
On the Non-Monotonic Description Logic ALC+Tmin

Oliver Fernández Gil∗
University of Leipzig

Department of Computer Science
fernandez@informatik.uni-leipzig.de

Abstract

In the last 20 years many proposals have been made
to incorporate non-monotonic reasoning into descrip-
tion logics, ranging from approaches based on default
logic and circumscription to those based on preferential
semantics. In particular, the non-monotonic description
logic ALC+Tmin uses a combination of the preferential
semantics with minimization of a certain kind of con-
cepts, which represent atypical instances of a class of
elements. One of its drawbacks is that it suffers from the
problem known as the property blocking inheritance,
which can be seen as a weakness from an inferential
point of view. In this paper we propose an extension
of ALC+Tmin, namely ALC+T+

min, with the purpose
to solve the mentioned problem. In addition, we show
the close connection that exists between ALC+T+

min
and concept-circumscribed knowledge bases. Finally,
we study the complexity of deciding the classical rea-
soning tasks in ALC+T+

min.

Introduction.
Description Logics (DLs) (Baader et al. 2003) are a well-
investigated family of logic-based knowledge representation
formalisms. They can be used to represent knowledge of a
problem domain in a structured and formal way. To describe
this kind of knowledge each DL provides constructors that
allow to build concept descriptions. A knowledge base con-
sists of a TBox that states general assertions about the prob-
lem domain and an ABox that asserts properties about ex-
plicit individuals.

Nevertheless, classical description logics do not pro-
vide any means to reason about exceptions. In the past 20
years research has been directed with the purpose to incor-
porate non-monotonic reasoning formalisms into DLs. In
(Baader and Hollunder 1995a), an integration of Reiter’s
default logic (Reiter 1980) within the terminological lan-
guageALCF is proposed and later extended in (Baader and
Hollunder 1995b) to allow the use of priorities between de-
fault rules. Taking a different approach, (Bonatti, Lutz, and
Wolter 2009) introduces circumscribed DLs and analyses in
detail the complexity of reasoning in circumscribed exten-
sions of expressive description logics. In addition, recent
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works (Casini and Straccia 2010; Britz, Meyer, and Varz-
inczak 2011; Giordano et al. 2013a) attempt to introduce de-
feasible reasoning by extending DLs with preferential and
rational semantics based on the KLM approach to propo-
sitional non-monotonic reasoning (Lehmann and Magidor
1992).

In particular, the logic ALC+Tmin introduced in (Gior-
dano et al. 2013b) combines the use of a preferential seman-
tics and the minimization of a certain kind of concepts. This
logic is built on top of the description logic ALC (Schmidt-
Schauß and Smolka 1991) and is based on a typicality oper-
ator T whose intended meaning is to single out the typical
instances of a class C of elements. The underlying semantics
of T is based on a preference relation over the domain. More
precisley, classical ALC interpretations are equipped with a
partial order over the domain elements setting a preference
relation among them. Based on such an order, for instance,
the set of typical birds or T(Bird), comprises those individu-
als from the domain that are birds and minimal in the class of
all birds with respect to the preference order. Using this op-
erator, the subsumption statement T(Bird) v Fly expresses
that typical birds fly. In addition, the use of a minimal model
semantics considers models that minimize the atypical in-
stances of Bird. Then, when no information is given about
whether a bird is able to fly or not, it is possible to assume
that it flies in view of the assertion T(Bird) v Fly.

As already pointed out by the authors, the preferential or-
der over the domain limits the logic ALC+Tmin in the sense
that if a class P is an exceptional case of a superclass B,
then no default properties from B can be inherited by P dur-
ing the reasoning process, including those that are unrelated
with the exceptionality of P with respect to B. For example:

Penguin v Bird

T(Bird) v Fly uWinged

T(Penguin) v ¬Fly

It is not possible to infer that typical penguins have wings,
even when the only reason for them to be exceptional with
respect to birds is that they normally do not fly.

In the present paper we extend the non-monotonic logic
ALC+Tmin from (Giordano et al. 2013b) with the introduc-
tion of several preference relations. We show how this ex-
tension can handle the inheritance of defeasible properties,



resembling the use of abnormality predicates from circum-
scription (McCarthy 1986). In addition, we show the close
relationship between the extended non-monotonic logic
ALC+T+

min and concept-circumscribed knowledge bases
(Bonatti, Lutz, and Wolter 2009). Based on such a relation,
we provide a complexity analysis of the different reason-
ing tasks showing NExpNP- completeness for concept satis-
fiability and co-NExpNP-completeness for subsumption and
instance checking.

Missing proofs can be found in the long ver-
sion of the paper at http://www.informatik.uni-
leipzig.de/~fernandez/NMR14long.pdf.

The logic ALC+Tmin.
We recall the logic ALC+T proposed in (Giordano et al.
2013b) and its non-monotonic extension ALC+Tmin. Let
NC,NR and NI be three countable sets of concept names, role
names and individual names, respectively. The language
defined by ALC+T distinguishes between normal concept
descriptions and extended concept descriptions which are
formed according to the following syntax rules:

C ::= A | ¬C | C uD | ∃r.C,
Ce ::= C | T(A) | ¬Ce | Ce uDe

where A ∈ NC, r ∈ NR, C and D are classicalALC concept
descriptions, Ce and De are extended concept descriptions,
and T is the newly introduced operator. We use the usual
abbreviations C tD for ¬(¬C u¬D), ∀r.C for ¬∃r.¬C,>
for A t ¬A and ⊥ for ¬>.

A knowledge base is a pair K = (T ,A). The TBox T
contains subsumption statements C v D where C is a clas-
sicalALC concept or an extended concept of the form T(A),
and D is a classicalALC concept. The AboxA contains as-
sertions of the form Ce(a) and r(a, b) where Ce is an ex-
tended concept, r ∈ NR and a, b ∈ NI. The assumption
that the operator T is applied to concept names is without
loss of generality. For a complex ALC concept C, one can
always introduce a fresh concept name AC which can be
made equivalent to C by adding the subsumption statements
AC v C and C v AC to the background TBox. Then, T(C)
can be equivalently expressed as T(AC).

In order to provide a semantics for the operator T, usual
ALC interpretations are equipped with a preference relation
< over the domain elements:

Definition 1 (Interpretation in ALC+T). An ALC+T inter-
pretation I is a tuple (∆I , .I , <) where:

• ∆I is the domain,
• .I is an interpretation function that maps concept names

to subsets of ∆I and role names to binary relations over
∆I ,

• < is an irreflexive and transitive relation over ∆I that sat-
isfies the following condition (Smoothness Condition):
for all S ⊆ ∆I and for all x ∈ S, either x ∈ Min<(S) or
∃y ∈ Min<(S) such that y < x, with Min<(S) = {x ∈
S |6 ∃y ∈ S s.t. y < x}.

The operator T is interpreted as follows: [T(A)]I =
Min<(AI). For arbitrary concept descriptions, .I is induc-
tively extended in the same way as for ALC taking into ac-
count the introduced semantics for T.

As mentioned in (Giordano et al. 2013b; 2009), ALC+T
is still monotonic and has several limitations. In the fol-
lowing we present the logic ALC+Tmin, proposed in (Gior-
dano et al. 2013b) as a non-monotonic extension ofALC+T,
where a preference relation is defined between ALC+T in-
terpretations and only minimal models are considered.

First, we introduce the modality � as in (Giordano et al.
2013b).

Definition 2. Let I be an ALC+T interpretation and C a
concept description. Then, �C is interpreted under I in the
following way:

(�C)I = {x ∈ ∆I | for all y ∈ ∆I if y < x then y ∈ CI}

We remark that �C does not extend the syntax of ALC+T.
The purpose of using it is to characterize elements of the
domain with respect to whether all their predecessors in <
are instances of C or not. For example, �¬Bird defines a
concept such that d ∈ (�¬Bird)I if all the predecessors
of d, with respect to < under the interpretation I, are not
instances of Bird. Hence, it is not difficult to see that:

[T(Bird)]I = (Bird u�¬Bird)I

Then, the idea is to prefer models that minimize the in-
stances of ¬�¬Bird in order to minimize the number of
atypical birds.

Now, let LT be a finite set of concept names occurring in
the knowledge base. These are the concepts whose atypical
instances are meant to be minimized. For each interpretation
I, the set I�−LT

represents all the instance of concepts of the
form ¬�¬A for all A ∈ LT. Formally,

I�
−

LT
= {(x,¬�¬A) | x ∈ (¬�¬A)I , with x ∈ ∆I , A ∈ LT}

Based on this, the notion of minimal models is defined in
the following way.

Definition 3 (Minimal models). Let K = (T ,A) be a
knowledge base and I = (∆I , .I , <I), J = (∆J , .J , <J )
be two interpretations. We say that I is preferred to J with
respect to the set LT (denoted as I <LT J ), iff:

• ∆I = ∆J ,
• aI = aJ for all a ∈ NI,

• I�−LT
⊂ J�−

LT
.

An interpretation I is a minimal model of K with respect to
LT (denoted as I |=LT

min K) iff I |= K and there is no model
J of K such that J <LT I.

Based on the notion of minimal models, the standard rea-
soning tasks are defined for ALC+Tmin.

• Knowledge base consistency (or satisfiability): A knowl-
edge baseK is consistent w.r.t. LT, if there exists an inter-
pretation I such that I |=LT

min K.



• Concept satisfiability: An extended concept Ce is satisfi-
able with respect to K if there exists a minimal model I
of K w.r.t. LT such that CIe 6= ∅.

• Subsumption: Let Ce and De be two extended concepts.
Ce is subsumed by De w.r.t. K and LT, denoted as
K |=LT

min Ce v De, if CIe ⊆ DIe for all minimal mod-
els I of K.

• Instance checking: An individual name a is an instance
of an extended concept Ce w.r.t. K, denoted as K |=LT

min

Ce(a), if aI ∈ CIe in all the minimal models I of K.

Regarding the computational complexity, the case of
knowledge base consistency is not interesting in itself since
the logic ALC+T enjoys the finite model property (Gior-
dano et al. 2013b). Note that if there exists a finite model I
ofK, then the sets that are being minimized are finite. There-
fore, every descending chain starting from I with respect to
<LT must be finite and a minimal model of K always exists.
Thus, the decision problem only requires to decide knowl-
edge base consistency of the underlying monotonic logic
ALC+T which has been shown to be EXPTIME-complete
(Giordano et al. 2009). For the other reasoning tasks, a
NExpNP upper bound is provided for concept satisfiability
and a co-NExpNP upper bound for subsumption and instance
checking (Giordano et al. 2013b).

Extending ALC+Tmin with more typicality
operators.

As already mentioned in (Giordano et al. 2013b; 2009), the
use of a global relation to represent that one individual is
more typical than another one, limits the expressive power
of the logic. It is not possible to express that an individual
x is more typical than an individual y with respect to some
aspect As1 and at the same time y is more typical than x (or
not comparable to x) with respect to a different aspect As2.
This, for example, implies that a subclass cannot inherit any
property from a superclass, if the subclass is already excep-
tional with respect to one property of the superclass. This
effect is also known as property inheritance blocking (Pearl
1990; Geffner and Pearl 1992), and is a known problem in
preferential extensions of DLs based on the KLM approach.

We revisit the example from the introduction to illustrate
this problem.
Example 4. Consider the following knowledge base:

Penguin v Bird

T(Bird) v Fly uWinged

T(Penguin) v ¬Fly

Here, penguins represent an exceptional subclass of birds
in the sense that they usually are unable to fly. However, it
might be intuitive to conclude that they normally have wings
(T(Penguin) v Winged) since although birds fly because
they have wings, having wings does not imply the ability to
fly. In fact, as said before, it is not possible to sanction this
kind of conclusion in ALC+Tmin. The problem is that due
to the global character of the order < among individuals of
the domain, once an element d is assumed to be a typical

penguin, then automatically a more preferred individual e
must exist that is a typical bird. This rules out the possibility
to apply the non-monotonic assumption represented by the
second assertion to d.

In relation with circumscription, this situation can be
modelled using abnormality predicates to represent excep-
tionality with respect to different aspects (McCarthy 1980;
1986). The following example shows a knowledge base
which is defined using abnormality concepts similar as the
examples in (Bonatti, Lutz, and Wolter 2009).
Example 5.

Penguin v Bird

Bird v Fly tAb1

Bird vWinged tAb2

Penguin v ¬Fly tAbpenguin

The semantics of circumscription allows to consider only
models that minimize the instances of the abnormality con-
cepts. In this example, concepts Ab1 and Ab2 are used to
represent birds that are atypical with respect to two inde-
pendent aspects (i.e.: Fly and Winged). If the minimization
forces an individual d to be a not abnormal penguin (i.e.: d
is not an instance of Abpenguin), then it must be an instance of
Ab1, but at the same time nothing forces it to be an instance
of Ab2. Therefore, it is possible to assume that d has wings
because of the minimization of Ab2.

In this paper, we follow a suggestion given in (Giordano et
al. 2013b) that asks for the extension of the logicALC+Tmin

with more preferential relations in order to express typical-
ity of a class with respect to different aspects. We define
the logicALC+T+ and its extensionALC+T+

min in a similar
way as for ALC+T and ALC+Tmin, but taking into account
the possibility to use more than one typicality operator.

We start by fixing a finite number of typicality operators
T1, . . . ,Tk. Classical concept descriptions and extended
concept descriptions are defined by the following syntax:

C ::= A | ¬C | C uD | ∃r.C,
Ce ::= C | Ti(A) | ¬Ce | Ce uDe,

where all the symbols have the same meaning as in ALC+T
and Ti ranges over the set of typicality operators. The se-
mantics is defined as an extension of the semantics for
ALC+T that takes into account the use of more than one
T operator.
Definition 6 (Interpretations in ALC+T+). An interpreta-
tion I in ALC+T+ is a tuple (∆I , .I , <1, . . . , <k) where:
• ∆I is the domain,
• <i (1 ≤ i ≤ k) is an irreflexive and transitive relation

over ∆I satisfying the Smoothness Condition.
Typicality operators are interpreted in the expected way

with respect to the different preference relations over the do-
main: [Ti(A)]I = Min<i

(AI).
Similar as for ALC+T, we introduce for each preference

relation <i an indexed box modality �i such that:

(�iC)I = {x ∈ ∆I | ∀y ∈ ∆I : if y <i x then y ∈ CI}



Then, the set of typical instances of a concept A with respect
to the ith typical operator can be expressed in terms of the
indexed � modalities:

[Ti(A)]I = {x ∈ ∆I | x ∈ (A u�i¬A)I}
Now, we define the extension of ALC+T+ that results in

the non-monotonic logicALC+T+
min. Let LT1

, . . . ,LTk
be k

finite sets of concept names. Given an ALC+T+ interpreta-
tion I, the sets I�−LTi

are defined as:

I�
−

LTi
= {(x,¬�i¬A) | x ∈ (¬�i¬A)I ∧A ∈ LTi

}

Based on these sets, we define the preference relation <+
LT

on ALC+T+ interpretations that characterizes the non-
monotonic semantics of ALC+T+

min.
Definition 7 (Preference relation). Let K = (T ,A) be
a knowledge base and I = (∆I , .I , <i1 , . . . , <ik), J =
(∆J , .J , <j1 , . . . , <jk) be two interpretations. We say that
I is preferred to J (denoted as <+

LT
) with respect to the sets

LTi
, iff:

• ∆I = ∆J ,
• aI = aJ for all a ∈ NI,
• I�−LTi

⊆ J�−
LTi

for all 1 ≤ i ≤ k,

• ∃` s.t. I�−LT`
⊂ J�−

LT`
.

An ALC+T+ interpretation I is a minimal model of K
(denoted as I |=LT+

min K) iff I |= K and there exists no inter-
pretation J such that: J |= K and J <+

LT
I. The different

reasoning tasks are defined in the usual way, but with respect
to the new entailment relation |=LT+

min .
We revise Example 4 to show how to distinguish between

a bird being typical with respect to being able to fly or to
having wings, in ALC+T+

min. The example shows the use of
two typicality operators T1 and T2, where <1 and <2 are
the underlying preference relations.
Example 8.

Penguin v Bird

T1(Bird) v Fly

T2(Bird) vWinged

T1(Penguin) v ¬Fly
In the example, we use two preference relations to express

typicality of birds with respect to two different aspects inde-
pendently. The use of a second preference relation permits
that typical penguins can also be typical birds with respect to
<2. Therefore, it is possible to infer that typical penguins do
have wings. Looking from the side of individual elements:
having the assertion Penguin(e), the minimal model seman-
tics allows to assume that e is a typical penguin and also
a typical bird with respect to <2, even when a bird d must
exist such that d is preferred to e with respect to <1.

It is interesting to observe that the defeasible property not
being able to fly, for penguins, is stated with respect to T1.
If instead, we use T2(Penguin) v ¬Fly, there will be min-
imal models where e is an instance of T1(Bird) and others

where it is an instance of T2(Penguin). This implies that it
will not be possible to infer for e, the defeasible properties
corresponding to the most specific concept it belongs to.

The same problem is realized, with respect to circum-
scription in Example 5, where some minimal models prefer e
to be a normal bird (e ∈ ¬Ab1), while others consider e as a
normal penguin (e ∈ ¬Abpenguin). To address this problem-
atic about specificity, one needs to use priorities between the
minimized concepts (or abnormality predicates) (McCarthy
1986; Bonatti, Lutz, and Wolter 2009).

In contrast, for the formulation in the example, the seman-
tics induced by the preferential order <1 does not allow to
have interpretations where e ∈ Penguin, e ∈ T1(Bird) and
e 6∈ T1(Penguin), i.e., the treatment of specificity comes for
free in the semantics of the logic.

Complexity of reasoning in ALC+T+
min.

In the following, we show that reasoning in ALC+T+
min is

NExpNP-complete for concept satisfiability and co-NExpNP-
complete for subsumption and instance checking. As a main
tool we use the close correspondence that exists between
concept-circumscribed knowledge bases in the DL ALC
(Bonatti, Lutz, and Wolter 2009) andALC+T+

min knowledge
bases. In fact, this relation has been pointed out in (Giordano
et al. 2013b) with respect to the logic ALC+Tmin. However,
on the one hand, the provided mapping from ALC+Tmin

into concept-circumscribed knowledge bases is not polyno-
mial, and instead a tableaux calculus is used to show the up-
per bounds for the main reasoning tasks in ALC+Tmin. On
the other hand, the relation in the opposite direction is only
given with respect to the logic ALCO+Tmin, which extends
ALC+Tmin by allowing the use of nominals.

First, we improve the mapping proposed in (Giordano
et al. 2013b) by giving a simpler polynomial reduction,
that translates ALC+T+

min knowledge bases into concept-
circumscribed knowledge bases while preserving the en-
tailment relation under the translation. Second, we show
that using more than one typicality operator, it is possible
to reduce the problem of concept satisfiability for concept-
circumscribed knowledge bases in ALC, into the concept
satisfiability problem for ALC+T+

min.
We start by introducing circumscribed knowledge bases

in the DL ALC, as defined in (Bonatti, Lutz, and Wolter
2009). We obviate the use of priorities between minimized
predicates.
Definition 9. A circumscribed knowledge base is an expres-
sion of the form CircCP(T ,A) where CP = (M,F, V ) is a
circumscription pattern such that M,F, V partition the pred-
icates (i.e.: concept and role names) used in T and A. The
set M identifies those concept names whose extension is
minimized, F those whose extension must remain fixed and
V those that are free to vary. A circumscribed knowledge
base where M ∪ F ⊆ NC is called a concept-circumscribed
knowledge base.

To formalize a semantics for circumscribed knowledge
bases, a preference relation <CP is defined on interpretations
by setting I <CP J iff:
• ∆I = ∆J ,



• aI = aJ for all a ∈ NI,
• AI = AJ for all A ∈ F ,
• AI ⊆ AJ for all A ∈ M and there exists an A′ ∈ M

such that A′I ⊂ A′
J .

An interpretation I is a model of CircCP(T ,A) if I is a
model of (T ,A) and there is no model I ′ of (T ,A) with
I ′ <CP I. The different reasoning tasks can be defined in
the same way as above.

Similar as for circumscribed knowledge bases in (Bonatti,
Lutz, and Wolter 2009), one can show that concept satisfia-
bility, subsumption and instance checking can be polyno-
mially reduced to one another in ALC+T+

min. However, to
reduce instance checking into concept satisfiability slightly
different technical details have to be considered.
Lemma 10. Let K = (T ,A) be an ALC+T+ knowl-
edge base, Ce an extended concept, LT1 , . . . ,LTk

be fi-
nite sets of concept names and A a fresh concept name
not occurring in K and Ce. Then, K |=LT+

min Ce(a) iff
¬Tk+1(A) u ¬Ce is unsatisfiable w.r.t. K′ = (T ∪ {> v
A},A ∪ {(¬Tk+1(A))(a)}), where LTk+1

= {A}.
Note that this reduction requires the introduction of an ad-

ditional typicality operator Tk+1. Nevertheless, this does not
represent a problem in terms of complexity since, as it will
be shown in the following, the complexity does not depend
on the number of typicality operators k whenever k ≥ 2.

Upper Bound.
Before going into the details of the reduction we need to
define the notion of a signature.
Definition 11. Let NT be the set of all the concepts of the
form Ti(A) where A ∈ NC. A signature Σ for ALC+T+ is
a finite subset of NC∪NR∪NT. We denote by Σ|ALC the set
Σ \ NT.

The signature sig(Ce) of an extended concept Ce is the
set of all concept names, role names and concepts from
NT that occur in Ce. Similarly, the signature sig(K) of an
ALC+T+ knowledge base K is the union of the signatures
of all concept descriptions occurring in K. Finally, we de-
note by sig(E1, . . . , Em) the set sig(E1) ∪ . . . ∪ sig(Em),
where each Ei is either an extended concept or a knowledge
base.

Let K = (T ,A) be an ALC+T+ knowledge base,
LT1 , . . . ,LTk

finite sets of concept names and Σ be any
signature with sig(K) ⊆ Σ. A corresponding circumscribed
knowledge base CircCP(T ′,A′), withK′ = (T ′,A′), is built
in the following way:

• For every concept A such that it belongs to some set LTi

or Ti(A) ∈ Σ, a fresh concept name A∗i is introduced.
These concepts are meant to represent the atypical ele-
ments with respect to A and <i in K, i.e., ¬�i¬A.

• Every concept description C defined over Σ is trans-
formed into a concept C̄ by replacing every occurrence
of Ti(A) by (A u ¬A∗i ).

• The TBox T ′ is built as follows:
– C̄ v D̄ ∈ T ′ for all C v D ∈ T ,

– For each new concept A∗i the following assertions are
included in T ′:

A∗i ≡ ∃ri.(A u ¬A∗i ) (1)
∃ri.A∗i v A∗i (2)

where ri is a fresh role symbol, not occurring in Σ,
introduced to represent the relation <i.

• A′ results from replacing every assertion of the form C(a)
in T by the assertion C̄(a).

• Let LT be the set:

k⋃
j=1

⋃
A∈LTj

A∗j

then, the concept circumscription pattern CP is defined
as CP = (M,F, V ) = (LT, ∅,Σ|ALC ∪ {A∗i | A∗i 6∈
LT} ∪ {ri | 1 ≤ i ≤ k}).

One can easily see that the provided encoding is poly-
nomial in the size of K. The use of the signature Σ is just a
technical detail and since it is chosen arbitrarily, one can also
select it properly for the encoding of the different reasoning
tasks.

The idea of the translation is to simulate each order <i

with a relation ri and at the same time fulfill the seman-
tics underlying the Ti operators. The first assertion, A∗i ≡
∃ri.(Au¬A∗i ), intends to express that the atypical elements
with respect to A and <i are those, and only those, that have
an ri-successor e that is an instance of A and at the same
time a not atypical A, i.e. , e ∈ Ti(A). Indeed, this is a con-
sequence from the logic ALC+T+

min because the order <i is
transitive. However, since it is not possible to enforce tran-
sitivity of ri when translated into ALC, we need to use the
second assertion ∃ri.A∗i v A∗i . This prevents to have the
following situation:

d ∈ A∗1 d ∈ Bu¬B∗1 (d, e) ∈ r1 e ∈ Au¬A∗1 e ∈ B∗1

In the absence of assertion (2), this would be consistent with
respect to T ′, but it would not satisfy the aim of the transla-
tion since the typical B-element d would have a predecessor
(ri-successor) e which is atypical with respect to B. In fact,
the translation provided in (Giordano et al. 2013b) also deals
with this situation, but all the possible cases are asserted ex-
plicitly yielding an exponential encoding.

The following auxiliary lemma shows that a model of
(T ′,A′) can always be transformed into a model, that only
differs in the interpretation of ri, and (ri)

−1 is irreflexive,
transitive and well-founded.

Lemma 12. Let I be an ALC interpretation such that
I |= (T ′,A′). Then, there exists J such that J |= (T ′,A′),
XI = XJ for all X ∈ Σ|ALC ∪

⋃
A∗i , and for each ri we

have:
(
ri
J )−1 is irreflexive, transitive and well-founded.

Since well-foundedness implies the Smoothness Condi-
tion, the previous lemma allows us to assume (without loss
of generality) that

(
ri
I)−1 is irreflexive, transitive and sat-

isfies the Smoothness Condition for every model I of K′.



Now, we denote by MK the set of models of K and by
MK′ the set of models of K′. With the help of the previous
lemma, we show that there exists a one-to-one correspon-
dence betweenMK andMK′ . We start by defining a map-
ping ϕ that transforms ALC+T+ interpretations into ALC
interpretations.

Definition 13. We define a mapping ϕ from ALC+T+ in-
terpretations into ALC interpretations such that ϕ(I) = J
iff:

• ∆J = ∆I ,
• XJ = XI for each X ∈ Σ|ALC ,
• (A∗i )J = (¬�i¬A)I for each fresh concept name A∗i ,
• (ri)

J = (<i)
−1 for all i, 1 ≤ i ≤ k,

• aJ = aI , for all a ∈ NI.

Remark. We stress that interpretations are considered only
with respect to concept and role names occurring in Σ for
ALC+T+, and Σ|ALC ∪{A∗i }∪{ri} forALC. All the other
concept and role names from NC and NR are not relevant to
distinguish one interpretation from another one. This is, if
I and J are two ALC+T+ interpretations, then I ≡ J iff
XI = XJ for all X ∈ Σ ∩ (NC ∪NR) and (<i)

I = (<i)
J

for all i, 1 ≤ i ≤ k. The same applies for ALC interpreta-
tions, but with respect to Σ|ALC ∪ {A∗i } ∪ {ri}.

Next, we show that ϕ is indeed a bijection from MK to
MK′ .
Lemma 14. The mapping ϕ is a bijection from MK to
MK′ , such that for every I ∈ MK and each extended con-
cepts Ce defined over Σ: CIe = (C̄e)

ϕ(I).

Proof. First, we show that for each I ∈ MK it holds that:
ϕ(I) ∈ MK′ . Let I = (∆I , .I , <1, . . . , <k) be a model
of K and assume that ϕ(I) = J . We observe that since
[Ti(A)]I = (Au�i¬A)I , then by definition of ϕ it follows
that:

[Ti(A)]I = (A u ¬A∗i )J (3)

Consequently, one can also see that for every extended con-
cept Ce defined over Σ and every element d ∈ ∆I :

d ∈ CIe iff d ∈ (C̄e)
J (4)

This can be shown by a straightforward induction on the
structure of Ce where the base cases are A and Ti(A).
Hence, it follows that CIe = (C̄e)

J for every extended con-
cept Ce defined over Σ.

Now, we show that J |= (T ′,A′). From (4), it is clear
that J |= C̄ v D̄ for all C̄ v D̄ ∈ T ′. In addition, since
aJ = aI for all a ∈ NI, J satisfies each assertion in A′. It
is left to show that each GCI in T ′ containing an occurrence
of a fresh role ri is also satisfied by J . For each d ∈ ∆I and
concept name A∗i , it holds:

d ∈ (A∗i )J iff d ∈ (¬�i¬A)I

iff ∃e ∈ ∆I s.t. e <i d and e ∈ [Ti(A)]I

iff (d, e) ∈ (ri)
J and e ∈ (A u ¬A∗i )J by (3)

iff d ∈ (∃ri.(A u ¬A∗i ))J

The case for the second GCI (∃ri.A∗i v A∗i ) can be shown
in a very similar way. Thus, J |= (T ′,A′) and consequently
ϕ is a function fromMK intoMK′ .

Second, we show that for any model J of K′ (i.e. J ∈
MK′ ), there exists I ∈ MK with ϕ(I) = J . Let J be an
arbitrary model of K′, we build an ALC+T+ interpretation
I = (∆I , .I , <1, . . . , <k) in the following way:

• ∆I = ∆J ,
• XI = XJ for each X ∈ Σ|ALC ,

• <i=
(
ri
J )−1 for all i, 1 ≤ i ≤ k,

• aI = aJ , for all a ∈ NI.

Next, we show that (¬�i¬A)I = (A∗i )J . Assume that
d ∈ (¬�i¬A)I for some d ∈ ∆I , then there exists e <i d
such that e ∈ AI and e ∈ [Ti(A)]I . This means that for
all f <i e(or (e, f) ∈ rJi ): f 6∈ AI . Hence, e ∈ AJ

and e 6∈ (A∗i )J . All in all, we have (d, e) ∈ rJi and
e ∈ (Au¬A∗i )J , therefore d ∈ (A∗i )J . Conversely, assume
that d ∈ (A∗i )J . Assertion (1) in T ′ implies that there exists
e such that (d, e) ∈ (ri)

J and e ∈ AJ . By construction of
I we have e <i d and e ∈ AI . Thus, d ∈ (¬�i¬A)I and
we can conclude that (¬�i¬A)I = (A∗i )J . Having this, it
follows that ϕ(I) = J . In addition, similar as for equation
(3), we have:

[Ti(A)]I = (A u ¬A∗i )J (5)

A similar reasoning, as above yields that I |= K. This im-
plies that ϕ is surjective. It is not difficult to see, from the
definition of ϕ, that it is also injective. Thus, ϕ is a bijection
fromMK toMK′ .

The previous lemma establishes a one to one correspon-
dence between MK and MK′ . Then, since K is an arbi-
traryALC+T+ knowledge base, Lemma 14 also implies that
knowledge base consistency in ALC+T+ can be polynomi-
ally reduced to knowledge base consistency in ALC, which
is EXPTIME-complete (Baader et al. 2003).
Theorem 15. In ALC+T+, deciding knowledge base con-
sistency is EXPTIME-complete.

In addition, since ALC enjoys the finite model property,
this is also the case for ALC+T+. Using the same argument
given before for ALC+T and ALC+Tmin, deciding knowl-
edge base consistency in ALC+T+

min reduces to the same
problem with respect to the underlying monotonic logic
ALC+T+. Therefore, we obtain the following theorem.
Theorem 16. In ALC+T+

min, deciding knowledge base con-
sistency is EXPTIME-complete.

Now, we show that ϕ is not only a bijection fromMK to
MK′ , but it is also order-preserving with respect to <+

LT
and

<CP.
Lemma 17. Let I and J be two models of K. Then, I <+

LT

J iff ϕ(I) <CP ϕ(J ).

Proof. Assume that I <+
LT
J . Then, for all A ∈ LTi

we
have that (¬�i¬A)I ⊆ (¬�i¬A)J and in particular, for
some j and A′ ∈ LTj

we have (¬�j¬A′)I ⊂ (¬�j¬A′)J .



By definition of ϕ, we know that (¬�i¬A)I = (A∗i )ϕ(I).
Hence, for all A∗i ∈ M we have that (A∗i )ϕ(I) ⊆ (A∗i )ϕ(J )

and (A′
∗
j )ϕ(I) ⊂ (A′

∗
j )ϕ(J ). Thus, ϕ(I) <CP ϕ(J ). The

other direction can be shown in the same way.

The following lemma is an easy consequence from the
previous one and the fact that ϕ is bijection (which implies
that ϕ is invertible).
Lemma 18. Let I and J be ALC+T+ and ALC interpre-
tations, respectively. Then,

I |=LT+
min K iff ϕ(I) |= CircCP(T ′,A′) (a)

J |= CircCP(T ′,A′) iff ϕ−1(J ) |=LT+
min K (b)

Thus, we have a correspondence between minimal mod-
els of K and models of CircCP(T ′,A′). Based on this, it is
easy to reduce each reasoning task from ALC+T+

min into
the equivalent task with respect to concept-circumscribed
knowledge bases. The following lemma states the existence
of such a reduction for concept satisfiability, the cases for
subsumption and instance checking can be proved in a very
similar way.
Lemma 19. An extended concept C0 is satisfiable w.r.t. to
K and LT1 , . . . ,LTk

iff C̄0 is satisfiable in CircCP(T ′,A′).

Proof. Let us define Σ as sig(K, C0).
(⇒) Assume that I is a minimal model of K with CI0 6=

∅. The application of Lemma 18 tells us that ϕ(I) |=
CircCP(T ′,A′). In addition, from Lemma 14 we have that
CI0 = (C̄0)ϕ(I). Thus, C̄0 is satisfiable in CircCP(T ′,A′).
(⇐) The argument is similar, but using ϕ−1.

Finally, from the complexity results proved in (Bonatti,
Lutz, and Wolter 2009) for the different reasoning tasks with
respect to concept-circumscribed knowledge bases in ALC,
we obtain the following upper bounds.
Theorem 20. In ALC+T+

min, it is in NExpNP to decide con-
cept satisfiability and in co-NExpNP to decide subsumption
and instance checking.

Lower Bound.
To show the lower bound, we reduce the problem of concept
satisfiability with respect to concept-circumscribed knowl-
edge bases inALC, into the concept satisfiability problem in
ALC+T+

min. It is enough to consider concept-circumscribed
knowledge bases of the form CircCP(T ,A) with CP =
(M,F, V ) where A = ∅ and F = ∅. The problem of de-
ciding concept satisfiability for this class of circumscribed
knowledge bases has been shown to be NExpNP-hard for
ALC (Bonatti, Lutz, and Wolter 2009). In order to do that,
we modify the reduction provided in (Giordano et al. 2013b)
which shows NExpNP-hardness for concept satisfiability in
ALCO+Tmin.

Before going into the details, we assume without loss of
generality that each minimized concept occurs in the knowl-
edge base:
Remark. Let CircCP(T ,A) be a circumscribed knowledge
base. If A ∈ M and A does not occur in (T ,A), then for
each model I of CircCP(T ,A): AI = ∅.

Given a circumscribed knowledge base K =
CircCP(T ,A) (where CP is of the previous form) and
a concept description C0, we define a corresponding
ALC+T+ knowledge base K′ = (T ′,A′) using two
typicality operators in the following way.

Let M be the set {M1, . . . ,Mq}. Similarly as in (Gior-
dano et al. 2013b), individual names c and cmi (one for each
Mi ∈M ) and a fresh concept name D are introduced. Each
ALC concept description C is transformed into C∗ induc-
tively by introducing D into concept descriptions of the form
∃r.C1, i.e.: (∃r.C1)∗ = ∃r.(D u C∗1 ) (see (Giordano et al.
2013b) for precise details).

Similar as in (Giordano et al. 2013b), we start by adding
the following GCIs to the TBox T ′:

D u C∗1 v C∗2 if C1 v C2 ∈ T (6)
D uMi v ¬T1(Mi) for all Mi ∈M (7)

The purpose of using these subsumption statements is to
establish a correspondence between the minimized concept
names Mi, from the circumscription side, with the under-
lying concepts ¬�1¬Mi on the ALC+T+

min side, such that
the minimization of the Mi concepts can be simulated by the
minimization of ¬�1¬Mi. The individual names cmi

are in-
troduced to guarantee the existence of typical Mi’s in view
of assertion (7). The concept D plays the role to distinguish
the elements of the domain that are not mapped to those in-
dividual names by an interpretation.

Note that if under an interpretation I an element d is an
instance of D and Mi at the same time, then it has to be an
instance of ¬T1(Mi) and therefore an instance of ¬�1¬Mi

as well. Hence, it is important that whenever d becomes an
instance of �1¬Mi in a preferred interpretation to I, it hap-
pens because d becomes an instance of ¬Mi while it is still
an instance of D. In order to force this effect during the min-
imization, the interpretation of the concept D should remain
fixed in some way. As pointed out in (Giordano et al. 2013b),
this seems not to be possible in ALC+Tmin and that is why
the reduction is realized for ALCO+Tmin where nominals
are used with that purpose.

In contrast, for ALC+T+
min this effect on D can be simu-

lated by introducing a second typicality operator T2, setting
LT1 = M,LT2 = {A} and adding the following two asser-
tions to T ′:

> v A (8)
¬D v ¬T2(A) (9)

where A is a fresh concept name. Note that if an element
d becomes a (¬D)-element, it automatically becomes a
(¬�2¬A)-element.

The ABox A′ contains the following assertions:

• D(c),

• for each Mi ∈M :

– (¬D)(cmi),
– (T1(Mi))(cmi),
– (¬Mj)(cmi) for all j 6= i.

Finally, a concept description C ′0 is defined as D u C∗0 .



Lemma 21. C0 is satisfiable in CircCP(T ,A) iff C ′0 is sat-
isfiable w.r.t. K′ = (T ′,A′) in ALC+T+

min.

Proof. Details of the proof are deferred to the long version
of the paper.

Since the size of K′ is polynomial with respect to the size
of K, the application of the previous lemma yields the fol-
lowing result.

Theorem 22. In ALC+T+
min, concept satisfiability is

NExpNP-hard.

Since concept satisfiability, subsumption and instance
checking are polynomially interreducible (see Lemma 10),
Theorem 22 yields co-NExpNP lower bounds for the sub-
sumption and the instance checking problem.

Corollary 23. In ALC+T+
min, it is NExpNP-complete to de-

cide concept satisfiability and co-NExpNP-complete to de-
cide subsumption and instance checking.

Finally, we remark that the translations provided between
ALC+T+

min and concept-circumscribed knowledge bases do
not depend on the classical constructors of the description
logic ALC. Therefore, the same translations can be used
for the more expressive description logics ALCIO and
ALCQO. From the complexity results obtained in (Bonatti,
Lutz, and Wolter 2009) for circumscription in ALCIO and
ALCQO , we also obtain the following corollary.

Corollary 24. In ALCIO+T+
min and ALCQO+T+

min, it
is NExpNP-complete to decide concept satisfiability and
co-NExpNP-complete to decide subsumption and instance
checking.

Moreover, from the lower bound obtained in (Giordano
et al. 2013b) for ALCO+Tmin, the results also apply for the
logics ALCIO+Tmin and ALCQO+Tmin.

Corollary 25. In ALCIO+Tmin and ALCQO+Tmin, it
is NExpNP-complete to decide concept satisfiability and
co-NExpNP-complete to decide subsumption and instance
checking.

Conclusions
In this paper, we have provided an extension of the non-
monotonic description logic ALC+Tmin, by adding the pos-
sibility to use more than one preference relation over the
domain elements. This extension, called ALC+T+

min, allows
to express typicality of a class of elements with respect to
different aspects in an “independent” way. Based on this, a
class of elements P that is exceptional with respect to a su-
perclass B regarding a specific aspect, could still be not ex-
ceptional with respect to different unrelated aspects. The lat-
ter permits that defeasible properties from B not conflicting
with the exceptionality of P , can be inherited by elements in
P . As already observed in the paper, this is not possible in
the logic ALC+Tmin.

In addition, we have introduced translations that show
the close relationship between ALC+T+

min and concept-
circumscribed knowledge bases in ALC. First, the provided
translation from ALC+T+

min into concept-circumscribed

knowledge bases is polynomial, in contrast with the ex-
ponential translation given in (Giordano et al. 2013b) for
ALC+Tmin. Second, the translation presented for the oppo-
site direction shows how to encode circumscribed knowl-
edge base, by using two typicality operators and no nomi-
nals.

Using these translations, we were able to determine the
complexity of deciding the different reasoning tasks in
ALC+T+

min. We have shown that it is NExpNP-complete
to decide concept satisfiability and co-NExpNP-complete to
decide subsumption and instance checking. Moreover, the
same translations can be used for the corresponding exten-
sions of ALC+T+

min into more expressive description logics
like ALCIO and ALCQO. The results also apply for ex-
tensions of ALC+Tmin with respect to the underlying de-
scription logics, in view of the hardness result shown for
ALCO+Tmin in (Giordano et al. 2013b).

As possible future work, the exact complexity for reason-
ing in ALC+Tmin still remains open. It would be interesting
to see if it is actually possible to improve the NExpNP(co-
NExpNP) upper bounds. If that were the case, there is a pos-
sibility to identify a corresponding fragment from concept-
circumscribed knowledge bases with a better complexity
than NExpNP(co-NExpNP).

As a different aspect, it can be seen that the logicALC+T
and our proposed extension ALC+T+ impose syntactic re-
strictions on the use of the typicality operator. First, it is not
possible to use a typicality operator under a role operator.
Second, only subsumption statements of the form T(A) v
C are allowed in the TBox. The latter, seems to come from
the fact that ALC+T is based on the approach to proposi-
tional non-monotonic reasoning proposed in (Lehmann and
Magidor 1992), where a conditional assertion of the form
A|∼C is used to express that A’s normally have property C.

As an example, by lifting these syntactic restrictions, one
will be able to express things like:

T(Senior Teacher) v Excellent Teacher

T(Student) v ∀attend.(Classu∃imparted.T(Senior Teacher))

This allows to relate the typical instances from different
classes in a way which is not possible with the current syn-
tax. From a complexity point of view, it is not difficult to
observe that the given translations in the paper will also be
applicable in this case, without increasing the overall com-
plexity. The reason is that after lifting the mentioned syn-
tactic restrictions, the occurrences of Ti(A) in an extended
concept can still be seen as basic concepts.

Therefore, it would be interesting to study what are the
effects of removing these restrictions, with respect to the
kind of conclusions that would be obtained from a knowl-
edge base expressed in the resulting non-monotonic logic.
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