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Andreas Ecke1?, Rafael Peñaloza1,2??, and Anni-Yasmin Turhan1? ? ?

1 Institute for Theoretical Computer Science,
Technische Universität Dresden

2 Center for Advancing Electronics Dresden
{ecke,penaloza,turhan}@tcs.inf.tu-dresden.de

Abstract. Description Logics (DLs) are a family of knowledge repre-
sentation formalisms, that provides the theoretical basis for the standard
web ontology language OWL. Generalization services like the least com-
mon subsumer (lcs) and the most specific concept (msc) are the basis of
several ontology design methods, and form the core of similarity mea-
sures. For the DL ELOR, which covers most of the OWL 2 EL profile,
the lcs and msc need not exist in general, but they always exist if re-
stricted to a given role-depth. We present algorithms that compute these
role-depth bounded generalizations. Our method is easy to implement,
as it is based on the polynomial-time completion algorithm for ELOR.

1 Introduction

Description logics (DLs) are knowledge representation formalisms with formal
and well-understood semantics [4]. They supply the foundation for the web on-
tology language OWL 2 standardized by the W3C [20]. Since then, DLs became
more widely used for the representation of knowledge from several domains.

Each DL offers a set of concept constructors by which complex concepts
can be built. These concepts describe categories from the application domain at
hand. A DL knowledge base consists of two parts: the TBox captures the termi-
nological knowledge about categories and relations, and the ABox captures the
assertional knowledge, i.e., individual facts, from the application domain. Promi-
nent inferences are subsumption, which determines subconcept relationships and
instance checking, which tests for a given individual and concept whether the
individual belongs to the concept.

The lightweight DL EL offers limited expressivity but allows for polyno-
mial time reasoning [3]. These good computational properties are maintained
by several extensions of EL—most prominently by EL++, the DL underlying the
OWL 2 EL profile [15], which allows for the use of nominals, i.e., singleton con-
cepts, when building complex concept descriptions. The reasoning algorithms
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for (fragments of) EL++ have been implemented in highly optimized reasoner
systems such as jCEL [14] and ELK [10]. It is worth pointing out that the initial
reasoning algorithm for handling nominals in EL [3] turned out to be incomplete,
but a complete method has been recently devised in [11].

In this paper we describe methods for computing generalizations in the EL-
family with the help of the standard reasoning algorithms. We consider the
following two inferences: The least common subsumer (lcs), which computes for
a given set of concepts a new concept that subsumes the input concepts and is
the least one w.r.t. subsumption; and the most specific concept which provides
a concept which has a given individual as an instance and is the least one w.r.t.
subsumption. Both inferences have been employed for several applications. Most
prominently the lcs and the msc can be employed in the ‘bottom-up approach’
for generating TBoxes, where modellers can generate a new concept from picking
ABox individuals that instantiate the desired concept and then generalizing this
set into a single concept automatically–first by applying the msc to each of
the individuals and then generalizing the obtained concepts by applying the lcs
[5]. Other applications of the lcs and the msc include similarity measures [8, 6,
13], which are the core of ontology matching algorithms and more (see [7, 16]).
In particular for large bio-medical ontologies the lcs can be used effectively to
support construction and maintenance. Many of these bio-medical ontologies,
notably SNOMED CT [19] and the FMA Ontology [18], are written in the EL-
family of lightweight DLs.

It is known that for concepts captured in a general TBox or even just a cyclic
TBox, the lcs does not need to exist [1], since cycles cannot be captured in an
EL-concept. Therefore, an approximation has been introduced in [16], that limits
the maximal nesting of quantifiers of the resulting concept descriptions. These
so-called role-depth bounded lcs (k-lcs), can be computed for EL and for EL
extended by role inclusions using completion sets produced by the subsumption
algorithm [16, 9]. In this paper, we describe a subsumption algorithm for the DL
ELOR—building on the one for ELO (EL extended by nominals) from [11]. Our
algorithm is given in terms of the completion algorithm in order to extend the
methods for the k-lcs to ELOR.

Recently, necessary and sufficient conditions for the existence of the lcs w.r.t.
general EL-TBoxes have been devised [21]. By the use of these conditions the
bound k for which the role-depth bounded lcs and the lcs coincide can be deter-
mined, if the lcs exists; i.e., if such k is finite.

Similarly to the lcs, the msc does not need to exist, if the ABox [12] con-
tain cycles. To obtain an approximative solution, the role-depth of the resulting
concept can be limited as suggested in [12]. A computation algorithm for the
role-depth bounded msc has been proposed in [17] for EL. If nominals are allowed,
the computation of the msc is trivial, since the msc of an individual a is simply
the nominal that contains a (i.e., {a}). Thus, we consider the computation of
the role-depth bounded msc in EL w.r.t. an ELOR knowledge base.

We introduce the basic notions of DL and the reasoning services considered
in the next section. In Section 3 we give a completion-based classification algo-



Syntax Semantics

concept name A (A ∈ NC) AI ⊆ ∆I

top concept > ∆I

nominal {a} (a ∈ NI) {a}I = {aI}
conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (r ∈ NR) (∃r.C)I = {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}

GCI C v D CI ⊆ DI

RIA r1 ◦ · · · ◦ rn v s rI
1 ◦ · · · ◦ rI

n ⊆ sI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Table 1. Concept constructors and TBox axioms for ELOR.

rithm for ELOR, which serves as a basis for the computation algorithms of the
role-depth bounded lcs and msc presented subsequently. The paper ends with
conclusions and future work.3

2 Preliminaries

ELOR-concepts are built from mutually disjoint sets NC of concept names, NR

of role names and NI of individual names using the syntax rule:

C,D ::= > | A | {a} | C uD | ∃r.C,

where A ∈ NC , r ∈ NR and a ∈ NI . The individuals appearing in concepts are
also called nominals. The sub-logic of ELOR that does not allow for individuals
in concepts is called ELR.

As usual, the semantics of ELOR-concepts is defined through interpretations.
An interpretation I = (∆I , ·I) consists of an interpretation domain ∆I and an
interpretation function ·I that maps concept names A to subsets AI ⊆ ∆I and
role names to binary relations on the domain ∆I . This function is extended to
complex concepts as shown in the upper part of Table 1.

Concepts can be used to model notions from the application domain in the
TBox. Given two concepts C and D, a general concept inclusion axiom (GCI)
is of the form C v D. We use C ≡ D as an abbreviation for C v D and D v C.
Given the roles r1, . . . , rn and s, a role inclusion axiom (RIA) is an expression
of the form r1 ◦ · · · ◦ rn v s. An ELOR-TBox is a finite set of GCIs and RIAs.
An interpretation is a model for a TBox T if it satisfies all GCIs and RIAs in
T , as shown in the middle part of Table 1. An EL-TBox is an ELR-TBox (i.e.,
without the nominal constructor) that does not contain any RIAs.

Knowledge about individual facts of the application domain can be captured
by assertions. Let a, b ∈ NI , r ∈ NR and C a concept, then C(a) is a concept
3 Because of space constraints, some proofs are deferred to the appendix of long version
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assertion and r(a, b) a role assertion. An ABox A is a finite set of (concept or
role) assertions. An interpretation is a model for an ABox A if it satisfies all
concept and role assertions in A, as shown in the lower part of Table 1.

A knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A. An
interpretation is a model of K = (T ,A) if it is a model of both T and A. With
Sig(T ) we denote the signature of a TBox T , i.e. the set of all concept names,
role names, and individual names that appear in T . By Sig(A) and Sig(K) we
denote the analogous notions for ABoxes and KBs, respectively.

Important reasoning tasks considered for DLs are subsumption and instance
checking. A concept C is subsumed by a concept D w.r.t. a TBox T (denoted
C vT D) if CI ⊆ DI holds in all models I of T . A concept C is equivalent
to a concept D w.r.t. a TBox T (denoted C ≡T D) if C vT D and D vT C
hold. The reasoning service classification of a TBox T computes all subsumption
relationships between the named concepts occurring in T . A reasoning service
dealing with a whole KB is instance checking. An individual a is an instance
of a given concept C w.r.t. K (denoted K |= C(a)) if aI ∈ CI holds in all
models I of K. ABox realization computes, for every concept name in K, the
set of individuals from the ABox that belong to that concept. These reasoning
problems can all be decided for ELOR, and hence also in EL, in polynomial time
[3].

There are two central inferences discussed in this paper that compute gen-
eralizations. The first is called the least common subsumer (lcs); it computes,
for two given concepts, a (possibly complex) concept that subsumes both input
concepts and that is the least concept with this property w.r.t. subsumption.
The second is called the most specific concept (msc), which computes for a given
individual a the least concept w.r.t. subsumption that has a as an instance w.r.t.
K.

The lcs does not need to exist if computed w.r.t. general EL-TBoxes, i.e.,
TBoxes that use complex concepts in the left-hand sides of GCIs, or even just
cyclic TBoxes [2]. The reason is that the resulting concept cannot capture cycles.
Thus, we follow here the idea from [16] and compute only approximations of the
lcs and of the msc by limiting the nesting of quantifiers of the resulting concept.

The role depth rd(C) of a concept C denotes the maximal nesting depth of
the existential quantifier in C. Sometimes it is convenient to write the resulting
concept in a different DL than the one the inputs concepts are written in. Thus
we distinguish a ‘source DL’ Ls and a ‘target DL’ Lt. With these notions at
hand, we can define the first generalization inference.
Definition 1 (lcs, role-depth bounded lcs). The least common subsumer
of two Ls-concepts C1, C2 w.r.t. an Ls-TBox T (written: lcsT (C1, C2)) is the
Lt-concept description D s.t.:
1. C1 vT D and C2 vT D, and
2. for all Lt-concepts E, C1 vT E and C2 vT E implies D vT E.

Let k ∈ IN. If the concept D has a role-depth up to k and Condition 2 holds
for all such E with role-depth up to k, then D is the role-depth bounded lcs
(k-lcsT (C1, C2)) of C1 and C2 w.r.t. T and k.



The role-depth bounded lcs is unique up to equivalence, thus we speak of the
k-lcs. In contrast, common subsumers need not be unique. Note that for target
DLs that offer disjunction, the lcs is always trivial: lcs(C1, C2) = C1 tC2. Thus
target DLs without disjunction may yield more informative lcs.

Similarly to the lcs, the msc does not need to exist if computed w.r.t. cyclic
ABoxes. Again we compute here approximations of the msc by limiting the role-
depth of the resulting concept as suggested in [12].
Definition 2. Let K = (T ,A) be a KB written in Ls and a be an individual
from A. An Lt-concept description C is the most specific concept of a w.r.t. K
(written mscK(a)) if it satisfies:
1. K |= C(a), and
2. for all Lt-concepts D, K |= D(a) implies C vT D.

If the concept C has a role-depth up to k and Condition 2 holds for all such D
with role-depth up to k, then C is the role depth bounded msc of a w.r.t. K and
k (k-mscK(a)).
The msc and the k-msc are unique up to equivalence in EL and ELOR. In
ELOR the msc is trivial, since mscK(a) = {a}. Thus we consider in this paper a
more interesting case, where the target DL Lt for the resulting concept is a less
expressive one without nominals, namely EL or ELR.

3 The k-lcs in ELOR

The algorithms to compute the role-depth bounded lcs are based on completion-
based classification algorithms for the corresponding DL. For the DL ELOR, a
consequence-based algorithm for classification of TBoxes was presented in [11],
building upon the completion algorithm developed in [3]. The completion algo-
rithm presented next adapts the ideas of the complete algorithm.

3.1 Completion Algorithm for ELOR-TBoxes
The completion algorithms work on normalized TBoxes. We define for ELOR
the set of basic concepts for a TBox T :

BCT = (Sig(T ) ∩ (NC ∪NI)) ∪ {>}.

Let T be an ELOR-TBox and A,A1, A2, B ∈ BCT ; then T is in normal form if
– each GCI in T is of the form: A v B,A1 uA2 v B,A v ∃r.B, or ∃r.A v B.
– each RIA in T is of the form: r v s or r1 ◦ r2 v s.

Every ELOR-TBox can be transformed into normal form in linear time by apply-
ing a set of normalization rules given in [3]. These normalization rules essentially
introduce new named concepts for complex concepts used in GCIs or new roles
used in complex RIAs.

Before describing the completion algorithm in detail, we introduce the reach-
ability relation  R, which plays a fundamental role in the correct treatment of
nominals in TBox classification algorithms [3, 11].



Definition 3 ( R). Let T be an ELOR-TBox in normal form, G ∈ NC a
concept name, and D ∈ BCT . G RD iff there exist roles r1, . . . , rn ∈ NR and
basic concepts A0, . . . , An, B0, . . . , Bn ∈ BCT , n ≥ 0 such that Ai vT Bi for all
0 ≤ i ≤ n, Bi−1 v ∃ri.Ai ∈ T for all 1 ≤ i ≤ n, A0 is either G or a nominal,
and Bn = D.

Informally, the concept name D is reachable from G if there is a chain of exis-
tential restrictions starting from G or a nominal and ending in D. This implies
that, for G RD, if the interpretation of G is not empty, then the interpreta-
tion of D cannot be empty either. This in turn causes additional subsumption
relationships to hold. Note that, if D is reachable from a nominal, then G RD
holds for all concept names G, since the interpretation of D can never be empty.

The basic idea of completion algorithms in general is to generate canonical
models of the TBox. To this end, the elements of the interpretation domain are
represented by named concepts or nominals from the normalized TBox. These el-
ements are then related via roles according to the existential restrictions derived
for the TBox. More precisely, let T be a normalized TBox, G ∈ Sig(T )∩NC∪{>}
and A ∈ BCT , we introduce a completion set SG(A). We store all basic concepts
that subsume a basic concept A in the completion set SA(A) and all basic
concepts B for which ∃r.B subsumes A in the completion set SA(A, r). These
completion sets are then extended using a set of rules. However, the algorithm
needs to keep track also of completion sets of the form SG(A) and SG(A, r) for
every G ∈ (Sig(T ) ∩NC) ∪ {>}, since the non-emptiness of an interpretation of
a concept G may imply additional subsumption relationships for A. The com-
pletion set SG(A) therefore stores all basic concepts that subsume A under the
assumption that G is not empty. Similarly SG(A, r) stores all concepts B for
which ∃r.B subsumes A under the same assumption.

For every G ∈ (Sig(T ) ∩ NC) ∪ {>}, every basic concept A and every role
name r, the completion sets are initialized as SG(A) = {A,>} and SG(A, r) = ∅.
These sets are then extended by applying the completion rules shown in Figure 1
(adapted from [11]) exhaustively.

To compute the reachability relation  R used in rule OR7, the algorithm
can use Definition 3 with all previously derived subsumption relationships; that
is, Ai v Bi if it finds Bi ∈ SAi(Ai). Thus the computation of  R and the
application of the completion rules need to be carried out simultaneously.

It can be shown that the algorithm terminates in polynomial time, and is
sound and complete for classifying the TBox T . In particular, when no rules are
applicable anymore the completion sets have the following properties.

Proposition 1. Let T be an ELOR-TBox in normal form, C,D ∈ BCT , r ∈
Sig(T ) ∩NR, and G = C if C ∈ NC and G = > otherwise. Then, the following
properties hold:

C vT D iff D ∈ SG(C), and
C vT ∃r.D iff there exists E ∈ BCT such that E ∈ SG(C, r) and D ∈ SG(E).

We now show how to use these completion sets for computing the role-depth
bounded lcs for ELOR-concept w.r.t. a general ELOR-TBox.



OR1 If A1 ∈ SG(A), A1 v B ∈ T and B 6∈ SG(A),
then SG(A) := SG(A) ∪ {B}

OR2 If A1, A2 ∈ SG(A), A1 uA2 v B ∈ T and B 6∈ SG(A),
then SG(A) := SG(A) ∪ {B}

OR3 If A1 ∈ SG(A), A1 v ∃r.B ∈ T and B 6∈ SG(A, r),
then SG(A, r) := SG(A, r) ∪ {B}

OR4 If B ∈ SG(A, r), B1 ∈ SG(B), ∃r.B1 v C ∈ T and C 6∈ SG(A),
then SG(A) := SG(A) ∪ {C}

OR5 If B ∈ SG(A, r), r v s ∈ T and B /∈ SG(A, s),
then SG(A, s) := SG(A, s) ∪ {B}

OR6 If B ∈ SG(A, r1), C ∈ SG(B, r2), r1 ◦ r2 v s ∈ T and C /∈ SG(A, s),
then SG(A, s) := SG(A, s) ∪ {C}

OR7 If {a} ∈ SG(A1) ∩ SG(A2), G RA2, and A2 /∈ SG(A1),
then SG(A1) := SG(A1) ∪ {A2}

Fig. 1. Completion rules for ELOR

3.2 Computing the Role-depth Bounded ELOR-lcs

In order to compute the role-depth bounded lcs of two ELOR-concepts C and D,
we extend the methods from [16] for EL-concepts and from [9] for ELR-concepts,
where we compute the cross-product of the tree unravelings of the canonical
model represented by the completion sets for C and D up to the role-depth k.
Clearly, in the presence of nominals, the right completion sets need to be chosen
that preserve the non-emptiness of the interpretation of concepts derived by R.

An algorithm that computes the role-depth bounded ELOR-lcs using com-
pletion sets is shown in Figure 2. In the first step, the algorithm introduces two
new concept names A and B as abbreviations for the (possibly complex) con-
cepts C and D, and the augmented TBox is normalized. The completion sets are
then initialized and the completion rules from Figure 1 are applied exhaustively,
yielding the saturated completion sets ST . In the recursive procedure k-lcs-r for
concepts A and B, we first obtain all the basic concepts that subsume both A
and B from the sets SA(A) and SB(B). For every role name r, the algorithm
then recursively computes the (k−1)-lcs of the concepts A′ and B′ in the sub-
sumer sets SA(A, r) and SB(B, r), i.e. for which A vT ∃r.A′ and B vT ∃r.B′.
These concepts are added as existential restrictions to the k-lcs.

The algorithm only introduces concept and role names that occur in the
original TBox T . Therefore those names introduced by the normalization are
not used in the concept for the k-lcs and an extra denormalization step as in
[16, 9] is not necessary.

Notice that for every pair (A′, B′) of r-successors of A and B it holds that
A RA

′ and B RB
′. Intuitively, we are assuming that the interpretation of

both A and B is not empty. This in turn causes the interpretation of ∃r.A′
and ∃r.B′ to be not empty, either. Thus, it suffices to consider the completion



Procedure k-lcs(C,D, T , k)
Input: C,D: ELOR-concepts; T : ELOR-TBox; k ∈ IN
Output: role-depth bounded ELOR-lcs of C,D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: ST := apply-completion-rules(T ′)
3: return k-lcs-r(A,B, ST , k, A,B,Sig(T ))

Procedure k-lcs-r(X,Y, ST , k, A,B,Sig(T ))
Input: A,B: concept names, X,Y : basic concepts with A RX,B RY ; k ∈ IN;

ST : set of saturated completion sets; Sig(T ): signature of T
Output: role-depth bounded ELOR-lcs of X,Y w.r.t. T and k

1: common-names := SA(X) ∩ SB(Y ) ∩ BCT
2: if k = 0 then
3: return

l

P ∈common-names

P

4: else
5: return

l

P ∈common-names

P u

l

r∈Sig(T )∩NR

( l

C∈SA(X,r),

D∈SB(Y,r)

∃r.k-lcs-r
(
C,D,ST , k−1, A,B, Sig(T )

))

Fig. 2. Computation algorithm for role-depth bounded ELOR-lcs.

sets SA and SB , without the need to additionally compute SA′ and SB′ , or
the completion sets SC for any other basic concept C encountered during the
recursive computation of the k-lcs. This allows for a goal-oriented optimization
in cases where there is no need to classify the full TBox.

3.3 Computing the Role-depth Bounded msc w.r.t. ELOR-KBs

We now turn our attention to the other generalization inference: the computa-
tion of the most specific concept representing a given individual. Recall that,
since ELOR allows the use of nominals, computing the (exact) ELOR-msc for
a given individual is a trivial task: the most specific ELOR-concept describing
an individual a ∈ NI is simply the nominal {a}. However, it may be of interest
to compute the msc w.r.t. a less expressive target DL. Next, we describe how to
compute the depth-bounded EL-msc of an individual w.r.t. an ELOR-KB.

As we have defined them, KBs consist of two parts: the TBox, which rep-
resents the conceptual knowledge of the domain, and the ABox, which states
information about individuals. In the presence of nominals, this division be-
tween concepts and individuals is blurred. In fact, it is possible to simulate
ABox assertions using GCIs as described by the following proposition.

Lemma 1. An interpretation I satisfies the concept assertion C(a) iff it satis-
fies the GCI {a} v C. It satisfies the role assertion r(a, b) iff it satisfies the GCI
{a} v ∃r.{b}.



Procedure k-msc (a,K, k)
Input: a: individual from K; K =(T ,A) an ELOR-KB; k ∈ IN
Output: role-depth bounded EL-msc of a w.r.t. K and k.
1: T ′ := T ∪ absorb-ABox(K)
2: T ′′ := normalize(T ′)
3: SK := apply-completion-rules(T ′′)
4: return traversal-concept ({a},SK, k,Sig(K))

Procedure traversal-concept (A, SK, k, Sig(K))
Input: A: basic concept from T ′; SK: set of completion sets; k ∈ IN;

Sig(K): signature of original KB K
Output: role-depth bounded traversal concept w.r.t. K and k.
1: if k = 0 then
2: return

d
B∈S>(A)∩(BCT \NI ) B

3: else
4: return

d

B∈S>(A)∩(BCT \NI )
B u

d

r∈Sig(K)∩NR

d

B∈S>(A,r)
∃r.traversal-concept (B,SK, k−1, Sig(K))

Fig. 3. Computation algorithm for the role-depth bounded EL-msc w.r.t. ELOR-KBs.

Using this result, we can ‘absorb’ the ABox into the TBox and restrict our
attention to reasoning w.r.t. TBoxes only, without losing generality. Figure 3
describes the algorithm for computing the EL-k-msc w.r.t. an ELOR-KB.

As before, correctness of this algorithm is a consequence of the invariants
described by Proposition 1. The set S>({a}) contains all the basic concepts that
subsume the nominal {a}; that is, all concepts whose interpretation must contain
the individual aI . Likewise, S>({a}, r) contains all the existential restrictions
subsuming {a}. Thus, a recursive conjunction of all these subsumers provides
the most specific representation of the individual a.

Since the target language is EL, no nominals may be included in the output.
However, the recursion includes also the EL-msc of the removed nominals, hence
indeed providing the most specific EL representation of the input individual.
As in the computation of the lcs presented above, the only completion sets
relevant for computing the msc are those of the form S>(A) and S>(A, r). Once
again, this means that it is possible to implement a goal-oriented approach that
computes only these sets, as needed, when building the msc for a given individual.

In this section we have shown how to compute generalization inferences with
a bounded role-depth in the DL ELOR that extends EL by allowing nominals
and complex role inclusion axioms in the KB. With the exception of data-types
and disjointness axioms, this covers the full expressivity of the OWL 2 EL profile
of the standard ontology language OWL 2. Given its status as W3C standard, it
is likely that more and bigger ontologies built using this profile, thus the gener-



alization inferences investigated in this paper and their computation algorithms
for approximation will become more useful to ontology engineers. In fact, there
already exist ontologies that use nominals in their representation. For example,
the FMA ontology [18] is written in ELOR and currently contains 85 nominals.

4 Conclusions

We have studied reasoning services in extensions of the light-weight description
logic EL by nominals and role inclusions, which yields the DL ELOR. One of
the characterizing features of EL and its extension ELOR is that they allow for
polynomial time reasoning. Efficient reasoning becomes expedient when dealing
with huge knowledge bases such as the biomedical ontologies SNOMED and
the Gene Ontology. Additionally, ELOR covers a large part of the OWL 2 EL
profile. Given its status as a W3C recommendation, it is likely that the usage of
the EL-family of DLs becomes more widespread in the future.

Especially for the huge ontologies written in extensions of EL, tools that
aid the user with the construction and maintenance of the knowledge base are
necessary. As previous work has shown, the generalization inferences lcs and msc
can be effectively used for such tasks. Besides this, the generalizations can be
used as a basis for other inferences, like the construction of semantic similarity
measures and information retrieval procedures.

The contributions of the paper are manyfold. First, we have given a com-
pletion algorithm for ELOR knowledge bases, inspired by a consequence-based
classification algorithm for EL with nominals [11]. This completion algorithm is
then employed to extend the algorithms for computing approximations of the
lcs and of the msc for the DL ELOR. In general, the lcs and msc do not need to
exist, even for EL, thus we approximate them by limiting the role-depth of the
resulting concept description, up to a maximal bound specified by the user.

We extended here the computation algorithm of the k-lcs to the DL ELOR,
using the new completion algorithm, by allowing nominals as part of the re-
sulting concept. Since the k-msc is trivial in ELOR due to nominals, we give a
computation algorithm for the k-msc for the target language EL, which works for
ELOR-KBs. Using these algorithms, the generalization inferences can be used
for a large set of ontologies built for the OWL 2 EL profile. Both algorithms have
the property that, if the exact lcs or msc exist, then our algorithms compute the
exact solution for a sufficiently large role-depth bound k. Such a k can be com-
puted for EL using the necessary and sufficient conditions for the existence of
the lsc and msc given in [21].

As future work we intend to study methods of finding these generalizations
in further extensions of EL. Initial steps in this direction have been made by con-
sidering EL with subjective probability constructors [17]. In a different direction,
we also intend to implement a system that can compute the lcs and the msc, by
modifying and improving existing completion-based reasoners.
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