
Satisfiability of CTL∗ with Constraints�

Claudia Carapelle, Alexander Kartzow, and Markus Lohrey

Institut für Informatik, Universität Leipzig, Germany

Abstract. We show that satisfiability for CTL∗ with equality-, order-, and mod-
ulo-constraints over Z is decidable. Previously, decidability was only known for
certain fragments of CTL∗, e.g., the existential and positive fragments and EF.

1 Introduction

Temporal logics like LTL, CTL or CTL∗ are nowadays standard languages for specify-
ing system properties in model-checking. They are interpreted over node labeled graphs
(Kripke structures), where the node labels (also called atomic propositions) represent
abstract properties of a system. Clearly, such an abstracted system state does in general
not contain all the information of the original system state. Consider for instance a pro-
gram that manipulates two integer variables x and y. A useful abstraction might be to
introduce atomic propositions v−232 , . . . , v232 for v ∈ {x, y}, where the meaning of vk
for −232 < k < 232 is that the variable v ∈ {x, y} currently holds the value k, and
v−232 (resp., v232) means that the current value of v is at most −232 (resp., at least 232).
It is evident that such an abstraction might lead to incorrect results in model-checking.

To overcome these problems, extensions of temporal logics with constraints have
been studied. Let us explain the idea in the context of LTL. For a fixed relational struc-
ture A (typical examples for A are number domains like the integers or rationals ex-
tended with certain relations) one adds atomic formulas of the form r(Xi1x1, . . . ,X

ikxk)
(so called constraints) to standard LTL. Here, r is (a name of) one of the relations of the
structure A, i1, . . . , ik ≥ 0, and x1, . . . , xk are variables that range over the universe of
A. An LTL-formula containing such constraints is interpreted over (infinite) paths of a
standard Kripke structure, where in addition every node (state) associates with each of
the variables x1, . . . , xk an element of A (one can think of A-registers attached to the
system states). A constraint r(Xi1x1, . . . ,X

ikxk) holds in a path s0 → s1 → s2 → · · ·
if the tuple (a1, . . . , ak), where aj is the value of variable xj at state sij , belongs to
the A-relation r. In this way, the values of variables at different system states can be
compared. In our example from the first paragraph, one might choose for A the struc-
ture (Z, <,=, (=a)a∈Z), where =a is the unary predicate that only holds for a. This
structure has infinitely many predicates, which is not a problem; our main result will
actually talk about an expansion of (Z, <,=, (=a)a∈Z). Then, one might for instance
write down a formula (<(x,X1y))U(=100(y)) which holds on a path if and only if there
is a point of time where variable y holds the value 100 and for all previous points of
time t, the value of x at time t is strictly smaller than the value of y at time t+ 1.

� Omitted proofs can be found in [4]. This work is supported by the DFG Research Training
Group 1763 (QuantLA). The second author is supported by the DFG research project GELO.

P.R. D’Argenio and H. Melgratti (Eds.): CONCUR 2013, LNCS 8052, pp. 455–469, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

456 C. Carapelle, A. Kartzow, and M. Lohrey

In [9], Demri and Gascon studied LTL extended with constraints from a language
IPC∗. If we disregard succinctness aspects, these constraints are equivalent to con-
straints over the structure

Z = (Z, <,=, (=a)a∈Z, (≡a,b)0≤a<b), (1)

where =a denotes the unary relation {a} and ≡a,b denotes the unary relation {a+ xb |
x ∈ Z} (expressing that an integer is congruent to a modulo b). The main result from
[9] states that satisfiability of LTL with constraints from Z is decidable and in fact
PSPACE-complete, and hence has the same complexity as satisfiability for LTL without
constraints. We should remark that the PSPACE upper bound from [9] even holds for
the succinct IPC∗-representation of constraints used in [9].

In the same way as outlined for LTL above, constraints can be also added to CTL
and CTL∗ (then, constraints r(Xi1x1, . . . ,X

ikxk) are path formulas). A weak form of
CTL∗ with constraints from Z (where only integer variables and the same state can be
compared) was first introduced in [5], where it is used to describe properties of infinite
transition systems, represented by relational automata. There it is shown that the model
checking problem for CTL∗ over relational automata is undecidable.

Demri and Gascon [9] asked whether satisfiability of CTL∗ with constraints from
Z over Kripke structures is decidable. This problem was investigated in [3,10], where
several partial results where shown: If we replace in Z the binary predicate < by unary
predicates <c = {x | x < c} for c ∈ Z, then satisfiability for CTL∗ is decidable by
[10]. While, for the full structure Z satisfiability is decidable for the CTL∗ fragment
CEF+ (which contains the existential and universal fragment of CTL∗ as well as EF)
[3].

In this paper we prove that CTL∗ with constraints over Z is decidable. Our proof is
divided into two steps. The first step provides a tool to prove decidability of CTL∗ with
constraints over any structure A over a countable (finite or infinite) signature S (the
structure A has to satisfy the additional property that the complement of any of its rela-
tions has to be definable in positive existential first-order logic over A). Let L be a logic
that satisfies the following two properties: (i) satisfiability of a given L-sentence over
the class of infinite node-labeled trees is decidable, and (ii) L is closed under boolean
combinations with monadic second-order formulas (MSO). A typical such logic is MSO
itself. By Rabin’s seminal tree theorem, satisfiability of MSO-sentences over infinite
node-labeled trees is decidable. Assuming L has these two properties, we prove that
satisfiability of CTL∗ with constraints over A is decidable if one can compute from
a given finite subsignature σ ⊆ S an L-sentence ψσ (over the signature σ) such that
for every countable σ-structure B: B |= ψσ if and only if there exists a homomorphism
from B to A (i.e., a mapping from the domain of B to the domain of A that preserves all
relations from σ). We say that the structure A has the property EHomDef(L) if such a
computable function σ �→ ψσ exists. EHomDefstands for “existence of homomorphism
is definable”. For instance, the structure (Q, <,=) has the property EHomDef(MSO),
see Example 7.

It is not clear whether Z from (1) has the property EHomDef(MSO) (we conjecture
that it does not). Hence, we need a different logic. It turns out that Z has the property
EHomDef(WMSO+B), where WMSO+B is the extension of weak monadic second-
order logic (where only quantification over finite subsets is allowed) with the bounding

Satisfiability of CTL∗ with Constraints 457

quantifier B. A formula BX : ϕ holds in a structure A if and only if there exists a bound
b ∈ N such that for every finite subset B of the domain of A with A |= ϕ(B) we
have |B| ≤ b. Recently, Bojańczyk and Toruńczyk have shown that satisfiability of
WMSO+B over infinite node-labeled trees is decidable [1]. The next problem is that
WMSO+B is not closed under boolean combinations with MSO-sentences. But fortu-
nately, the decidability proof for WMSO+B can be extended to boolean combinations
of MSO-sentences and (WMSO+B)-sentences, see Section 3 for details. This finally
shows that satisfiability of CTL∗ with constraints from Z is decidable.

While it would be extremely useful to add successor constraints (y = x + 1) to
Z , this would lead to undecidability even for LTL [8] and the very basic description
logic ALC [13], which is basically multi-modal logic. Nonetheless Z allows qualitative
representation of increment, for example x = y + 1 can be abstracted by (y > x) ∧
(≡1,2k (y)) where k is a large natural number. This is why temporal logics extended
with constraints over Z seem to be a good compromise between (unexpressive) total
abstraction and (undecidable) high concretion.

In the area of knowledge representation, extensions of description logics with con-
straints from so called concrete domains have been intensively studied, see [11] for
a survey. In [12], it was shown that the extension of the description logic ALC with
constraints from (Q, <,=) has a decidable (EXPTIME-complete) satisfiability prob-
lem with respect to general TBoxes (also known as general concept inclusions). Such
a TBox can be seen as a second ALC-formula that has to hold in all nodes of a model.
Our decidability proof is partly inspired by the construction from [12], which in con-
trast to our proof is purely automata-theoretic. Further results for description logics and
concrete domains can be found in [13,14].

Unfortunately, our proof does not yield any complexity bound for satisfiability of
CTL∗ with constraints from Z . The boolean combinations of (WMSO+B)-sentences
and MSO sentences that have to be checked for satisfiability (over infinite trees) are of
a simple structure, in particular their quantifier depth is not high. But no complexity
statement for satisfiability of WMSO+B is made in [1], and it seems to be difficult
to analyze the algorithm from [1] (but it seems to be elementary for a fixed quantifier
depth). It is based on a construction for cost functions over finite trees from [6], where
the authors only note that their construction seems to have very high complexity.

2 Preliminaries

Let [1, d] = {1, . . . , d}. For a word w = a1a2 · · · al ∈ [1, d]∗ and k ≤ l we define
w[: k] = a1a2 · · · ak; it is the prefix of w of length k.

Let P be a countable set of (atomic) propositions. A Kripke structure over P is a
triple K = (D,→, ρ), where (i) D is an arbitrary set of nodes (or states), (ii) → is a
binary relation on D such that for every u ∈ D there exists v ∈ D with u → v, and
(iii) ρ : D → 2P assigns to every node the set of propositions that hold in the node.
We require that

⋃
v∈D ρ(v) is finite, i.e., only finitely many propositions appear in K.

A K-path is an infinite sequence π = (v0, v1, v2, . . .) such that vi → vi+1 for all i ≥ 0.
For i ≥ 0 we define the state π(i) = vi and the path πi = (vi, vi+1, vi+2, . . .). A Kripke
d-tree is a Kripke structure of the form K = ([1, d]∗,→, ρ), where → contains all pairs

458 C. Carapelle, A. Kartzow, and M. Lohrey

(u, ui) with u ∈ [1, d]∗ and 1 ≤ i ≤ d, i.e., ([1, d]∗,→) is a tree with root ε where
every node has d children.

A signature is a countable (finite or infinite) set S of relation symbols. Every relation
symbol r ∈ S has an associated arity ar(r) ≥ 1. An S-structure is a pair A = (A, I),
where A is a non-empty set and I maps every r ∈ S to an ar(r)-ary relation over
A. Quite often, we will identify the relation I(r) with the relation symbol r, and we
will specify an S-structure as (A, r1, r2, . . .) where S = {r1, r2, . . .}. The S-structure
A = (A, I) is negation-closed if there exists a computable function that maps a relation
symbol r ∈ S to a positive existential first-order formula ϕr(x1, . . . , xar(r)) (i.e., a
formula that is built up from atomic formulas using∧, ∨, and ∃) such thatAar(r)\I(r) =
{(a1, . . . , aar(r)) | A |= ϕr(a1, . . . , aar(r))}. In other words, the complement of every
relation I(r) must be effectively definable by a positive existential first-order formula.

Example 1. The structure Z from (1) is negation-closed (we will write x = a instead
of =a(x) and similarly for ≡a,b). We have for instance:

– x �= y if and only if x < y or y < x.
– x �= a if and only if ∃y ∈ Z : y = a ∧ (x < y ∨ y < x).
– x �≡ a mod b if and only if x ≡ c mod b for some 0 ≤ c < b with a �= c.

For a subsignature σ ⊆ S, a σ-structure B = (B, J) and an S-structure A = (A, I),
a homomorphism h : B → A is a mapping h : B → A such that for all r ∈ σ and all
tuples (b1, . . . , bar(r)) ∈ J(r) we have (h(b1), . . . , h(bar(r))) ∈ I(r). We write B A
if there is a homomorphism from B to A.

3 MSO and WMSO+B

Recall that monadic second-order logic (MSO) is the extension of first-order logic
where also quantification over subsets of the underlying structure is allowed. We as-
sume that the reader has some familiarity with MSO. Weak monadic second-order logic
(WMSO) has the same syntax as MSO but second-order variables only range over finite
subsets of the underlying structure. Finally, WMSO+B is the extension of WMSO by
the additional quantifier BX : ϕ (the bounding quantifier). The semantics of BX : ϕ in
the structure A = (A, I) is defined as follows: A |= BX : ϕ(X) if and only if there is
a bound b ∈ N such that |B| ≤ b for every finite subset B ⊆ A with A |= ϕ(B).

Example 2. For later use, we state some example formulas. Let ϕ(x, y) be a WMSO-
formula with two free first-order variables x and y. Let A = (A, I) be a structure and
let E = {(a, b) ∈ A× A | A |= ϕ(a, b)} be the binary relation defined by ϕ(x, y). We
define the WMSO-formula reachϕ(a, b) to be

∃X ∀Y
(
a ∈ Y ∧ ∀x∀y((x ∈ Y ∧ y ∈ X ∧ ϕ(x, y)) → y ∈ Y) → b ∈ Y

)

It is straightforward to prove that A |= reachϕ(a, b) if and only if (a, b) ∈ E∗. Note
that reachϕ is the standard MSO-formula for reachability but restricted to some finite
induced subgraph. Clearly, b is reachable from a in the graph (A,E) if and only if it is
in some finite subgraph of (A,E).

Satisfiability of CTL∗ with Constraints 459

Let ECycleϕ = ∃x∃y(reachϕ(x, y) ∧ ϕ(y, x)) be the WMSO-formula expressing
that there is a cycle in (A,E).

Given a second-order variable Z , we define reachZϕ(a, b) to be

a ∈ Z ∧ ∀Y ⊆ Z
(
a ∈ Y ∧ ∀x∀y((x ∈ Y ∧ y ∈ Z ∧ ϕ(x, y)) → y ∈ Y) → b ∈ Y

)
.

We have A |= reachZϕ (a, b) iff b is reachable from a in the subgraph of (A,E) induced

by the (finite) set Z . Note that A |= reachZϕ (a, b) implies {a, b} ⊆ Z .
For the next examples we restrict our attention the case that the graph (A,E) defined

by ϕ(x, y) is acyclic. Hence, the reflexive transitive closure E∗ is a partial order on
A. Note that a finite set F ⊆ A is an E-path from a ∈ F to b ∈ F if and only if
(F, (E ∩ (F × F))∗) is a finite linear order with all elements between a and b. Define
the WMSO-formula Pathϕ(a, b, Z) as

∀x ∈ Z ∀y ∈ Z (reachZϕ(x, y) ∨ reachZϕ(y, x)) ∧ reachZϕ (a, x) ∧ reachZϕ(x, b).

For every acyclic (A,E) we have A |= Pathϕ(a, b, P) if and only if P contains exactly
the nodes along an E-path from a to b.

We finally define the WMSO+B-formula BPathsϕ(x, y) = BZ : Pathϕ(x, y, Z).
By definition of the quantifier B, if (A,E) is acyclic, then A |= BPathsϕ(a, b) if and
only if there is a bound k ∈ N on the length of any E-path from a to b.

Next, let Bool(MSO,WMSO+B) be the set of all Boolean combinations of MSO-
formulas and (WMSO+B)-formulas. We will use the following result.

Theorem 3 (cf. [1]). One can decide whether for a given d ∈ N and a formula ϕ ∈
Bool(MSO,WMSO+B) there exists a Kripke d-tree K such that K |= ϕ.

Proof. This theorem follows from results of Bojańczyk and Toruńczyk [1,2]. They in-
troduced puzzles which can be seen as pairs P = (A,C), where A is a parity tree
automaton and C is an unboundedness condition C which specifies a certain set of infi-
nite paths labeled by states of A. A puzzle accepts a tree T if there is an accepting run
ρ of A on T such that for each infinite path π occurring in ρ, π ∈ C holds. In partic-
ular, ordinary parity tree automata can be seen as puzzles with trivial unboundedness
condition. The proof of our theorem combines the following results.

Lemma 4 ([1]). From a given (WMSO+B)-formula ϕ and d ∈ N one can construct a
puzzle Pϕ such that ϕ is satisfied by some Kripke d-tree iff Pϕ is nonempty.

Lemma 5 ([1]). Emptiness of puzzles is decidable.

Lemma 6 (Lemma 17 of [2]). Puzzles are effectively closed under intersection.

Let ϕ ∈ Bool(MSO,WMSO+B). First, ϕ can be effectively transformed into a dis-
junction

∨n
i=1(ϕi ∧ψi) where ϕi ∈ MSO and ψi ∈ WMSO+B for all i. By Lemma 4,

we can construct a puzzle Pi for ψi. It is known that the MSO-formula ϕi can be trans-
lated into a parity tree automatonAi. Let P ′

i be a puzzle recognizing the intersection of
Pi and Ai (cf. Lemma 6). Now ϕ is satisfiable over Kripke d-trees if and only if there
is an i such that ϕi∧ψi is satisfiable over Kripke d-trees if and only if there is an i such
that P ′

i is nonempty. By Lemma 5, the latter condition is decidable which concludes the
proof of the theorem. ��

460 C. Carapelle, A. Kartzow, and M. Lohrey

Let L be a logic (e.g. MSO or Bool(MSO,WMSO+B)). An S-structure A has the
property EHomDef(L) (existence of homomorphisms to A is L-definable) if there is a
computable function that maps a finite subsignature σ ⊆ S to an L-sentence ϕσ such
that for every countable σ-structure B: B A if and only if B |= ϕσ .

Example 7. The structure Q = (Q, <,=) has the property EHomDef(WMSO) (and
EHomDef(MSO)). In [12] it is implicitly shown that for a countable {<,=}-structure
B = (B, I), B Q if and only if there does not exist (a, b) ∈ I(<) such that (b, a) ∈
(I(<)∪ I(=)∪ I(=)−1)∗. This condition can be easily expressed in WMSO using the
reach-construction from Example 2. Note that I(=) is not required to be the identity
relation on B.

4 CTL∗ with Constraints

Let us fix a countably infinite set of atomic propositions P and a countably infinite set
of variables V for the rest of the paper. Let S be a signature. We define an extension of
CTL∗ with constraints over the signature S. We define CTL∗(S)-state formulas ϕ and
CTL∗(S)-path formulas ψ by the following grammar, where p ∈ P, r ∈ S, k = ar(r),
i1, . . . , ik ≥ 0, and x1, . . . , xk ∈ V:

ϕ ::=p | ¬ϕ | (ϕ ∧ ϕ) | Eψ
ψ ::=ϕ | ¬ψ | (ψ ∧ ψ) | Xψ | ψUψ | r(Xi1x1, . . . ,X

ikxk)

A formula of the form R := r(Xi1x1, . . . ,X
ikxk) is also called an atomic constraint

and we define d(R) = max{i1, . . . , ik} (the depth of R). The syntactic difference
between CTL∗(S) and ordinary CTL∗ lies in the presence of atomic constraints.

Formulas of CTL∗(S) are interpreted over triples C = (A,K, γ), where A = (A, I)
is an S-structure (also called the concrete domain),K = (D,→, ρ) is a Kripke structure
over P, and γ : D×V → A assigns to every (v, x) ∈ D× V a value γ(v, x) (the value
of variable x at node v). We call such a triple C = (A,K, γ) an A-constraint graph. An
A-constraint graph C = (A,K, γ) is an A-constraint d-tree if K is a Kripke d-tree.

We now define the semantics of CTL∗(S). For an A-constraint graph C = (A,K, γ)
with A = (A, I) and K = (D,→, ρ), a state v ∈ D, a K-path π, a state formula ϕ, and
a path formula ψ we write (C, v) |= ϕ if ϕ holds in (C, v) and (C, π) |= ψ if ψ holds in
(C, π). This is inductively defined as follows (for the boolean connectives ¬ and ∧ the
definitions are as usual and we omit them):

– (C, v) |= p iff p ∈ ρ(v).
– (C, v) |= Eψ iff there is a K-path π with π(0) = v and (C, π) |= ψ.
– (C, π) |= ϕ iff (C, π(0)) |= ϕ.
– (C, π) |= Xψ iff (C, π1) |= ψ.
– (C, π) |= ψ1Uψ2 iff there exists i ≥ 0 such that (C, πi) |= ψ2 and for all 0 ≤ j < i

we have (C, πj) |= ψ1.
– (C, π) |= r(Xi1x1, . . . ,X

inxn) iff (γ(π(i1), x1), . . . , γ(π(in), xn)) ∈ I(r).

Satisfiability of CTL∗ with Constraints 461

Note that the role of the concrete domain A and of the valuation function γ is restricted
to the semantic of atomic constraints. CTL∗-formulas are interpreted over Kripke struc-
tures, and to obtain their semantics it is sufficient to replace C by K in the rules above
and to remove the last line.

We use the usual abbreviations: θ1 ∨ θ2 := ¬(¬θ1 ∧ ¬θ2) (for both state and path
formulas), Aψ := ¬E¬ψ (universal path quantifier), ψ1Rψ2 := ¬(¬ψ1U¬ψ2) (the
release operator). Note that (C, π) |= ψ1Rψ2 iff ((C, πi) |= ψ2 for all i ≥ 0 or there
exists i ≥ 0 such that (C, πi) |= ψ1 and (C, πj) |= ψ2 for all 0 ≤ j ≤ i).

Using this extended set of operators we can put every formula into a semantically
equivalent negation normal form, where ¬ only occurs in front of atomic propositions
or atomic constraints. Let #E(θ) be the the number of different subformulas of the form
Eψ in the CTL∗(S)-formula θ. Then CTL∗(S) has the following tree model property:

Theorem 8 (cf. [10]). Let ϕ be a CTL∗(S)-state formula in negation normal form and
let A = (A, I) be an S-structure. Then ϕ is A-satisfiable if and only if there exists an
A-constraint (#E(ϕ) + 1)-tree C with (C, ε) |= ϕ.

Note that for checking (A,K, γ) |= ϕ we may ignore all propositions p ∈ P that do not
occur in ϕ. Similarly, only those values γ(u, x), where x is a variable that appears in
ϕ, are relevant. Hence, if Vϕ is the finite set of variables that occur in ϕ, then we can
consider γ as a mapping from D × Vϕ to the domain of A. Intuitively, we assign to
each node u ∈ D registers that store the values γ(u, x) for x ∈ Vϕ.

5 Satisfiability of Constraint CTL∗ over a Concrete Domain

When we talk about satisfiability for CTL∗(S) our setting is as follows: We fix a con-
crete domain A = (A, I). Given a CTL∗(S)-state formula ϕ, we say that ϕ is A-
satisfiable if there is an A-constraint graph C = (A,K, γ) and a node v of K such that
(C, v) |= ϕ. With SATCTL∗(A) we denote the following computational problem: Is a
given state formula ϕ ∈ CTL∗(S) A-satisfiable? The main result of this section is:

Theorem 9. Let A be a negation-closed S-structure, which moreover has the property
EHomDef(Bool(MSO,WMSO+B)). Then the problem SATCTL∗(A) is decidable.

We say that a CTL∗(S)-formula ϕ is in strong negation normal form if negations only
occur in front of atomic propositions (i.e., ϕ is in negation normal form and there is no
subformula ¬R where R is an atomic constraint).

Let us fix a CTL∗(S)-state formulaϕ in negation normal form and a negation-closed
S-structure A for the rest of this section. We want to check whether ϕ is A-satisfiable.
First, we reduce to formulas in strong negation normal form:

Lemma 10. Let A = (A, I) be a negation-closed S-structure. From a given CTL∗(S)-
state formula ϕ one can compute a CTL∗(S)-state formula ϕ̂ in strong negation normal
form such that ϕ is A-satisfiable iff ϕ̂ is A-satisfiable.

From now on let us assume thatϕ is in strong negation normal form. Let d = #E(ϕ)+1.
Let R1, . . . , Rn be a list of all atomic constraints that are subformulas of ϕ, and let Vϕ

462 C. Carapelle, A. Kartzow, and M. Lohrey

p1p2

p1

p1p2

p1 p2

p1

p2 p1p2 p2

1 2

2 2 1 3

3 3 2 0 2 0 3 0

0 4 2 2 0 2 0 3 0 2 0 0 4 4 3 3

=

=

= = = =

<

<

<

<
<

<

Fig. 1. The (N, <,=)-constraint 2-tree C from Ex. 11, the Kripke 2-tree T = Ca, and the struc-
ture GT

be the finite set of variables that occur in ϕ. Let us fix new propositions p1, . . . , pn (one
for each Ri) that do not occur in ϕ. Let di = d(Ri) be the depth of the constraint Ri.
We denote with ϕa the (ordinary) CTL∗-formula obtained from ϕ by replacing every
occurrence of a constraint Ri by Xdipi. Given an A-constraint d-tree C = (A,K, γ),
where K = ([1, d]∗,→, ρ) and ρ(v) ∩ {p1, . . . , pn} = ∅ for all v ∈ [1, d]∗, we define a
Kripke d-tree Ca = ([1, d]∗,→, ρa), where ρa(v) contains

– all propositions from ρ(v) and
– all propositions pi (1 ≤ i ≤ n) such that the following holds, where we as-

sume that Ri has the form r(Xj1x1, . . . ,X
jkxk) with k = ar(r) (hence, di =

max{j1, . . . , jk}):
• v = su with |u| = di
• (γ(su1, x1), . . . , γ(suk, xk)) ∈ I(r), where ul = u[: jl] for 1 ≤ l ≤ k.

Hence, the fact that proposition pi labels node suwith |u| = di means that the constraint
Ri holds along every path that starts in node s and descends in the tree down via node
su. The superscript “a” in Ca stands for “abstracted” since we abstract from the concrete
constraints and replace them by new propositions.

Moreover, given a Kripke d-tree T = ([1, d]∗,→, ρ) (where the new propositions
p1, . . . , pn are allowed to occur in T) we define a countable S-structure GT = ([1, d]∗×
Vϕ, J) as follows: The interpretation J(r) of the relation symbol r ∈ S contains all k-
tuples (where k = ar(r)) ((su1, x1), . . . , (suk, xk)) for which there exist 1 ≤ i ≤ n
and u ∈ [1, d]∗ with |u| = di such that pi ∈ ρ(su), Ri = r(Xj1x1, . . . ,X

jkxk), and
ut = u[: jt] for 1 ≤ t ≤ k.

Example 11. Figure 1 shows an example, where we assume that d = 2 and n = 2,
R1 = [<(x1,Xx2)], and R2 = [=(Xx1,Xx2)]. The figure shows an initial part of an
(N, <,=)-constraint 2-tree C = ((N, <,=),K, γ). The edges of the Kripke 2-tree K
are dotted. We assume that K is defined over the empty set of propositions. The node to
the left (resp., right) of a tree node u is labeled by the value γ(u, x1) (resp. γ(u, x2)).
The figure shows the labeling of tree nodes with the two new propositions p1 and p2
(corresponding to R1 and R2) as well as the {<,=}-structure GT for T = Ca.

Satisfiability of CTL∗ with Constraints 463

Lemma 12. Let ϕ be a CTL∗(S)-state formula in strong negation normal form. The
formula ϕ is A-satisfiable if and only if there exists a Kripke (#E(ϕ) + 1)-tree T such
that (T , ε) |= ϕa and GT A.

Let θ = ϕa for the further discussion. Hence, θ is an ordinary CTL∗-state formula,
where negations only occur in front of propositions from P \ {p1, . . . , pm}, and d =
#E(θ) + 1. By Lemma 12, we have to check, whether there exists a Kripke d-tree T
such that (T , ε) |= θ and GT A.

Let σ ⊆ S be the finite subsignature consisting of all predicate symbols that oc-
cur in our initial CTL∗(S)-formula ϕ. Note that GT is actually a σ-structure. Since
the concrete domain A has the property EHomDef(Bool(MSO,WMSO+B)), one can
compute from σ a Bool(MSO,WMSO+B)-formula α such that for every countable
σ-structure B we have B |= α if and only if B A. Hence, our new goal is to decide,
whether there exists a Kripke d-tree T such that (T , ε) |= θ and GT |= α (note that GT
is countable). It is well known that every CTL∗-state formula can be effectively trans-
formed into an equivalentMSO-formula with a single free first-order variable. Since the
root ε of a tree is first-order definable, we get an MSO-sentence ψ such that (T , ε) |= θ
if and only if T |= ψ. Hence, we have to check whether there exists a Kripke d-tree T
such that T |= ψ and GT |= α. If we can translate the Bool(MSO,WMSO+B)-formula
α back into a Bool(MSO,WMSO+B)-formula α′ such that (GT |= α ⇔ T |= α′),
then we can finish the proof.

Recall the construction of GT : For every node v ∈ D of T = (D,→, ρ) we introduce
m := |Vϕ| copies (v, x) for x ∈ Vϕ. The S-relations between these nodes are deter-
mined by the propositions p1, . . . , pn: The interpretation of r ∈ S contains all k-tuples
(k = ar(r)) ((su1, y1), . . . , (suk, yk)) for which there exist 1 ≤ i ≤ n and u ∈ [1, d]∗

with |u| = di, pi ∈ ρ(su), Ri = r(Xj1y1, . . . ,X
jkyk), and ut = u[: jt] for 1 ≤ t ≤ k.

This is a particular case of an MSO-transduction [7] with copy number m. It is there-
fore possible to compute from a given MSO-sentence η over the signature S an MSO-
sentence η′ such that GT |= η ⇔ T |= η′. But the problem is that in our situation η is
the Bool(MSO,WMSO+B)-formula α, and it is not clear whether MSO-transductions
(or even first-order interpretations) are compatible with the logic WMSO+B. Never-
theless, there is a simple solution. Let Vϕ = {x1, . . . , xm}. From a Kripke d-tree T =
([1, d]∗,→, ρ) we build an extended (d+m)-Kripke tree T e = ([1, d+m]∗,→, ρe) as
follows: Let us fix new propositions q1, . . . , qm (one for each variable xi) that do not
occur in the MSO-sentence ψ and such that ρ(v)∩{q1, . . . , qm} = ∅ for all v ∈ [1, d]∗.
We define the new labeling function ρe as follows:

ρe(v) = ρ(v) for v ∈ [1, d]∗

ρe(vi) = {qi−d} for v ∈ [1, d]∗, d+ 1 ≤ i ≤ d+m

ρe(viu) = ∅ for v ∈ [1, d]∗, d+ 1 ≤ i ≤ d+m,u ∈ [1, d+m]+

It is easy to write down an MSO-sentence β such that for every (d + m)-Kripke tree
T ′ we have T ′ |= β if and only if T ′ ∼= T e for some Kripke d-tree T . Moreover,
since the old Kripke d-tree T is MSO-definable within T e, we can construct from the
MSO-sentence ψ a new MSO-sentence ψe such that T |= ψ if and only if T e |= ψe.
Finally, let q(x) =

∨m
i=1 qi(x). Then, the nodes of GT are in a natural bijection with

464 C. Carapelle, A. Kartzow, and M. Lohrey

the nodes of T e that satisfy q(x): If T e |= q(u) for u ∈ [1, d + m]∗, then there is a
unique i ∈ [1,m] such that T e |= qi(u) and u = v(i+d). Then we associate the node u
with node (v, xi) of GT . By relativizing all quantifiers in the Bool(MSO,WMSO+B)-
formula α to q(x), we can construct a Bool(MSO,WMSO+B)-formula αe such that
GT |= α if and only if T e |= αe.

It follows that there is a Kripke d-tree T such that T |= ψ and GT |= α if and only
if there is a Kripke (d+m)-tree T ′ such that T ′ |= (β ∧ ψe ∧ αe). Since β ∧ ψe ∧ αe

is a Bool(MSO,WMSO+B)-formula, the latter is decidable by Thm. 3.

6 Concrete Domains over the Integers

The main technical result of this section is:

Proposition 13. Z from (1) has the property EHomDef(Bool(MSO,WMSO+B)).

Since Z is negation-closed (see Ex. 1) our main result follows by Thm. 9:

Theorem 14. SATCTL∗(Z) is decidable.

We prove Prop. 13 in three steps. First, we show that the structure (Z, <) has the prop-
erty EHomDef(WMSO+B). Then we extend this result to the structure (Z, <,=) and,
finally, to the full structure Z .

Proposition 15. (Z, <) has the property EHomDef(WMSO+B).

As a preparation of the proof, we first define some terminology and then we characterize
structures that allow homomorphisms to (Z, <) in terms of their paths. Let A = (A, I)
be a countable {<}-structure. We identify A with the directed graph (A,E) where
E = I(<). When talking about paths, we always refer to finite directed E-paths. The
length of a path (a0, a1, . . . , an) (i.e., (ai−1, ai) ∈ E for 1 ≤ i ≤ n) is n. For S ⊆ A
and x ∈ A \ S, a path from x to S is a path from x to some node y ∈ S. A path from S
to x is defined in a symmetric way.

Lemma 16. We have A (Z, <) if and only if

(H1) A does not contain cycles, and
(H2) for all a, b ∈ A there is c ∈ N such that the length of all paths from a to b is

bounded by c.

Proof. Let us first show the “only if” direction of the lemma. Suppose h is a homo-
morphism from A to (Z, <). The presence of a cycle (a0, . . . ak−1) in A (k ≥ 1,
(ai, ai+1 mod k) ∈ E for 0 ≤ i ≤ k − 1) would imply the existence of integers
z0, . . . zk−1 with zi < zi+1 mod k for 0 ≤ i ≤ k − 1 (where zi = h(ai)), which is
not possible. Hence, (H1) holds.

Suppose now that a, b ∈ A are such that for every n there is a path of length at
least n from a to b. If d = h(b) − h(a), we can find a path (a0, a1 . . . , ak) with a0 =
a, ak = b and k > d. Since h is a homomorphism, this path will be mapped to an
increasing sequence of integers h(a) = h(a0) < h(a1) < · · · < h(ak) = h(b). But
this contradicts h(b)− h(a) = d < k. Hence, (H2) holds.

Satisfiability of CTL∗ with Constraints 465

For the “if” direction of the lemma assume that A is acyclic (property (H1)) and that
(H2) holds. Fix an enumeration a0, a1, a2, . . . of the countable set A. For n ≥ 0 let
Sn := {a ∈ A | ∃i, j ≤ n : (ai, a), (a, aj) ∈ E∗}, which has the following properties:

(P1) Sn is convex w.r.t. the partial order E∗: If a, c ∈ Sn and (a, b), (b, c) ∈ E∗, then
b ∈ Sn.

(P2) For a ∈ A \ Sn all paths between a and Sn are “one-way”, i.e., there do not exist
b, c ∈ Sn such that (b, a), (a, c) ∈ E∗. This follows from (P1).

(P3) For all a ∈ A \ Sn there exists a bound c ∈ N such that all paths between a and
Sn have length at most c. Let can ∈ N be the smallest such bound (hence, we have
can = 0 if there do not exist paths between a and Sn).

To see (P3), assume that there only exist paths from Sn to a but not the other way
round (see (P2)); the other case is symmetric. If there is no bound on the length of paths
from Sn to a, then by definition of Sn, there is no bound on the length of paths from
{a0, . . . , an} to a. By the pigeon principle, there exists 0 ≤ i ≤ n such that there is no
bound on the length of paths from ai to a. But this contradicts property (H2).

We build our homomorphism h inductively. For every n ≥ 0 we define functions
hn : Sn → Z such that the following invariants hold for all n ≥ 0.

(I1) If n > 0 then hn(a) = hn−1(a) for all a ∈ Sn−1

(I2) hn(Sn) is bounded in Z, i.e., there exist z1, z2 ∈ Z such that hn(Sn) ⊆ [z1, z2].
(I3) hn is a homomorphism from the subgraph (Sn, E ∩ (Sn × Sn)) to (Z, <).

For n = 0 we have S0 = {a0}. We set h0(a0) = 0 (any other integer would be also
fine). Properties (I1)–(I3) are easily verified. For n > 0, there are four cases.

Case 1. an ∈ Sn−1, thus Sn = Sn−1. We set hn = hn−1. Clearly, (I1)–(I3) hold for n.

Case 2. an /∈ Sn−1 and there is no path from an to Sn−1 or vice versa. We set
hn(an) := 0 (and Sn = Sn−1 ∪ {an}). In this case (I1)–(I3) follow easily from the
induction hypothesis.

Case 3. an /∈ Sn−1 and there exist paths from an to Sn−1. Then, by (P2) there do not
exist paths from Sn−1 to an. Hence, we have

Sn = Sn−1 ∪ {a ∈ A | ∃b ∈ Sn−1 : (an, a), (a, b) ∈ E∗}.

We have to assign a value hn(a) for all a ∈ A \ Sn−1 that lie along a path from an to
Sn−1. By (I2) there exist z1, z2 ∈ Z with hn−1(Sn−1) ⊆ [z1, z2]. Recall the definition
of can−1 from (P3). For all a ∈ A \ Sn−1 that lie on a path from an to Sn−1, we set
hn(a) := z1 − can−1. Since there are paths from a to Sn−1, we have can−1 > 0. Hence,
for all a ∈ Sn \ Sn−1, hn(a) < z1. Let us check that hn : Sn → Z satisfy (I1)– (I3):
Invariant (I1) holds by definition of hn. For (I2) note that hn(Sn) ⊆ [z1 − can

n−1, z2].
It remains to show (I3), i.e., that hn is a homomorphism from (Sn, E ∩ (Sn × Sn))

to (Z, <). Hence, we have to show that h(b1) < h(b2) for all (b1, b2) ∈ E ∩ (Sn×Sn).

– If b1, b2 ∈ Sn−1, then hn(b1) = hn−1(b1) < hn−1(b2) = hn(b2) by induction
hypothesis.

– If b1 ∈ Sn \ Sn−1 and b2 ∈ Sn−1, we know that hn(b2) = hn−1(b2) ≥ z1 while
hn(b1) < z1 by construction. This directly implies hn(b1) < hn(b2).

466 C. Carapelle, A. Kartzow, and M. Lohrey

– If b2 ∈ Sn \Sn−1 and b1 ∈ Sn−1, then (b1, b2) ∈ E and by assumption b2 must be
on a path from an to Sn−1 which contradicts (P2).

– If both b1 and b2 belong to Sn \ Sn−1 then hn(bi) := z1 − cbin−1 for i ∈ {1, 2}
Since (b1, b2) ∈ E, we have cb1n−1 > cb2n−1. This implies hn(b1) < hn(b2).

Case 4. an /∈ Sn−1 and there exist paths from Sn−1 to an. For all a ∈ Sn \ Sn−1 =
{a ∈ A \ Sn−1 | a belongs to a path from Sn−1 to an}, set hn(a) = z2 + can−1. The
rest of the argument goes analogously to Case 3.

This concludes the construction of hn. By (I1) limit function h =
⋃

i∈N
hi exists. By

(I3) and A =
⋃

i∈N
Si, h is a homomorphism from A to (Z, <). ��

Proof of Prop. 15. We translate the conditions (H1) and (H2) from Lemma 16 into
WMSO+B. Cycles are excluded by the sentence ¬ECycle< (Example 2). Moreover, for
an acyclic {<}-structure A we have A |= ∀x∀y BPaths<(x, y) (see also Example 2)
if and only if for all a, b ∈ A there is a bound b ∈ N on the length of paths from a to b.
Thus, A (Z, <) if and only if A |= ¬ECycle< ∧ ∀x∀y BPaths<(x, y). ��
Next, we extend Prop. 15 to the negation-closed structure (Z, <,=). To do so let us
fix a countable {<,=}-structure A = (A, I). Note that I(=) is not necessarily the
identity relation on A. Let ∼ = (I(=)∪ I(=)−1)∗ be the smallest equivalence relation
onA that contains I(=). Since ∼ is the reflexive and transitive closure of the first-order
definable relation I(=) ∪ I(=)−1, we can construct a WMSO-formula ϕ̃(x, y) (using
the reach-construction from Ex. 2) that defines ∼. Let

E< = ∼ ◦ I(<) ◦ ∼ i.e., the relation defined by the formula (2)

ϕ<(x, y) = ∃u ∃v (ϕ̃(x, u) ∧ u < v ∧ ϕ̃(v, y)). (3)

With Ã = (Ã, Ĩ) we denote the ∼-quotient of A: It is a {<}-structure, its domain is the
set Ã = {[a]∼ | a ∈ A} of all ∼-equivalence classes, and for two equivalence classes
[a]∼ and [b]∼ we have ([a]∼, [b]∼) ∈ Ĩ(<) iff there are a′ ∼ a and b′ ∼ b such that
(a′, b′) ∈ I(<). Let us write [a] for [a]∼. We have:

Lemma 17. A (Z, <,=) if and only Ã (Z, <).

In the next lemma, we translate the conditions for the existence of a homomorphism
from Ã to (Z, <) into conditions in terms of A.

Lemma 18. The following conditions are equivalent:

– Ã satisfies the conditions (H1) and (H2) from Lemma 16.
– The graph (A,E<) is acyclic and for all a, b ∈ A there is a bound c ∈ N such that

all E<-paths from a to b have length at most c.

Proposition 19. The concrete domains (Z, <,=), (N, <,=) and (Z \ N, <,=) have
property EHomDef(WMSO+B).

Proof. We only proof the proposition for (Z, <,=). The other two cases are similar. We
want to find a (WMSO+B)-formula ϕ such that for all {<,=}-structures A, A |= ϕ
if and only if A (Z, <,=). Let A = (A, I) be a {<,=}-structure. We use the

Satisfiability of CTL∗ with Constraints 467

notations introduced before Lemma 17. By Lemma 17 and 18 we have to construct a
(WMSO+B)-formula expressing that A has no E<-cycles and for all a, b ∈ A there is
a bound c ∈ N on the length of E<-paths from a to b. For this, we can use the formula
constructed in the proof of Prop. 15 with < replaced by the formula ϕ< from (3). ��

In the rest of this section, we prove Prop. 19 for the full structure Z from (1), which is
defined over the infinite signature S = {<,=}∪{=c| c ∈ Z}∪{≡a,b| 0 ≤ a < b}. By
the definition of EHomDef(Bool(MSO,WMSO+B)) we have to compute from a finite
subsignature σ ⊆ S a Bool(MSO,WMSO+B)-sentence ϕσ that defines the existence
of a homomorphism to Z when interpreted over a σ-structure A. Hence, let us fix a
finite subsignature σ ⊆ S. We can assume that σ = {<,=} ∪ {=c| c ∈ C} ∪ {≡a,b|
b ∈ D, 0 ≤ a < b} for finite non-empty sets C ⊆ Z and D ⊆ N \ {0, 1}. Define
m = min(C) and M = max(C). W.l.o.g. we can assume that m ≤ 0 and M ≥ 0. Let
A = (A, I) be a countable σ-structure. In order to not confuse the relation I(=) with
the identity relation on A, we write in the following E=(x, y) for the atomic formula
expressing that (x, y) belongs to the relation I(=). Similarly, we write Ec(x) for the
atomic formula expressing that x ∈ I(=c). Instead of ≡a,b(x) we write x ≡ a mod b.

Define x ≤ y ⇔ (x < y ∨ E=(x, y) ∨ E=(y, x)) and the MSO-formula

ϕbounded(x) = ∃y ∃z
(∨

c∈C

Ec(y) ∧
∨

c∈C

Ec(z) ∧ reach≤(y, x) ∧ reach≤(x, z)
)
.

Let B = {a ∈ A | A |= ϕbounded(a)}. We call the induced substructure B := A�B the
“bounded” part of A. Every homomorphism from B to Z has to map B to the interval
[m,M]. Thus, a homomorphism h : B → Z can be identified with a partition of B into
M −m+ 1 sets Bm, . . . , BM , where Bi = {a ∈ B | h(a) = i}. It follows that:

Lemma 20. There is an MSO-sentence ϕB such that for every S-structure A with
bounded part B, we have B Z if and only if A |= ϕB .

Similar to B we define three other parts of a σ-structure by the WMSO-formulas

ϕgreater(x) = ¬ϕbounded(x) ∧ ∃y
(
ϕbounded(y) ∧ reach≤(y, x)

)
,

ϕsmaller(x) = ¬ϕbounded(x) ∧ ∃y
(
ϕbounded(y) ∧ reach≤(x, y)

)
,

ϕrest(x) = ¬(ϕbounded(x) ∨ ϕgreater(x) ∨ ϕsmaller(x)).

Moreover, let G = {a ∈ A | A |= ϕgreater(a)}, S = {a ∈ A | A |= ϕsmaller(a)}, and
R = {a ∈ A | A |= ϕrest(a)}. Let N = Z�

N
and N = Z�

Z\N. Then we have:

Lemma 21. A Z iff
(
B Z,A�G∪S∪R Z,A�G N , and A�S N

)
.

We need some conventions on modulo constraints. A sequence (a1, b1), . . . , (ak, bk)
with 0 ≤ ai < bi ∈ D for 1 ≤ i ≤ k is contradictory, if there is no number n ∈ N such
that n ≡ ai mod bi for all 1 ≤ i ≤ k. In the following let CSk denote the set of con-
tradictory sequences of length k. It is straightforward to show that every contradictory
sequence contains a contradictory subsequence of length at most := max{2, |D|}.

Recall that ∼ is the smallest equivalence relation containing I(=) and that ∼ is
defined by the WMSO-formula ϕ̃(x, y). We call a σ-structure A = (A, I) modulo

468 C. Carapelle, A. Kartzow, and M. Lohrey

contradicting if there is a ∼-class [c], elements c1, c2, . . . , ck ∈ [c], and a contradictory
sequence (a1, b1), . . . , (ak, bk) such that ci ∈ I(≡ai,bi) for all 1 ≤ i ≤ k.

The following WMSO-formula ϕmodcon expresses that a σ-structure is modulo con-
tradicting, where we write sa(j) (resp. sb(j)) for the first (resp. second) entry of the
j-th element of the sequence s ∈ CSk:

ϕmodcon =
∨

2≤k≤�

∨

s∈CSk

∃x1 · · · ∃xk
∧

i,j≤k

ϕ̃(xi, xj) ∧
∧

j≤k

xj ≡ sa(j) mod sb(j)

Lemma 22. Let σ′ = σ \ {=c | c ∈ Z}. Let A = (A, I) be a σ′-structure.

– A Z iff A is not modulo contradicting and (A, I(<), I(=)) (Z, <,=).
– A N iff A is not modulo contradicting and (A, I(<), I(=)) (N, <,=).

Proof of Prop. 13. Let A = (A, I) be a σ-structure. We defined a partition of A into
B,G, S, and R. Since membership in each of these sets is (WMSO+B)-definable, we
can relativize any (WMSO+B)-formula to any of these sets. For instance, we write
ϕG for the relativization of ϕ to the substructure induced by G. Let ϕB be the MSO-
formula from Lemma 20, and for C ∈ {Z,N,Z \N} let ϕC be a formula that expresses
A (C,<,=), see Prop. 19. Then A |= (ϕB ∧ ϕG∪S∪R

Z
∧ ϕG

N
∧ ϕS

Z\N ∧ ¬ϕmodcon) iff
A Z due to Lemmas 21 and 22. ��

7 Extensions, Applications, Open Problems

A simple adaptation of our proof for Z shows that Q = (Q, <,=, (=q)q∈Q) has the
property EHomDef(Bool(MSO,WMSO+B)) as well: A = (A, I) Q iff (i) (A,E<)
is acyclic, where E< is defined as in (2), (ii) there does not exist (a, b) ∈ E+

< (the
transitive closure of E<) with a ∈ I(=p), b ∈ I(=q) and q ≤ p, and (iii) there do not
exist a ∼ b with a ∈ I(=p), b ∈ I(=q), and q �= p.

Let us finally state a simple preservation theorem for A-satisfiability for CTL∗(S).
Assume that A and B are structures over countable signatures SA and SB , respectively,
and let B be the domain of B. We say that A is existentially interpretable in B if there
exist n ≥ 1 and quantifier-free first-order formulas ϕ(y1, . . . , yl, x1, . . . , xn) and

ϕr(z1, . . . , zlr , x1,1, . . . , x1,n, . . . , xar(r),1, . . . , xar(r),n) for r ∈ SA

over the signature SB, where the mapping r �→ ϕr has to be computable, such that A is
isomorphic to the structure ({b ∈ Bn | ∃c ∈ Bl : B |= ϕ(c, b)}, I) with

I(r) = {(b1, . . . , bar(r)) ∈ Bar(r)n | ∃c ∈ Blr : B |= ϕr(c, b1, . . . , bar(r))} for r ∈ SA.

Proposition 23. If SATCTL∗(B) is decidable and A is existentially interpretable in B,
then SATCTL∗(A) is decidable too.

Examples of structures A that are existentially interpretable in (Z, <,=), and hence
have a decidable SATCTL∗(A)-problem are (i) (Zn, <lex,=) (for n ≥ 1), where <lex

denotes the strict lexicographic order on n-tuples of integers, and (ii) the structure

Satisfiability of CTL∗ with Constraints 469

AllenZ, which consists of all Z-intervals together with Allen’s relations b (before), a
(after), m (meets), mi (met-by), o (overlaps), oi (overlapped by), d (during), di (con-
tains), s (starts), si (started by), f (ends), fi (ended by). In artificial intelligence, Allen’s
relations are a popular tool for representing temporal knowledge.

It remains open to determine the complexity of CTL∗-satisfiability with constraints
over Z , see the last paragraph in the introduction. Clearly, this problem is 2EXPTIME-
hard due to the known lower bound for CTL∗-satisfiability. To get an upper complexity
bound, one should investigate the complexity of the emptiness problem for puzzles
from [1] (see Lemma 5). An interesting structure for which the decidability status for
satisfiability of CTL∗ with constraints is open, is ({0, 1}∗,≤p, �≤p), where ≤p is the
prefix order on words, and �≤p is its complement. It is not clear, whether this structure
has the property EHomDef(Bool(MSO,WMSO+B)).

Acknowledgments. We are grateful to Szymon Toruńczyk for fruitful discussions.

References

1. Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: Proc. STACS 2012.
LIPIcs, vol. 14, pp. 648–660. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

2. Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees (long version),
http://www.mimuw.edu.pl/˜bojan/papers/wmsou-trees.pdf

3. Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with qualitative Presburger
constraints. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
197–211. Springer, Heidelberg (2006)

4. Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of CTL∗ with constraints Technical
report, arXiv.org (2013), http://arxiv.org/abs/1306.0814

5. Čerāns, K.: Deciding properties of integral relational automata. In: Shamir, E., Abiteboul, S.
(eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg (1994)

6. Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: Proc. LICS 2010, pp.
70–79. IEEE Computer Society (2010)

7. Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap between
definability and recognizability. Theor. Comput. Sci. 80(2), 153–202 (1991)

8. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf. Com-
put. 205(3), 380–415 (2007)

9. Demri, S., Gascon, R.: Verification of qualitative Z constraints. Theor. Comput. Sci. 409(1),
24–40 (2008)

10. Gascon, R.: An automata-based approach for CTL∗ with constraints. Electr. Notes Theor.
Comput. Sci. 239, 193–211 (2009)

11. Lutz, C.: Description logics with concrete domains-a survey. In: Advances in Modal Logic
4, pp. 265–296. King’s College Publications (2003)

12. Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artificial In-
telligence 152(2), 235–274 (2004)

13. Lutz, C.: NEXPTIME-complete description logics with concrete domains. ACM Trans.
Comput. Log. 5(4), 669–705 (2004)

14. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and
general TBoxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)

http://www.mimuw.edu.pl/~bojan/papers/wmsou-trees.pdf
http://arxiv.org/abs/1306.0814

	Satisfiability of CTL* with Constraints
	1 Introduction
	2 Preliminaries
	3 MSO andWMSO+B
	4 CTL* with Constraints
	5 Satisfiability of Constraint CTL* over a Concrete Domain
	6 Concrete Domains over the Integers
	7 Extensions, Applications, Open Problems
	References

