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Abstract. In the context of real-time systems, Metric Temporal Logic
(MTL) and Timed Propositional Temporal Logic (TPTL) are prominent
and widely used extensions of Linear Temporal Logic. In this paper, we
examine the possibility of using MTL and TPTL to specify properties
about classes of non-monotonic data languages over the natural num-
bers. Words in this class may model the behaviour of, e.g., one-counter
machines. We proved, however, that the satisfiability problem for many
reasonably expressive fragments of MTL and TPTL is undecidable, and
thus the use of these logics is rather limited. On the positive side we prove
that satisfiability for the existential fragment of TPTL is NP-complete.

1 Introduction

Recently, verification and analysis of sets of data words have gained a lot of
interest [6, 18, 11, 10, 3-5]. A data word is a sequence over X' x D, where X' is
a finite set of labels, and D is a (potentially infinite) set of data values. In this
paper, we consider data words as behavioural models of one-counter machines.
In this regard, we let the data domain be the set of natural numbers. Note that
the sequence of data values of a word may be non-monotonic.

For reasoning about data words, one may use extensions of linear temporal
logic (LTL). One of these is FreezeLTL, which extends LTL with a freeze quantifier
that stores the current data value in a register variable. The registers can be used
to test for equality of data values at different positions of a data word. In spite
of this limited access to data values, the satisfiability problem for FreezelTL is
undecidable [10]. However, over finite data words, and if the logic is restricted to
a single register, then the satisfiability problem is decidable, albeit not primitive
recursive [10]. This lower bound has been confirmed for satisfiability for the frag-
ment of FreezeLTL where the only temporal modality is the finally modality [12].

Originally, the freeze quantifier was introduced in Timed Propositional Tem-
poral Logic (TPTL, for short) [2]. With TPTL, in addition to FreezelLTL, one can
compare data values of a data word using linear inequations of the form, e.g.,
x—1vy < c¢. Another widely used logic in the context of real-time systems is Metric
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Temporal Logic (MTL, for short). MTL extends LTL by constraining the tempo-
ral operators with intervals of the non-negative reals. Both logics, however, have
not gained much attention in the specification of nmon-monotonic data words,
albeit they can express many interesting properties.

FreezelLTL is a fragment of TPTL, and thus it is clear that one cannot find bet-
ter decidability results for TPTL than for FreezelLTL. In fact it is well known that
the satisfiability problem for TPTL over non-monotonic data words is undecid-
able [2]. In the context of monotonic data words over the natural numbers, MTL
and TPTL are equally expressive, and the satisfiability problem for both logics is
EXPSPACE-complete [1, 2]. However, over timed words, TPTL has been proved
strictly more expressive than MTL [7], and while satisfiability for both logics is
undecidable over infinite timed words [1, 15], there is a difference in the finite
words case: TPTL has an undecidable satisfiability problem [1], while satisfiabil-
ity for MTL is decidable (but not primitive recursive) [16]. We recently proved
in [8] that also for non-monotonic data words over the natural numbers TPTL is
strictly more expressive than MTL, and indeed, there are properties which can
be expressed in FreezeLTL, but cannot be expressed in MTL. Hence there was
the possibility that MTL would have a better complexity for the satisfiability
problem.

However, as a main result we prove that the satisfiability problem for MTL
over non-monotonic finite data words is undecidable. This is even the case if we
do not allow for propositional variables.

We then investigate the unary fragments of MTL and TPTL where the only
allowed temporal modalities are unary. We show that the satisfiability problem
over finite data words is undecidable for both logics, and for TPTL it is unde-
cidable even if we restrict the formulae to contain at most one register variable
and no next modality. This is opposed to the decidability result for FreezeLTL
with one register variable evaluated over finite data words [10].

After that we consider another syntactic restriction of the logics, namely we
restrict the negation operator to propositional variables, which results in what
we call the positive fragments of our logics. This excludes the globally modality,
which is used in most of the undecidability proofs. However, we prove that
this restriction does not lead to any changes in the results for the satisfiability
problem compared to the full logics.

Last but not least, we prove that for the unary positive fragment (called
existential fragment in [7]), the satisfiability problem for TPTL is NP-complete.

The main insight of this paper is that both MTL and TPTL have a very lim-
ited use in specifying properties over non-monotonic data languages. This adds
an important piece to complete the picture about decidability of satisfiability
problems for data-relevant extensions of temporal logics.

2 Preliminaries

We use Z and N to denote the set of integers and the non-negative integers,
respectively. We let P be a finite set of propositional variables.
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A data word over P is a finite or infinite sequence (FPp,do)(P1,d1) ... of pairs
in 27 x N. We use (2P x N)* and (27 x N)“, respectively, to denote the set of
finite and infinite, respectively, data words over P. The length of a data word w
is denoted by |w|, where we set |w| = co if w is an infinite data word.

A two-counter machine M is a finite sequence (Z;)7_; of instructions oper-
ating on two counters denoted by C; and C3, where Z; is one of the following
instructions (with ¢ € {1,2} and j,k,m € {1,...,n}):

increment Z;:Ci :==C; +1; go to Iy
zero test/decrement Z;:if C; = 0 then go to Zj else C;:=C; — 1; go to Zp,
halt Zj:halt

A configuration of a two-counter machine M is a triple v = (J,¢,d) €
{Z4, ..., Z,} xNxN, where J indicates the current instruction, and ¢ and d are the
current values of the counters Cy and Cy, respectively. A computation of M is a
finite or infinite sequence (7;);>0 of configurations, such that vy = (Z;,0,0) and
Yi+1 is the result of executing the instruction Z; on ~; for each ¢ > 0. Without
loss of generality, we assume that Z,, is the only instruction of the form halt. The
halting problem for two-counter machines asks, given a two-counter machine M,
whether the (unique) computation of M reaches a configuration with instruction
T,, i.e., the halting instruction. This problem is X¢-complete [14]. The recurrent
state problem for two-counter machines asks, given a two-counter machine M,
whether the (unique) computation of M visits instruction Z; infinitely often.
This problem is X}-complete [2]. We will use reductions of these problems to
show lower bounds of the satisfiability problem for some fragments of MTL and
TPTL .

3 Extensions of Linear Temporal Logic

3.1 Metric Temporal Logic

The set of formulae of MTL is built up from P by boolean connectives and a
constraining version of the until modality:

pu=p || o1 A2 | p1Urps

where p € P and I C Z is an interval with endpoints in Z U {—oc0, +o0}. We
use pseudo-arithmetic expressions to denote intervals, like, e.g., > 1 to denote
[1,00). If I = Z, then we may omit the annotation I on Uj.

Formulae in MTL are interpreted over data words. Let w = (Py, do)(P1,d1) - . .
be a data word, and let ¢ < |w|. We define the satisfaction relation for MTL,
denoted by EmTL, inductively as follows:

(w,i) EmTLp & p e P, (w,i) FvTL ~¢ < (w,1) FEuTL @,

(w, 1) FEmTL 01 A w2 & (w,i) FEmTL w1 and (w, i) FEvTL @2,

(w,3) EmTL e1Urpe < 354 < j <|w|: (w,j) EmTL ¢2 and d; —d; € I, and
Vki <k <jJ: (w, k) ':MTL ©1-
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We say that a data word satisfies an MTL formula ¢, written w EmTL @, if
(w,0) EmTL @. We use the following syntactical abbreviations: ¢1 V o =
(01 A 2), o1 = w2 = T V pa, true = pV —p, false := —true,
Xrp := falseUrp, Fro := truelsyp, Gro := =F;r—p. Note that the use of the
strict semantics for the until modality is essential to derive the next modality.

We define the length of a formula v, denoted by |¢|, as the number of symbols
occurring in i where all integer constants in 1 are given in a binary encoding.

In the following, we define some fragments of MTL. A unaryMTL formula is
built from propositional variables, using the boolean connectives, and the unary
temporal modalities X and F. We use positiveMTL to denote the subset of MTL
where negation is restricted to propositional variables. A posUnaryMTL formula
is a positiveMTL formula where the only allowed modalities are the F and X
modalities.

3.2 Timed Propositional Temporal Logic

Next we define formulae of TPTL. For this, let X be a countable set of register
variables. Formulae in TPTL are defined by the following grammar:

pu=pla~c| g | i Ape | @iUps | 2.0

where p € P, z € X, c € Z, and ~€ {<,<,=,>,>}.

Formulae in TPTL are interpreted over data words. A register valuation v is
a function from X to N. Let w = (Py,do)(Py1,d1) ... be a data word, let v be
a register valuation, and let i € N. The satisfaction relation for TPTL, denoted
by E1prL, is inductively defined in a similar way as for MTL; we only give the
definitions for the new formulae:

(w,i,v) ErerL p1Ups & Jiii < j < [w[.(w, j,v) ETpTL 2,
and Vk.i<k<j.(w,k,v) ETpTL 1,

(w,i,v) EtpTLZ ~c & d; —v(x) ~ ¢

(w,i,v) EteTL .00 & (W, V[T = d;],%) ETPTL @

Here, v[z — d;] is the valuation that agrees with v on all y € X \{z}, and maps
to d;. We say that a data word w satisfies a TPTL formula ¢, written w FE1p1L ¢,
if (w,0,0) E1pTL 0, where 0 denotes the valuation that maps all variables to the
initial data value of the word, i.e. to dp.

We use the same syntactical abbreviations as for MTL. The length of TPTL for-
mulae is also defined as for MTL formulae. We define the fragments unary TPTL,
positiveTPTL, and posUnaryTPTL like the corresponding fragments in MTL. Ad-
ditionally, we define FreezeLTL to be the subset of TPTL formulae ¢ where ~ ¢
is of the form = 0 whenever ¢ contains the subformula = ~ ¢. Given n > 0 and
a TPTL fragment £, we use L" to denote the subset of £ that corresponds to
the set of £ formulae that use at most n different register variables.
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4 The Satisfiability Problem

In this paper, we are interested in infinitary and finitary versions of the satisfi-
ability problem (SAT, for short): given a formula ¢ in a logic £, is there some
infinite (finite, respectively) data word w with w =, ¢?

In the table below, we summarize the complexity results for the satisfiability
problem for different fragments of TPTL and MTL. The results shaded in grey
are new and presented in this paper.

full unary unary without X positive posUnary

;; MTL 9-cpl. X9-cpl. ? X9-cpl. NP-cpl.
= TPTL! X9-cpl. X9-cpl. X9-cpl. X9-cpl. NP-cpl.
iz FreezeLTL' not pr. rec. [10] not pr. rec. [10] not pr. rec. [12] not pr. rec. NP-cpl.
>

E MTL Yi-cpl. Yi-cpl. ? X9-cpl. NP-cpl.
E TPTL! Xi-cpl. [2] Yi-cpl. Yi-cpl. X9-cpl. NP-cpl.
= FreezeLTL' IT{-cpl. [10] IT{-cpl. [10] I{-cpl. [12] not pr. rec. NP-cpl.

5 Results for Full and Unary Fragments

Alur and Henzinger proved already 20 years ago that infinitary SAT for TPTL is
undecidable, even if one does not allow for propositional variables [2]. The proof
in the cited paper is by reduction of the recurrent state problem for two-counter
machines. In the reduction more than one register variable is used, however, one
can easily adapt the proof and strenghten the result.

Theorem 1. For TPTL!, finitary SAT is X9_complete, even for the fragment
that does not allow propositional variables.

Proof. X9-hardness of finitary SAT can be proved in a similar way to X7i-
hardness of infinitary SAT using a reduction of the halting problem for two-
counter machines. It remains to show that finitary SAT is in XY. For this, we
note that given a TPTL! formula ¢ and a finite data word w with w =p7L ¥,
there exists a finite data word w’ such that: |w'| = |w| = n, w’' E=r1pTL 9 and the
data values occurring in w’ are bounded by n * max(| min. |,| maz. |), where
min. and maz. are the smallest and greatest constants occurring in 1. Based on
this, the satisfiability of 1/ can be characterized by a X sentence In¢(n) where
¢(n) has only bounded quantifiers. Any data word can be encoded by using a
unary predicate for each propositional variable p in ¢ and a binary predicate
to encode pairs of position numbers and associated data values. The variable
n represents the length of a finite data word and ¢(n) expresses whether 1 is
satisfied by a data word of length n. O

It is well known that every formula in MTL can effectively be translated into a
TPTL' formula defining the same language of data words. Hence the
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upper bounds of SAT for TPTL! also apply to SAT for MTL. However, we have
recently proved that TPTL! over non-monotonic data words is strictly more
expressive than MTL [8]. It is thus natural to consider the exact complexity of
SAT for MTL, in particular, as it is further known that finitary SAT for MTL is
decidable (albeit with non-primitive recursive complexity) for timed words [16],
and EXPSPACE-complete for monotonic data words [1]. However, we prove that
the undecidability of SAT for TPTL! also applies to MTL, even if we do not
allow for propositional variables.

Theorem 2. For MTL, finitary SAT is X9-complete, and infinitary SAT is X1 -
complete, even for the fragment that does not allow propositional variables.

Proof. (Sketch) The upper bounds follow from Th. 1 and the result by Alur and
Henzinger [2]. For the lower bounds of finitary, respectively, infinitary SAT, we
reduce the halting problem, respectively the recurrent state problem for two-
counter machines to SAT for MTL: given a two-counter machine M, we define
an MTL formula @ that is satisfiable if, and only if, M reaches the halting
instruction, respectively visits the first instruction infinitely often. In order to
avoid the usage of propositional variables, we use an idea similar to the one in
the proof of Lemma 2 in [11]. Each instruction Z; is encoded by a sequence of
data values, starting with value 3, which is followed by n positions with data
values in {1,2}. The value 2 occurs at the i*! position after the value 3. After n
positions, there is a position for encoding the value of C; plus 4, and after that
there is a further position for encoding the value of Cs plus 4. The first position
with data value 3 can be used to identify an instruction of M. For example, the
configuration (Zs, 1,2) of a two-counter machine with 4 instructions is encoded
by s s+3 s s+1 s s+1 s s+2 s s+1 s s+4 s s+5 s. Here, s € N is some arbitrary
initial data value. o

In [10], non-primitive recursive complexity for finitary SAT for unaryFreezelTL'
is proved. This result was strengthened to SAT for unaryFreezeLTL' without the
X modality [12]. Unfortunately, if we extend unaryFreezeLTL1 to unaryTPTLl7 we
already obtain undecidability of SAT. We also prove undecidability of SAT for
unaryMTL, however, it is an open problem whether undecidability also holds for
the unaryMTL fragment in which the X modality is not allowed.

Theorem 3. For unaryMTL, finitary SAT is X9-complete, and infinitary SAT
is X1 -complete. For unaryTPTLY, this is the case even if we do not allow for the
X modality.

Proof. The upper bounds follow from Theorems 1 and 2. For the lower bounds,
we reduce the halting problem for two-counter machines to SAT for unaryMTL
and to SAT for unaryTPTL! without the X modality, respectively. Let M be
a two-counter machine with n instructions. Recall that Z,, is the only halting
instruction. Define P = {#,Z;,...,Z,,71,r2}. We define a formula ¢ over P
that is satisfiable if, and only if, M has a halting computation.
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Let v = (Jo, co,do)(J1,c1,d1) ... be a computation of M, where (Jy, co, dp) =
(Z1,0,0). . We encode v as a data word over 2P as follows:

({#} s){Jo,m1}s s + co)({Jos 2}, 8 + do)({#}, s + ({J1,m ) s £ 1+ ea)

i.e., for each i > 0, the i*? configuration of 7 is encoded by the data word
({#}, S+ Z)({JZ, Tl}, s+1i+ CZ)({Ju ’1“2}, s+1+ d,)

Here s € N is again an arbitrary initial data value.

The crucial point in this encoding is that the sequence of data values at
positions where # holds is strictly monotonically increasing by exactly 1. In all
of the unaryTPTL! formulae (and some of the unaryMTL formulae, respectively)
defined below, we can exploit this fact and determine when the encoding of a
new configuration starts without using the X modality.

Next we define some unaryMTL formulae. The conjunction of all these formu-
lae is satisfied by a data word w, if and only if, w encodes a halting computation
of M. Recall that every unaryMTL formula without the X modality can effec-
tively be translated into a unaryTPTL! formula without the X modality. For the
reduction to SAT for unary TPTL! without the X modality, we give extra formu-
lae only in the case that the unaryMTL formula uses the X modality. We further
remark that, due to the strict semantics of our logics, some of the formulae using
the G modality have to be additionally stated for the initial position of the data
word, but have been omitted here due to lack of space. We start by defining the
auxiliary formula 4, = vie{l,...,n—l} Z; (i.e., the disjunction of all instructions
without the halting instruction Z,).

(1) At each position in the data word, exactly one of the following subsets of
P must occur: {#}, {Z;,m1} and {Z;,r2}, for some ¢ € {1,...,n}. No other
propositional variables are allowed. This can be expressed in unaryMTL with-
out the X modality in a straightforward way.

(2) There are two consecutive positions in the data word where Z,, holds. The
data word ends after the second occurrence of Z,.

— F(Z, ANF(Z,,)) (There are two different positions where Z,, holds.)

— G(Z,, — G(Z,, — Gfalse)) (After the second occurrence of Z,, the data
word ends.)

— G(Z,, — —F(# V r1 V ¢idz)) (After the first occurrence of Z,,, the sym-
bols #,r1,Z1, .. .,Z,—1 should never occur again. Hence, by (1) the only
propositional variables that may occur after the first occurrence of Z,, are
7, and ro. This implies that the two occurrences of Z,, (whose existences
are guaranteed by the first formula, are consecutive.)

The following formulae express important conditions on the data values.

(3) The data values in the positions where # holds are strictly monotonic and
increase progressively by exactly 1.
— G(# — —F<o#) (The data value at a position where # holds can never
be smaller than or equal to the data value at a preceding position where
# holds.)
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— G((# A Fepigz) — F=1#) (If after the # symbol with data value dg an
instruction different from 7, is occurring, i.e., by (2) we have not reached
the last configuration, then there will finally be a further # with data
value dy + 1. This and the first formula imply that the next occurrence
of # has data value dy + 1.)

The data values at positions where 71 holds are weakly monotonic. (Similarly
for r5.)

— G(T’l — —|F<0T1)

The data values at positions where # holds serve as a reference value for 0.
Hence the data values at positions where r; hold should always be greater
than or equal to this value. (Similarly for r5.)

- G(# — _\F<0’I“1).

Using these conditions, we can express the remaining details of the structure of
a data word encoding a computation of M.

(6)

The data word should start with the prefix (#,s)({Z1,71},)({Z1,72}, ).
The unaryMTL formula is of the form # A X_o(Zy A 11 A X=o(Z1 A72)). In
order to express this condition in unaryTPTL! without the X modality, we
have to consider more elaborate formulae:

—# AN FZiAri Az =0AF(Zy Arg Az = 0)) (After the first # with
data value dy, there will be some {Z;,71} and data value dy, followed
by some {71, 72} with data value d.)

— For i = 1,2, we define # A 2.G(r; = —F(ri AF(# Az = 1))) (After
the first # with data value dy, there cannot be two different r; before
another # with data value dy + 1 occurs.)

The second formula and (3) express that after the first # there is at most
one r; before the next # occurs. By (5), each r; following symbol # must
have data value at least as big as that for #. Hence, the r; with data value
dy whose existence is enforced by the first formula must occur before the
second occurrence of #.

In the remaining data word, the symbol # is followed by {r1,Z;}, which
is followed by {r2,Z;} for some j € {1,...,n}. This is repeated until the
end of the word. In unaryMTL, this can be expressed by the formula G[# —
VicicnX(Zi AT1) AXX(Z; Arg A (X V GEalse)))]. In unaryTPTL! without
X modality, we define

- G[# ANF# — x. \/lgign—l F(IZ AT A F(IZ ANrg A F(# Nx = 1)))]
(Together with (3) this guarantees that after #, the symbol r; followed
by symbol 9 occur before the next occurrence of #.)

— G[# A =F# — =Fpig, AF(Z, A1 AF(Z, Ara)))

And for i = 1,2, we define
— G[#AF# = 2.G(r; = —F(r; ANF(# Az =1)))]
(There cannot be two different r; between two #.)
We define the correct encoding of an increment instruction of the form
Z;: Cy := C1 + 1; go to Z. Note that incrementing the first counter by
1 corresponds to incrementing the data value of r1 by exactly 2. The value
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of the second counter should not be changed, and this corresponds to in-
crementing the data value of ro by exactly 1. With unaryMTL, this can be
expressed by the following formulae:

— G((Z; Ar1) = (=F<ari A F=or1)) (Together with (4) this implies that
the data value at the next occurrence of r; is incremented by 2.)

— G((Z; Ar2) = (mF<1r2 AF=172)) (Similarly, this and (4) imply that the
data value at the next occurrence of ry is incremented by 1.)

— For i = 1,2, define G((Z; A ;) = XXX(Z A 13)).

For unaryTPTL without X modality, we define

- G(Zj Ar1) = (2.G(r1 =z > 2) Az.F(r Az = 2)))

- G((Z; Arg) = (2.G(rg = x > 1) Az.F(ra Az =1)))

—G# =z G((Z A ANF(#FAz=1)) = (g1 V cpg))>, where

e vy =F(#ANz=1AFT ANF(# Az =2))), an
o vy =F(#ANx=1A-F#AFI).

(9) We define the correct encoding of instructions of the form Z; : if C; = 0
then go to Zj else (4 :=C1 — 1; go to Z,,: Recall that the data value
at # serves as a reference value for 0. A successful zero test of the first
counter (and no change in the value of the first counter) can thus be defined
in unaryMTL as follows:

— G((# ANF=o(Z; Ar1)) = F=1(Zi A 71)) (Note that (3) to (5) guarantee
that the position where Z; A r; holds with data value incremented by 1
is directly after the next #.)

The negative zero test and decrement instruction is similar. Note that decre-
menting the value of the first counter corresponds to not changing the data
value at rq.

- G<(# N X>0(Zj A 7“1)) — X(Ij AT1 ANF_pri A XXXIm)>

We further can use the same formulae as in (8) to express that the value of
the other counter does not change. The unaryTPTL! formula without the X
modality for expressing the negative zero test is a bit more elaborate. Again,
(3) to (5) are crucial for ensuring that the correct positions in the data word
are defined.

— G{p1 = (w2 A ¢3)), where

o o1 =H#NTFZAri AF(#Ax=1))AN2.G(Z; AT1 — x> 0), and
o po=a.FZAnri AF(# ANz =1)ANz.F(ri Az =0)), and
o ps=ax.F(# ANz =1AFZn A (F(# Az =2)V-F#))).

This finishes the hardness proof for finitary SAT. For infinitary SAT, we do
not need (2) and instead use the usual approach and define a formula which
expresses that 7; is visited infinitely often: GFZ;. We can further simplify some
of the formulae, as we do not have to check whether we have reached the halting
instruction. O

Remark 4. Using Ehrenfeucht-Fraissé-Games defined in [8], one can prove that
unary TPTL -formulae of the form z.F(b A F(¢ A z = 0)) cannot be expressed
in MTL. We remark that it is exactly this kind of formulae that we use in the
unaryTPTL! formulae without X modality in (6) to (9). It is an open problem
whether we can express the conditions stated there in unaryMTL without using
the X modality.
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6 Results for Positive Fragments

Next we consider the fragment of MTL and TPTL, in which negation is restricted
to propositional variables. Note that this excludes the globally operator, which
seems to be crucial in the proofs for lower bounds of SAT for the mentioned
logics. It also allows us to prove the following interesting property:

Theorem 5 (Finite model property). Let ¢ € positiveTPTL. Then ¢ is
satisfiable by a data word if, and only if, it is satisfiable by a finite data word.

This implies that infinitary and finitary SAT are equivalent problems. It turns
out that the restriction of negation to propositional variables does not change
anything about the complexity status of SAT compared to finitary SAT for the
corresponding full logics.

Theorem 6. For positiveMTL and positiveTPTLl, SAT is X9-complete. For
positiveFreezelLTL!, SAT is not primitive recursive.

Proof. For positiveMTL, we reduce the halting problem for two-counter ma-
chines to SAT. Given a two-counter machine M with n instructions, we define a
positiveMTL formula @aq over P = {Zy,...,Z,,r1, 2} that is satisfiable if, and
only if, M has a halting computation. A computation (Jo, g, do)(J1,c1,d1) ...
is encoded by a data word of the form

({Jo},s)({r1}s s +co)({r2}s s +do) ({1}, 8)({ri}, s +er)({ra}, s +di) ...

Using this structure, we can avoid using the G modality.

For positiveTPTL' and positiveFreezeLTL!, the proof is by reduction of SAT
for the corresponding unary fragment to SAT for the corresponding positive
fragment without the X modality. Let ¢ be, e.g., a formula in unaryTPTL!. For
this we may assume without loss of generality that ¢ is in negation normal
form, where the application of negation is restricted to propositional variables.
For the reduction to work, we must assume that every data word contains a
special symbol halt marking the end of the finite data word. The idea is to
exploit the fact that for finite data words, the formula Gy means that ¢ must
hold wntil the symbol halt marks the end of the word. We define a function
h mapping unaryTPTL1 formulae in negation normal form into positiveTPTL?
formulae. The definition is by induction on the construction of a formula, we
only give the interesting cases: h(Gyp) := (h(p) A —halt)Uhalt, h(Fy) := (true A
—halt)U(h(p) A —halt). We have ¢ is satisfiable if, and only if, h(yp) is satisfiable.

Note that this proof idea is not trivially applicable to positiveMTL, because
it is not clear how to express the semantics of the Gy, p-modality for [a,b] #
(=00, +00). O

Last but not least, we consider the unary fragment of positiveTPTL!, in which
the only allowed modalities are the F and X modalities. This fragment has also
been considered for MTL and TPTL over monotonic timed words [7]. In this
setting, SAT for both logics is NP-complete. Here, we show that this applies also
to the setting of non-monotonic data words.
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Theorem 7. For posUnaryTPTL, SAT is NP-complete.

Proof. (Sketch) The lower bound follows by reduction from SAT for proposi-
tional logic. Now we prove that the problem is in NP. Let ¢ be a posUnaryTPTL
formula. We denote by I'(1)) the set containing all those formulae that can be
obtained from % by resolving the non-determinism induced by the occurrences
of disjunctions. Formulae in I'(v)) are is satisfiable if, and only if, there exists a
satisfiable formula ¢* in I'(¢)).

Now, consider a formula ¢* € I'(¢) that is satisfied by a data word w. One can
see that only n < |¢*| points in w are relevant for a successful model checking
of w on ©*. This is because new further points are only required by subformulae
of the form F¢ or X¢ and negation only occurs in front of atoms. Therefore, a
word w’ of length n can be obtained from w such that w’ = ¢*:

Lemma 8. Let ¢ be a posUnaryTPTL formula. If ¢ is satisfiable, then there
exists a data word w such that w = v and |w| < |[¢].

The difference to Th. 5 is that we are able to additionally provide a bound to
the length of the possible finite witness of satisfiability.

Based on this, we can decide satisfiability in polynomial non-deterministic
time: guess a formula ¢* in I'(1)); then guess a data word w = (P, 0) ... (Pp—1,0)
of length n = [¢*]; last, for each subformula ¢ of ¢¥* guess a position from
{0...n —1} and verify that w model checks 9* (without considering data value
constraints) with respect to the guessed positions. Finally, solve the set of linear
inequalities C built up from the position assigned to each subformula x ~ ¢ and
its corresponding less outer subformula z.¢ (in case it does not exists, then 1* is
used). All the guesses are independent and the verifications can be done in poly-
nomial time. Each inequality in C belongs to the class of difference constraints
and a system of such a class of constraints can be solved in polynomial time [9].
Thus, the problem is in NP. O

Corollary 9. For posUnaryMTL and posUnaryFreezelLTL, SAT is NP-complete.

7 Conclusion and Open Problems

The main open problem of this paper is the decidability status for the unary
fragment of MTL without the X modality. While the X modality can be avoided
in reductions for showing undecidability of SAT for unaryTPTL, it seems to be
fundamental in all reductions we have looked at for showing undecidability of
the unary fragment of MTL. At the same time it seems surprising that the only
absence of the X modality could be enough to change the decidability status of
the SAT problem.

We are also surprised that the decidability of SAT for unaryFreezelLTL does nei-
ther apply to unaryMTL nor to unary TPTL. This is opposed to a recent extension
of a decidability result for FreezeLTL'-model checking deterministic one-counter
automata [11] to MTL and TPTL' [17].
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Note that our undecidability results for SAT of different fragments of MTL

and TPTL, also imply the undecidability of the existential model checking and
(apart from the positive fragments) of the universal model checking problem for
one-counter machines and the corresponding logics.
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