ≤ i is an answer formula for φ at i.
– If α1 and α2 are answer formulae for φ at i, then so are α1∩α2 and α1∪α2.

In order to evaluate these answer formulae, we introduce the notion of correct-
ness. Intuitively, an answer formula α for φ at i is correct for i if we obtain the
set Ans(φ, I(i)) by replacing the variables xψj in α by appropriate sets of answers
and evaluating ∩ and ∪ as set intersection and union, respectively.

Definition 11. We define the function evaln : AFnφ → 2∆NV , n ≥ 0, as follows:

– evaln(A) := A if A ⊆ ∆NV ;

– evaln(xψj ) :=


Ans(ψ1, I

(n), j + 1) if j < n and ψ = #ψ1 or ψ = •ψ1;
Ans(ψ, I(n), j + 1) if j < n and ψ = ψ1 Uψ2;
∅ if j = n and ψ = #ψ1 or ψ = ψ1 Uψ2;
∆NV if j = n and ψ = •ψ1;

– evaln(α1 ∩ α2) := evaln(α1) ∩ evaln(α2); and
– evaln(α1 ∪ α2) := evaln(α1) ∪ evaln(α2).

We say that a mapping Φ : Sub(φ) → AFiφ is correct for i ≥ 0 if for all n ≥ i

and for all ψ ∈ Sub(φ), we have evaln(Φ(ψ)) = Ans(ψ, I(n), i).

In particular, if Φ : Sub(φ)→ AFiφ is correct for i, then evali(Φ(φ)) = Ans(φ, I(i)),
which is the set we want to compute. Note that xψ1 Uψ2

j is actually a place-
holder for #(ψ1 Uψ2) since we evaluate the U operator according to the recursive
equivalence ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧#(ψ1 Uψ2)) (cf. Table 1).

The algorithm works as follows. It first computes a mapping Φ0 that is correct
for 0, which is used to compute the next mapping Φ1 when the interpretation I1
becomes available. This mapping is correct for 1 and can be used to compute the
next mapping Φ2, and so on. In each step, to compute Φi+1, we only need Φi and
the interpretation Ii+1. We recursively define the mapping Φ0 : Sub(φ) → AF0

φ

as shown in the second column of Table 1. Here, CQs are answered, e.g. by
evaluating them as first-order queries over the database I0 [1].



Table 2. An example computation
φ ψ1 ψ2 ψ1 Sψ2

Φ0(φ) xψ1
0 B0 ∪ (A0 ∩ xψ2

0 ) B0 ∪ (A0 ∩ xψ2
0 )

Ans(φ, I(0)) ∆NV B0 B0

Φ0
1(φ) xψ1

1 B1 ∪ (A1 ∩ xψ2
1 ) Φ0

1(ψ2) ∪ (xψ1
1 ∩ (B0 ∪ (A0 ∩ xψ2

0 )))
Φ1(φ) xψ1

1 B1 ∪ (A1 ∩ xψ2
1 ) Φ1(ψ2) ∪ (xψ1

1 ∩ (B0 ∪ (A0 ∩ Φ1(ψ2))))
≡ ((xψ1

1 ∩B0) ∪B1) ∪ (A1 ∩ xψ2
1 )

Ans(φ, I(1)) ∆NV B1 B0 ∪B1

Φ2(φ) xψ1
2 B2 ∪ (A2 ∩ xψ2

2 ) Φ2(ψ2) ∪ (xψ1
2 ∩ (((xψ1

1 ∩B0) ∪B1) ∪ (A1 ∩ xψ2
1 )))

≡ ((xψ1
2 ∩ ((C1 ∩B0) ∪B1)) ∪B2) ∪ (A1 ∩ xψ2

2 )
Ans(φ, I(2)) ∆NV B2 (C1 ∩B0) ∪B1 ∪B2

Assume now that Φi−1 : Sub(φ) → AFi−1
φ is a function containing only vari-

ables with index i − 1. We proceed as follows to construct a new function
that contains only variables with index i. We recursively define the mapping
Φ0
i : Sub(φ)→ AFiφ similarly to Φ0 as given in the third column of Table 1.

Example 12. Consider the TCQ ψ1 Sψ2 with two subqueries referring to the
future, ψ1 := •C(x) and ψ2 := A(x) UB(x), and let A0 := Ans(A(x), I(0)), and
similarly for the other CQs and time points. The answer formulae Φ0 and Φ0

1 are
listed in Table 2.

The difference to the definition of Φ0 is that the answer formulae for past oper-
ators are computed using the answer formulae for the previous time point. This
means that Φ0

i may still contain variables with index i−1. We now remove these
old variables by substituting them appropriately. For example, since x#ψ

i−1 is a
place-holder for the answers to ψ w.r.t. I(n) at i, we can now replace it by Φ0

i (ψ).
However, this formula may itself contain another old variable, and thus we have
to be careful about the order in which we do these substitutions. Since each
Φ0
i (ψ) can contain only variables that refer to subqueries of ψ, by replacing the

variables for “smaller” subqueries first, we ensure that all variables with index
i − 1 are eliminated. The details of this construction can be found in [9]. We
obtain a mapping Φi : Sub(φ)→ AFiφ that is correct for i.

Lemma 13. For each i ≥ 0, the mapping Φi is correct for i.

Example 14. Consider again the query ψ1 Sψ2 from Example 12. Since Φ0
1(ψ1)

and Φ0
1(ψ2) do not contain variables with index 0, the value of Φ1 is the same

as that of Φ0
1 for both of these subqueries. We only have to replace xψ2

0 within
Φ0

1(ψ1 Sψ2) by Φ1(ψ2) to obtain Φ1(ψ1 Sψ2) as listed in Table 2. To obtain the
answers at time point 1, we can now replace the remaining variables in according
to eval1, which yields Ans(ψ1 Sψ2, I

(1)) = B0 ∪B1.

Consider now the algorithm, which, on input φ and I, computes the mappings Φi
as described above, and outputs evali(Φi(φ)) for each i ≥ 0. The following is a
trivial consequence of the correctness of these mappings.



Theorem 15. Given a TCQ φ and an infinite sequence I = (Ii)i≥0 of inter-
pretations, the algorithm outputs Ans(φ, I(i)) for each i ≥ 0.

It is easy to compute the sets evali(Φi(φ)) = Ans(φ, I(i)) for i ≥ 0 since each
of the variables xψi in Φi(φ) simply has to be replaced by either ∅ or ∆NV (see
Definition 11). However, as mentioned earlier, the size of the formula Φi(φ) may
depend exponentially on the length i of the current sequence of interpretations.

Example 16. Consider again the query ψ1 Sψ2 from Example 12. After replac-
ing xψ2

0 by Φ1(ψ2), the variable xψ2
1 occurs twice in Φ1(ψ1 Sψ2). In general,

Φi(ψ1 Sψ2) will contain 2i occurrences of the variable xψ2
i . However, applying

the associativity, commutativity, distributivity, and absorption laws for ∩ and ∪
does not affect the semantics of answer formulae (given by eval), and hence

Φ1(φ) = Φ1(ψ2) ∪ (xψ1
1 ∩ (B0 ∪ (A0 ∩ Φ1(ψ2))))

≡ Φ1(ψ2) ∪ (xψ1
1 ∩B0) ∪ (xψ1

1 ∩A0 ∩ Φ1(ψ2))
≡ Φ1(ψ2) ∪ (xψ1

1 ∩B0)
= (B1 ∪ (A1 ∩ xψ2

1 )) ∪ (xψ1
1 ∩B0)

≡ ((xψ1
1 ∩B0) ∪B1) ∪ (A1 ∩ xψ2

1 )

The resulting formula contains xψ2
1 only once. In general, the formula Φi(φ) is

equivalent to ((xψ1
i ∩ Di) ∪ Bi) ∪ (Ai ∩ xψ2

i ), where D0 := ∅ and for i > 0, we
set Di+1 := (Ci+1 ∩ Di) ∪ Bi. Thus, the algorithm only has to store the sets
Ai, Bi, Di ⊆ ∆NV at each time point, i.e. we achieve a bounded history encoding
as in [13].

If the formula φ contains no future operators, then the answer formulae contain
no variables and can always be fully evaluated to a subset of ∆NV . In this special
case, our algorithm can be seen as a variant of the one from [13] for less expressive
queries. Example 16 demonstrates that it is important that the computed answer
formulae are simplified at each step, while preserving their semantics under eval.
However, this does not guarantee a bounded history encoding as in [13].

6 Rigid Names

We now extend our temporal query language by designating certain concept
names as being rigid, which means that their interpretation is not allowed to
change over time. This especially makes sense regarding our application. For
example, if the concept name Server describes the set of all severs, then it should
be rigid since an application scenario with a server that stops being a server
at some point in time would make no sense. The notion of rigidity has been
explored for other temporal formalisms before [6,7].

For this purpose, we assume in this section that there is a set NRC ⊆ NC of
rigid concept names. In this setting, a finite sequence I = (Ii)0≤i≤n can only be
a model of a TKB K if it fulfills the conditions of Definition 3 and additionally



respects the rigid concept names, i.e. it satisfies AIi = AIj for every rigid concept
name A and all indices i, j between 0 and n.

For the remainder of this section, we restrict the query language to only allow
so-called rooted CQs [19]. Intuitively, these are CQs that refer to at least one
named individual.

Definition 17. A CQ φ is called rooted if (i) it contains at least one free vari-
able or individual name, and (ii) it is connected, i.e. for all x, y ∈ Var(φ)∪Ind(φ)
there is a sequence x1, . . . , xn ∈ Var(φ) ∪ Ind(φ) such that x1 = x, xn = y, and
for all i, 1 ≤ i ≤ n, there is an r ∈ NR such that either r(xi, xi+1) ∈ At(φ) or
r(xi+1, xi) ∈ At(φ). A TCQ is rooted if it contains only rooted CQs.

This makes sense from an application point of view since one usually does not
ask if there is some object with certain properties, but actually wants to know
the names of all objects with these properties. This restriction is not without
loss of generality, but it is needed in the proof of Lemma 19. We have so far not
been able to treat non-rooted TCQs in the presence of rigid concept names.

If we take the approach mentioned in Section 3 of viewing the input ABoxes
as a temporal database and rewriting the TCQ into an ATSQL-query as in [14],
then the additional rigidity constraints can simply be enforced by triggers that
ensure that new knowledge about rigid names is added to the database at all
previous time points.

However, the presence of rigid names poses a bigger problem for the incre-
mental algorithm of [13] and that described in Section 5, both of which do not
retain the data for all previous time points. For example, if the ABox at the next
time point includes the assertion A(a), where A is rigid, then this retroactively
also changes the answers to the query A(x) at previous time points. But the
aforementioned algorithms assume that the answers at previous time points do
not change.

Before we consider how to modify the algorithms for temporal query an-
swering over databases, we have to show that we can still employ the rewriting
approach and answer atemporal queries over a TKB K by directly querying the
database DB(K). This means that we have to reconsider the proof of Theorem 9
regarding the interpretation of rigid names. The main problem we have to solve
is that the sequence IK of canonical models does not necessarily respect the
rigid concept names. In the following, let K = 〈(Ai)i≥0, T 〉 be an infinite TKB.
Similar to Section 5, we denote by K(n) := 〈(Ai)0≤i≤n, T 〉 the finite prefix of K
of length n+ 1. We show how to construct modified sequences of interpretations
(similar to IK(n) from Theorem 9) that respect rigid names.

The first step is to find a set R ⊆ {A(a) | A ∈ NRC, a ∈ NI} that specifies the
rigid concept names that the individual names are allowed to satisfy. Of course,
we have to ensure that the assertions in R are not contradicted by any of the
ABoxes Ai, i ≥ 0. We construct R iteratively, starting from R0 := ∅, as follows.
In each step, we add to Rj , j ≥ 0, all assertions A(a) with A ∈ NRC and a ∈ NI
that are implied by Ai∪Rj w.r.t. T for some i ≥ 0. This reasoning task is called
instance checking and can be done in polynomial time in DL-Litecore [10]. This
results in a new set Rj+1. We iterate this process until no new assertions are



added. Since there are only polynomially many assertions of the form A(a) as
above, this is possible in polynomial time. We denote by R the final set com-
puted by this procedure. The next lemma shows that, in order to answer TCQs
over K(n), we can equivalently consider the TKB K(n)

R := 〈(Ai ∪R)0≤i≤n, T 〉.

Lemma 18. Let φ be a TCQ and K = 〈(Ai)i≥0, T 〉 be an infinite TKB. Then
there is a set R as above such that, for all i and n with 0 ≤ i ≤ n, we have

Cert(φ,K(n), i) = Cert(φ,K(n)
R , i).

Note that, if R is not consistent w.r.t. T , this means that the TKB K is not
consistent, i.e. there is no model of K that respects the rigid concept names.

Once we have computed R, we can construct the desired sequence of canoni-
cal models that respects the rigid concept names, using an idea from [6]. We start
with the original sequence IK(n)

R
= (IAi∪R,T )0≤i≤n that was used in Theorem 9

(but now with K(n)
R instead of K(n)). It is important to note that these canonical

models, as constructed in [10], are all countable. We define the set D ⊆ 2NRC of
subsets of NRC that contains exactly the sets

ρ(IAi∪R,T , x) := {A ∈ NRC | x ∈ AIAi∪R,T }

for all i, 0 ≤ i ≤ n, and x ∈ ∆IAi∪R,T . We will now modify each IAi∪R,T into
a new interpretation Ii such that for each Y ∈ D there are countably infinitely
many individuals x ∈ ∆Ii with Y = ρ(Ii, x).

To this end, consider i, n, 0 ≤ i ≤ n, and Y ∈ D. If IAi∪R,T does not
contain any such individual, then we first have to add one. Fortunately, from the
definition of D we know that there must be a j, 0 ≤ j ≤ n, and x ∈ ∆IAj ∪R,T

such that Y = ρ(IAj∪R,T , x). To be on the safe side, we therefore construct
the disjoint union I ′i of all interpretations in IK(n)

R
. More formally, the domain

of I ′i is the disjoint union of the domains of IAj∪R,T , 0 ≤ j ≤ n. The concept
and role names are interpreted as the (disjoint!) union of the interpretations of
these names under all IAj∪R,T , while the individual names are interpreted as
in IAi∪R,T . Note that the components of I ′i are not connected by any roles.
This implies in particular that any homomorphism of a rooted CQ into I ′i must
actually be a homomorphism into the original canonical model IAi∪R,T . This
fact is essential to prove Lemma 19 below (see [9] for details).

To ensure that there are even countably infinitely many such individuals, we
now define I ′′i as the countably infinite disjoint union of I ′i with itself, where
again the interpretation of the individual names remains unchanged. Finally, we
ensure that all models have the same domain ∆ := NI∪(D×N) and interpret the
individual names by the same domain elements by applying a bijection between
the domain of each I ′′i and ∆. In particular, each aI′′

i for a ∈ NI is simply mapped
to a, and every other element x ∈ ∆I′′

i is mapped to some (ρ(I ′′i , x), `) with ` ∈ N.
We denote the resulting interpretation by Ii and define IK(n),R := (Ii)0≤i≤n.



Algorithm 1: Compute certain answers to a rooted TCQ w.r.t. rigid names
Input : A rooted TCQ φ and an infinite TKB K = 〈(Ai)i≥0, T 〉
Output : Cert(φ,K(i)) for each i ≥ 0
for R ∈ R do

initialize an instance AR of the algorithm of Section 5 with φT
end
for i← 0, 1, . . . do

for R ∈ R do
run AR on input DB(Ai ∪R) to compute Cert(φ,K(i)

R )
end
output

⋂
R∈Active

Cert(φ,K(i)
R )

end

Lemma 19. The sequence IK(n),R is a model of K(n)
R . Furthermore, for all

rooted CQs φ and every i, 0 ≤ i ≤ n, we have

Ans(φ, IK(n),R, i) = Ans(φ, IK(n)
R
, i).

We can now finally state the variant of Theorem 9 that can deal with rigid
concept names.

Theorem 20. Let φ be a rooted TCQ and K = 〈(Ai)i≥0, T 〉 be an infinite TKB.
Then there is a set R as above such that, for all i and n with 0 ≤ i ≤ n, we have

Cert(φ,K(n)
R , i) = Ans(φ, IK(n),R, i) = Ans(φT ,DB(K(n)

R ), i).

Note that DB(K(n)
R ) is independent of the construction of IK(n),R, and we can

now simply apply the algorithm of Section 5 to the modified sequence of inter-
pretations DB(K(n)

R ) instead of DB(K(n)). More formally, let R denote the set of
all sets R of the form described above. Algorithm 1 describes the steps necessary
to compute the certain answers to a TCQ in the presence of rigid names.

For each R ∈ R, we start an instance AR of the algorithm presented in
Section 5. All these instances are run in parallel, with the only difference between
them being that each instance has a fixed set R of assumptions about the rigid
names. In each step, every instance AR computes the certain answers to φ relative
to R, and the actual set of certain answers to φ is then computed by taking
the intersection over all these sets. Note that we could in each step terminate
those instances AR for which Ai ∪ R is inconsistent w.r.t. T since this implies
that K(i)

R has no models, and thus Cert(φ,K(i)
R ) = ∆NV does not contribute to

the computation of the intersection in Algorithm 1. However, we leave out this
simple optimization to make the presentation of the algorithm clearer.

Theorem 21. Given a rooted TCQ φ and an infinite TKB K = 〈(Ai)i≥0, T 〉,
Algorithm 1 outputs Cert(φ,K(i)) for each i ≥ 0.



We have thus extended the algorithm in Section 5—and by extension also the
algorithm described in [13]—to deal with rigid concept names in rooted TCQs.

7 Conclusions

We have introduced the reasoning task of temporal OBDA over DL-Lite knowl-
edge bases and shown how to reduce this task to answering queries over temporal
databases, similar to what was done for the atemporal case [10]. We then pre-
sented three approaches to solve the latter problem. The first involves storing
the whole history of the database and re-evaluating the query at each time point
using a temporal database query language like ATSQL [14].

The second approach works by eliminating the future operators and evalu-
ating the resulting query using the algorithm of [13], which achieves a bounded
history encoding. Although independent of the length of the history, this in-
volves a non-elementary blow-up in the size of the query. Then, we presented an
algorithm that works directly with the future operators. We showed that the al-
gorithm computes exactly the desired answers, but its space requirements are in
general not independent of the length of the history. In future work, we will try
to achieve a bounded history encoding for certain classes of TCQs, and compare
the performance of all three approaches on temporal databases.

Finally, we also described an approach to extend the proposed algorithm
to deal with rigid concept names if only rooted CQs are allowed. We plan to
investigate how to adapt the algorithm to deal also with rigid role names.
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