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Abstract. Reasoning for Description logics with concrete domains
and w.r.t. general TBoxes easily becomes undecidable. However,
with some restriction on the concrete domain, decidability can be
regained. We introduce a novel way to integrate concrete domains
D into the well-known description logic ALC, we call the result-
ing logic ALCP(D). We then identify sufficient conditions on D
that guarantee decidability of the satisfiability problem, even in the
presence of general TBoxes. In particular, we show decidability of
ALCP(D) for several domains over the integers, for which decidabil-
ity was open. More generally, this result holds for all negation-closed
concrete domains with the EHD-property, which stands for ‘the exis-
tence of a homomorphism is definable’. Such technique has recently
been used to show decidability of CTL∗ with local constraints over
the integers.

1 Introduction

Description Logics (DLs) are a collection of knowledge representa-
tion formalisms with well-founded semantics. Most DLs are (decid-
able) fragments of First Order Logic (FO). They are employed nowa-
days in a range of application areas such as the bio-medical field or
the semantic web, and are the foundations of the web ontology lan-
guage OWL 2 [20]. DLs are an excellent tool to represent abstract
knowledge and to reason over it, but practical applications often re-
quire concrete properties with values from a fixed domain, such as
integers or strings and to support built-in predicates.

In [1], DLs were extended with concrete domains, where partial
functions map objects of the abstract domain to values of the concrete
domain. The resulting logic ALC(D) extends the standard DL ALC
by concrete domain restrictions over a concrete domain D. Concrete
domain restrictions can be used for building complex concepts based
on concrete qualities of their instances such as the age, temperature or
even measured values. For instance, the following GCI of ALC(D)-
concepts:

motor-vehicle-driver � Person � ∃has-age. ≥18

requires that drivers of a motor vehicle are at least 18 years old. A
concrete domain restriction can connect several abstract objects via
feature-paths, i.e. paths of functional roles, and assert a predicate
of arbitrary arity for concrete quantities of those objects. Concrete
domains are incorporated in a weakened form in OWL as data-types
for which only unary predicates are admitted [20].

If definitorial, acyclic TBoxes are used, then reasoning for ALC
extended by concrete domains that are admissible is decidable
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[1]. Reasoning can become undecidable in the presence of gen-
eral TBoxes [11, 15] for such DLs. There have been several at-
tempts to regain decidability for reasoning in ALC(D) with gen-
eral TBoxes. Some approaches simply restrict concrete domain re-
strictions to unary predicates [10] or to feature-paths of length 1 [9].
These restrictions limit the modelling capabilities severely. Lutz and
Miličić took a different approach and showed that if a concrete do-
main respects a criterion called ω-admissibility, then satisfiability for
ALC(D) with general TBoxes is decidable [16]. The condition of
ω-admissibility essentially allows to lift local satisfiability of (con-
nected) concrete domain parts to global satisfiability by requiring
compactness and that the concrete domain parts need to conform on
the predicates asserted for the shared objects. This condition indi-
cates decidability of DL reasoning for some concrete domains, for
instance, the RCC8 relations and the Allen relations over the real
numbers [16]. However, several interesting domains do not satisfy
ω-admissibility, for instance, the ones based on non-dense numerical
sets, as the integers or the natural numbers. In [14] Lutz considers a
concrete domain over the rational numbers, and proves that reason-
ing w.r.t. general TBoxes is decidable. Such domain can, however,
not be used to reasonably represent some situations: certain concrete
features, such as ‘number of children’, cannot possibly be fractions.

In this paper we devise a new criterion for concrete domains that
guarantees decidability of the satisfiability problem in the presence of
general TBoxes. This criterion holds also for some concrete domains
that are known to be not ω-admissible, such as the integers. To this
end we introduce the new DL ALCP(D) that uses path constraints
instead of concrete domain restrictions. Unlike the latter, which only
allow feature-paths to connect an individual and a concrete value,
path constraints can use the full expressiveness of role-paths. This
enables to model for instance ‘person who only has younger sib-
lings’, as an individual whose age is greater than that of all his sib-
lings, where the sibling relation need not be functional. Furthermore,
ALCP(D) admits Boolean combinations of concrete domain predi-
cates in path constraints.

We show decidability of the satisfiability problem of ALCP(D)-
concepts w.r.t. general TBoxes if D (1) is negation-closed, which
requires that the complement of each (atomic) relation is effectively
definable by a positive existential first-order formula, and (2) has the
EHD-property, which stands for ‘the existence of a homomorphism
is definable’, expressing the ability of a certain logic L to distinguish
between those structures which can be mapped to D by a homomor-
phism and those who cannot. Our approach to show decidability of
ALCP(D) with concrete domains that fulfill the above conditions
is an adaptation of the EHD-method, used in [6, 7] for CTL∗ and
ECTL∗. This, in turn, uses a recent decidability result by Bojańczyk
and Toruńczyk for WMSO+B over infinite trees, an extension of
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weak monadic second order logic by the bounding quantifier B ([3]).
The idea for testing satisfiability of an ALCP(D)-concept C w.r.t.

an ALCP(D)-TBox T is to proceed in two steps. First, an ordi-
nary ALC interpretation is built that satisfies an abstracted version
of C and T , where each path constraint is replaced by a fresh con-
cept name. Second, this interpretation is used to generate a so-called
constraint graph, which is a structure for storing the contribution of
the constraints that were abstracted away. We show that deciding
whether such a constraint graph allows a homomorphism to the con-
crete domain is enough to guarantee that the constraints are satisfied.
In contrast to the mentioned CTL variants, ALCP(D) is multi-modal
and uses features, i.e. functional roles, which required some adapta-
tion to apply the techniques from [6, 7].

By the newly established criterion for decidability of ALCP(D)
w.r.t. TBoxes, we confirm what the authors of Lutz and Miličić have
conjectured: that ω-admissibility is a sufficient, but not necessary
condition for decidability. We show, in fact, that reasoning with non
ω-admissible concrete domains over the natural numbers and the in-
tegers w.r.t. general TBoxes is decidable. We also show that it is
possible to consider an extension of the concrete domain over the
rational numbers presented in [12, 11], that allows to test whether a
certain concrete value is an integer.

This paper is structured as follows. In the next two sections we
give some preliminary notions and introduce the DL ALCP(D) with
some of its properties. Section 4 explains the EHD-method and
shows decidability of DL reasoning for ALCP(D) with negation-
closed concrete domains that have the EHD-property. As customary,
the paper ends with conclusions and future work.
All omitted or shortened proofs can be found in full detail in [8].

2 Preliminaries

Before we define our DL ALCP(D), we introduce some basic no-
tions needed later on in the technical constructions. A (relational)
signature σ = {R1, R2, . . .} is a countable (finite or infinite) set of
relation symbols. Every relation symbol R ∈ σ has an associated
arity ar(R) ≥ 1. A σ-structure is a tuple A = (A,RA

1 , RA
2 , . . .),

where A is a non-empty set and for each R ∈ σ, RA ⊆ Aar(R) is
the interpretation of the relation symbol R in A, that is an ar(R)-ary
relation over A.
Example 1. A simple example of a {=, <}-structure is Z =
(Z,=Z , <Z), where =Z and <Z are defined as expected, namely
as {(a, b) ∈ Z2 | a = b} and {(a, b) ∈ Z2 | a < b}, respectively.

We often identify the relation RA with the relation symbol R. In
the example above, then, we would simply write (Z,=, <). For a σ-
structure A and a τ -structure B such that τ ⊆ σ, a homomorphism
from B to A is a mapping h : B → A such that for all R ∈ τ and all
tuples (b1, . . . , bar(R)) ∈ Bar(R) we have

(b1, . . . , bar(R)) ∈ RB ⇒ (h(b1), . . . , h(bar(R))) ∈ RA .

We write B 
 A if there is a homomorphism from B to A. Note that
we do not require this homomorphism to be injective.

We shortly introduce MSO and WMSO+B, for a more detailed
introduction we refer the reader to [3, 18]. We fix countably infinite
sets Ve and Vs of element variables and set variables, respectively.
Monadic second-order logic (MSO) is the extension of first-order
logic (FO) where also quantification over sets is allowed. MSO-
formulas over a signature σ are defined by the following grammar,
where R ∈ σ, x, y, x1, . . . , xar(R) ∈ Ve and X ∈ Vs:

ϕ := R(x1, . . . , xar(R)) |x = y |x ∈ X | ¬ϕ |(ϕ ∧ ϕ) |∃xϕ |∃Xϕ.

Using negation we can obtain disjunction ∨, universal quantification
∀x and ∀X , and implication →. MSO-formulas are evaluated on σ-
structures, where element and set variables range respectively over
elements and subsets of the domain. Weak monadic second-order
logic (WMSO) has the same syntax as MSO, but second-order vari-
ables are interpreted as finite subsets of the underlying universe.

WMSO+B is the extension of WMSO by the bounding quantifier
BXϕ for X ∈ Vs. The semantics of BXϕ on a structure A with
universe A is defined as follows: A |= BXϕ(X) if and only if there
is a bound b ∈ N such that whenever A |= ϕ(B) for some finite
subset B ⊆ A, then |B| ≤ b.

Finally, let BMWB denote the set of all Boolean combinations of
MSO-formulas and (WMSO+B)-formulas.
Example 2. Given a graph G = (V,E), WMSO can express reacha-
bility in G. We define the WMSO-formula reach(x1, x2) to be

∃Z x1∈Z ∧ ∀Y ⊆Z
[(
x1∈Y ∧ scl(Y )

)
→ x2∈Y

]
,

where scl(Y ) = ∀y∀z(y ∈ Y ∧ z ∈ Z ∧ E(y, z)) → z ∈ Y says
that the set Y is successor-closed. The semantics of reach seen as
an MSO-formula or a WMSO-formula are the same because b is
reachable from a in the graph G if and only if it is in some finite
subgraph of G.

In [3] Bojańczyk and Toruńczyk show that satisfiability for
WMSO+B over binary trees is decidable. This result can be ex-
tended to BMWB over trees of branching degree n (n-trees):

Theorem 3 (cf. [3, 7]). One can decide whether for a given formula
ϕ ∈ BMWB there exists an n-tree Tn such that Tn |= ϕ.

3 The Description Logic ALCP(D)

We introduce now the new DL ALCP(D) and some basic notions on
DLs in general. We start with the (concrete domain) constraints.

Let us fix for the rest of this section a countably infinite set of
register variables Reg, a relational signature σ, and an arbitrary σ-
structure D = (D,R1, R2, . . .), called the concrete domain.
Definition 4. We define a constraint c(x1, . . . , xk) of arity k over D
as a Boolean combination of atomic constraints R(xi1 , . . . , xiar(R)

),
where R ∈ σ and ij ∈ {1, . . . , k}. We write D |= c(a1, . . . , ak) if
the constraint is satisfied in D by the assignment xi �→ ai.

Example 5. Consider as concrete domain Z = (Z, <,=), the rela-
tional structure introduced in Example 1. Using infix notation for the
relations, c(x, y, z) = [(x < y ∨ x = y) ∧ ¬ y < z] is a constraint
of arity 3 over Z , and Z |= c(0, 1, 0).

Let us fix two countably infinite sets NC and NR of concept names
and role names respectively. Let then NF ⊆ NR be the set of features,
i.e. roles that are interpreted as partial functions. We call a finite se-
quence P = r1 · · · rn of role names a role-path of length n.
Definition 6. We recursively define ALCP(D)-concepts as follows

C := A | ¬C | (C � C) | ∃r.C | ∃P.c(Si1x1, . . . , S
ikxk)

where A ∈ NC, r ∈ NR, P is a role-path of length n ≥ 0, c is a
constraint of arity k, x1, . . . , xk ∈ Reg, and i1, . . . , ik ≤ n. We call
∃P.c(Si1x1, . . . , S

ikxk) a path constraint. The symbol S appearing
in the path constraints stands for successor, as the term Six points at
the register variable x in the i-th position of the path P .

ALC is the fragment of ALCP(D) without path constraints. As
usual, a general concept inclusion (GCI) is an expression of the form
C � D, where C and D are concepts. A TBox is a finite set of GCIs.
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Definition 7. A D-interpretation I is a tuple (Δ, ·I , γ), where Δ
is a set called the domain, ·I is the interpretation function, and γ :
Δ × Reg → D is the valuation function, assigning a value from
the concrete domain to each register variable in each element of the
interpretation domain. The interpretation function maps each concept
name A ∈ NC to some AI ⊆ Δ, each role name r ∈ NR to a
binary relation rI ⊆ Δ×Δ, with the condition that if r = f ∈ NF

the binary relation fI has to be functional, i.e. for all a, b, c ∈ Δ,
(a, b), (a, c) ∈ fI implies b = c. It is then extended to ¬C,C �
D, ∃r.D as usual, and to a role-path P = (r1, . . . , rn) as:

P I := {(v0, . . . , vn) ∈ Δn+1 | (vi−1, vi) ∈ rIi for i = 1, . . . , n}.

Finally, if P has length n, we define (∃P.c(Si1x1, . . . , S
ikxk))

I as

{v ∈ Δ |∃(v0, . . . , vn) ∈ P I s.t. v0 = v,

and D |= c(γ(vi1 , x1), . . . , γ(vik , xk))} .

So the fact that an element v ∈ Δ belongs to the interpreta-
tion of a path constraint ∃P.c(Si1x1, . . . , S

ikxk) means that there
exists an instance of the path P I starting in v, namely some
(v0, v1, . . . , vn) ∈ P I with v0 = v, such that the assignment
yj �→ γ(vji , xj) satisfies the constraint c(y1, . . . , yk). A term Si

inside the constraint is used to point at the i-th element of the path
P I . Note that the requirement that i1, . . . , ik ≤ n ensures that such
element is well-defined.

Note, also that an atomic constraint R(Si1x1, . . . , S
ikxk) is local

in the sense that it involves only nodes in a fixed neighborhood of the
position at which they are evaluated. We call d := max{i1, . . . , ik}
the depth of R. By extension, the depth of a constraint c is the maxi-
mum depth of all the atomic constraints which appear in c.

Let RegC,T denote the set of register variables that occur in C and
T . Obviously, the relevance of the valuation function γ is limited to
the domain (Δ× RegC,T ).
Definition 8. A D-interpretation I is a model of a TBox T (I |= T )
if and only if every GCI C � D ∈ T is satisfied, that is, if and
only if CI ⊆ DI . Given a concept C and a TBox T , we say C is
satisfiable with respect to T if and only if there exists a model I of
T such that CI �= ∅. We write I |=T C.

We define some usual abbreviations: C � D := ¬(¬C � ¬D),
∀r.C := ¬∃r.¬C, ∀P.c := ¬∃P.¬c, ∃P.C := ∃r1.∃r2. · · · ∃rn.C,
where P = r1 · · · rn, and special concept � := A � ¬A

Using this extended set of operators and DeMorgan’s laws we can,
given an ALCP(D)-concept C, obtain an equivalent concept in nega-
tion normal form nnf(C), where negation only appears before con-
cept names or atomic constraints.

The TBox-concept of a TBox T is CT :=
�

C�D∈T (¬C � D).
Note that it is equivalent to ask that an interpretation I = (Δ, ·I , γI)
satisfies all GCIs from T and to ask that the CT is globally satisfied,
i.e. (CT )I = Δ. Vice-versa, any globally satisfied concept C can
be seen as the GCI � � C. For technical reasons, it is convenient
for us to adopt this view, and from now on we will always assume
that a TBox consists of a single concept CT that needs to be globally
satisfied. We say a TBox T is in negation normal form if so is CT .
Example 9. Take again Z = (Z, <,=) as concrete domain and
consider the following TBox: T = {∃neighbor.(green grass <
Sgreen grass), ¬GreenThumb � (alive plants = plants)}2. Here
we consider three register variables: green grass measures the degree

2 Here the absence of a path quantifier before (alive plants = plants) means
that we are referring to a ‘path of length zero’.

of ‘greenness’ of an individual’s lawn, while plants and alive plants
count the number of plants (total or alive) of an individual. In any
model of T , every individual has a neighbor whose grass is greener,
and individuals with a green thumb keep all their plants alive.

In Example 9, there cannot exist a model for T with a finite un-
derlying domain, as the degree of greenness of neighboring lawns is
strictly increasing. This is never the case for ordinary ALC, which
enjoys the finite model property.

In the literature on description logics with concrete domains
(for instance in [1, 16]) one finds constraints of the kind
∃R(P1x1, . . . , Pkxk), where R is a relation from the concrete do-
main and each Pi is a path composed of features only. The con-
straint is satisfied by an element d if there exist k elements, d1 . . . dk,
reachable from d via the feature-paths P1 . . . Pk, such that the tuple
(γ(d1, x1), . . . , γ(dk, xk)) belongs to the relation R in the concrete
domain. Nonetheless, in many interesting cases this kind of con-
straint can be replaced with path constraints by introducing some
additional register variables. For example ∃(P1x1 < P2x2) can be
expressed as ∃P1.(S

|P2|x1 < z) � ∃P2.(z ≤ S|P2|x2), where z is
a fresh register variable. Also ∀(P1x1 < P2x2) can be replaced by
¬(∃P1.��∃P2.�)� (∃P1.(S

|P1|x1 < z)�∃P2.(z ≤ S|P2|x2)).3

On the other hand, our constraints can use role-paths of arbi-
trary length, which—to the best of our knowledge—is not allowed
in the previously existing literature, where they are limited in length
or disallowed completely in favor of feature-paths. Therefore, al-
though generally incomparable in expressiveness, path constraints
are strictly more expressive on interesting concrete domains.

Note also that for each individual v of the abstract domain, the
value γ(v, x) is defined for all x ∈ Reg. This is essentially the same
as saying that each γ(·, x), in literature commonly called concrete
feature, is interpreted as a total function, more in the style of the
attributes used by Toman and Weddell (see [19]).

3.1 ALCP(D) has the Tree Model Property

Definition 10. Let I = (Δ, ·I , γ) be a D-interpretation and define
→:=

⋃
r∈NR

rI . We say I is a tree-shaped D-interpretation if and
only if (Δ,→) is a tree, that is:

• Δ ⊆ Σ∗ is (isomorphic to) a prefix-closed set of strings over some
alphabet Σ, and

• for all u, v ∈ Δ, u → v if and only if v = ua for some a ∈ Σ.

We call I an n-tree D-interpretation if Δ = [1, n]∗ for some n ∈ N,
where [1, n] denotes the closed interval {1, . . . , n}.

A logic has the tree model property, if for every concept C and
every TBox T , C is satisfiable w.r.t. T iff there exists a tree-shaped
D-interpretation J such that J |=T C.

We show that ALCP(D) has a strong version of the tree model
property, in which we are able to give a bound on the branching de-
gree. Let T and C be an ALCP(D) TBox and concept, respectively.
We denote by Sub(T , C) the set of all concepts which appear in T
and C. If d is the maximum depth of an existential path constraint
occurring in T and C, and e is the number of existentially quantified
subconcepts in Sub(T , C) we can prove the following:

Lemma 11. C is satisfiable w.r.t. T iff there exists an n-tree D-
interpretation I such that I |=T C, where n = d · e.

3 Such translations must be applied after the concepts are converted to strong
negation normal form (see Sec. 3.2) because they preserve satisfiability but
are not necessarily closed under negation.
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Sketch of proof. First we show the normal tree model property, ob-
tained by unraveling. We need to deal with the constraints, but this
does not create particular problems. Successively we prune the tree,
going top bottom and leaving only those nodes that are necessary to
satisfy the existentially quantified formulas. These are at most e in
each node, and are witnessed at most by a path of d nodes. Once
the pruning is finished we have a tree-shaped interpretation J with
branching degree at most n. We can obtain an n-tree: for each node
we introduce the needed number of s-successors, where s is a role
that does not appear in C or T , and attach a copy of J to it until we
obtain an n-tree. This guarantees that the freshly introduced nodes
respect the TBox-concept.

Given this result, from now on we can restrict ourselves to D-
interpretations of the form I = ([1, n]∗, ·I , γI) where for each
u, v ∈ [1, n]∗ there exists r ∈ NR such that (u, v) ∈ rI if and
only if there exists i ∈ [1, n] such that v = ui.

3.2 Strong Negation Normal Form

We show now how, requiring that the concrete domain satisfies a
property called negation closure, we can obtain a strong negation
normal form, where negation only appears in front of concept names.
Definition 12. We call a σ-structure D = (D,RD

1 , RD
2 , . . . )

negation-closed if for every R ∈ σ the complement of RD is ef-
fectively definable by a positive existential first-order formula, i.e., if
there is a computable function that maps each relation symbol R ∈ σ
to a positive existential first-order formula ϕR(x1, . . . , xar(R)) (a for-
mula that is built up from relations of σ using ∧, ∨, and ∃) such that

Dar(R) \RD = {(a1, . . . , aar(R)) | D |= ϕR(a1, . . . , aar(R))}.

Example 13. Let =a := {a} be the unary predicate which holds
only for a, and ≡a,b := {a + kb | k ∈ Z} be a unary predicate
expressing that some number is congruent to a modulo b. Consider
the structure (Z, <,=, (=a)a∈Z, (≡a,b)0≤a<b). Such a structure is
negation-closed, we have in fact:

• ¬x = y if and only if x < y ∨ y < x,4

• ¬x < y if and only if x = y ∨ y < x,
• ¬x = a if and only if ∃y (y = a ∧ (x < y ∨ y < x)), and
• ¬x ≡ a mod b if and only if x ≡ c mod b for some 0 ≤ c < b

with a �= c : ∨
0≤c<b
a �=c

x ≡ c mod b .

Definition 14. We say that an ALCP(D)-concept ϕ is in strong nega-
tion normal form if it is in negation normal form and if, additionally,
all constraints c(x1, . . . , xk) do not contain any negation. Conse-
quently we say that a TBox T is in strong negation normal form if
so is the TBox-concept CT .

Lemma 15. If D = (D,RD
1 , RD

2 , . . . ) is negation-closed, given
a concept C and a TBox T , one can compute Ĉ and T̂ in strong
negation normal form such that C is satisfiable with respect to T if
and only if Ĉ is satisfiable with respect to T̂ .

Sketch of proof. The idea is the following: Given a negated atomic
constraint ¬R(. . . ) of depth d, we want to substitute it with a
boolean combination of positive ones. We use the fact that the com-
plement of R is definable by an existential first order sentence ϕR.

4 We write x = y instead of =(x, y), x = a instead of =ax, and so on.

We deal with the variables existentially quantified in ϕR by adding
fresh register variables. These new registers are ‘placed’ at depth d,
so that (considering the tree-like structure of an ALCP(D) model)
they are unique for the path used to evaluate R.

Example 16. Consider the concrete domain (Z, <,=, (=a)a∈Z) and
the concept C = ∃rs.[S1x < S2x ∧ ¬S2x = 3]. An individual v
which belongs to an interpretation of C must necessarily have an r-
successor v1 which has an s-successor v2, such that the value of x in
v1 is smaller than the value of x in v2, which in turn must be different
than 3. As one can see from Example 13, D is negation-closed, and
we can find an existentially quantified positive first order formula,
namely ψ(a) = ∃z(z = 3 ∧ (a < z ∨ z < a)), such that ¬x = 3
if and only if ψ(x) holds. The strong negation normal form of C is
Ĉ = ∃rs.[S1x < S2x ∧ S2y = 3 ∧ (S2x < S2y ∨ S2y < S2x)].
As you can see we have introduced a new register variable y and
placed it at depth 2 inside the constraint to hold the value that was
existentially quantified in ψ.

Now that we have successfully eliminated negation from inside
the constraints, there is one last step to do, in order to obtain a nor-
mal form that will be useful in the next section. Observe that if a
constraint c(x1, . . . , xk) does not contain negation, it is possible to
apply distributivity repeatedly and obtain an equivalent constraint in
DNF or in CNF5 which still does not contain negation. Therefore we
can assume that all path constraints of the form ∃P.c (respectively
∀P.c) are such that the constraint c is in DNF (resp. CNF). Using
then the fact that universal quantification commutes with conjunc-
tion and that existential quantification commutes with disjunction,
we can easily prove the following facts:

∃P.
n∨

i=1

(ai
1 ∧ · · · ∧ ai

mi
) ≡

n⊔
i=1

∃P.(ai
1 ∧ · · · ∧ ai

mi
), and

∀P.
n∧

i=1

(ai
1 ∨ · · · ∨ ai

ni
) ≡

n�

i=1

∀P.(ai
1 ∨ · · · ∨ ai

ni
),

where each ai
j is an atomic constraint. Therefore, given a concept C

in strong negation normal form, and applying the above described
transformations, we can obtain a new concept C′ which is still in
strong negation normal form, and is such that all path constraints are
of the kind ∃P.c (or ∀P.c) where c is a conjunction (resp. disjunction)
of atomic constraints. We call this the constraint normal form of C.

4 The EHD Method

Following the approach in [6, 7] for CTL∗ and ECTL∗, we can re-
duce the satisfiability problem of ALCP(D) to the satisfiability prob-
lem for BMWB over n-trees, provided the concrete domain has right
properties.

4.1 The EHD-Property

The central notion used in the decidability proof is the EHD-
property. EHD stands for ‘the existence of a homomorphism is de-
finable’. It is a property of a relational structure A, expressing the
ability of a logic L to distinguish between those structures B which
can be mapped to A by a homomorphism (B 
 A) and those that
cannot.

5 Disjunctive or conjunctive normal form.
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Definition 17. Let L be a logic. A σ-structure A has the EHD(L)-
property, if there is a computable function that maps every finite
subsignature τ ⊆ σ to an L-sentence ϕτ s.t. for every countable
τ -structure B holds: B 
 A ⇔ B |= ϕτ .

We will see that for a negation-closed domain D with the
EHD(BMWB)-property, satisfiability of ALCP(D) is decidable. For
this reason, we are mainly interested in structures with EHD(L)-
property, where L is BMWB or some fragment of this logic. In this
case, we might omit L and simply write EHD.

Remark 18. In [6, 7, 5] several (classes of) relational structures are
investigated. Some of them that enjoy the property EHD are:

• the integers with equality-, order-, constants-, and modulo-
constraints: (Z,=, <, (=a)a∈Z, (≡a,b)a<b),

• the natural numbers with the same relational signature:
(N,=, <, (=a)a∈N, (≡a,b)0≤a<b),

• the class of all semi-linear orders (see [5]),
• the class of all trees of height h for some fixed h ∈ N,
• (Zn, <lex,=) where <lex is the lexicographic order,
• AllenZ: the set of intervals over the integers together with Allen’s

relations, which allow to describe their relative positioning.

It was shown in [6] that (Z, <) has the EHD-property. Consider
any countable {<}-structure A = (A,<). For x, y ∈ A we write
x <∗ y if there exist x1, . . . , xn s.t. x < x1 < · · · < xn < y in
A and call {x, x1, . . . , xn, y} a <-path from x to y. It is proved that
A 
 (Z, <) iff

• A is acyclic: there are no two elements x, y s.t. x <∗ y < x, and
• for every two elements x, y ∈ A, there exists a bound n such that

all <-path from x to y have at most n elements.

This can be expressed by the following BMWB-formulas:
¬∃x, y(reach<(x, y) ∧ y < x) and ∀x∀y BXPath(X,x, y). Here
reach< is the same as in Example 2, but with the edge relation E re-
placed by <, and Path(X,x, y) is a formula indicating that the set X
is a <-path from x to y (see [7, Ex. 2]). Here the bounding quantifier
limits the length of all paths between any two elements.

In [12, 13] concrete domains over the rationals are considered for
the logics Q-SHIQ and T DL. The difference between T DL and
ALCP(D) is that the T DL only allows feature-paths as connectors
to the concrete domain. For Q-SHIQ and T DL, it is stated that
adding a unary predicate int, expressing that a certain concrete value
has to be an integer, would be extremely useful. Decidability of rea-
soning in these logics under this addition remained an open problem.
We show that the domain Q = (Q, <, int, int), where int = Z and
int = Q \ Z, has the EHD-property. In [7, Lem. 38] it is shown that,
if a domain D has the EHD-property, then so does D=, obtained by
adding equality. This proves that Q= = (Q,=, <, int, int) (which is
also negation-closed) has the EHD-property.

Proposition 19. Q = (Q, <, int, int) has the EHD-property.

Sketch of proof. Let A = (A,<, intA, int
A
) be an arbitrary count-

able structure. We prove that A allows a homomorphism to Q iff

H1 A is acyclic,
H2 there exists no x s.t. x ∈ intA ∩ int

A
,

H3 given any two elements x, y ∈ A, there exists a bound n s.t.
each <-path from x to y contains at most n elements from intA.

In this setting, it is only the number of elements of intA that needs to
be bounded on all paths between two elements. The reason is that, be-
ing Q dense, we can accommodate any countable amount of numbers

in any interval, provided that they are not forced to be integers. Prop-
erties H1-H3 are easily defined in BMWB: acyclicity is expressed as
above using reach<, H2 is given by ¬∃x(int(x) ∧ int(x)) and H3
by ∀x,y BX[X ⊆ intA ∧ ∃Z(X ⊆ Z ∧ Path(Z, x, y))].

4.2 Satisfiability of ALCP(D)

We are now ready to state our main result:

Theorem 20. If a concrete domain D is negation-closed and has the
property EHD(BMWB), the satisfiability problem for ALCP(D) is
decidable.

This theorem classifies all the concrete domains listed in Re-
mark 18 and the new one from Proposition 19 positively, yielding
a good number of decidability results for ALCP(D) w.r.t. general
TBoxes, which strictly improves what was known so far.

The idea behind the proof of this theorem is to separate the search
of a D-interpretation for a concept C w.r.t. a TBox T into two parts:
In a first step look for an ordinary ALC interpretation (i.e., with-
out the valuation function) that is a model for an abstracted version
of C and T . That is, replace each atomic constraint appearing in C
and T with a fresh concept name B and obtain a classical ALC-
concept Ca and TBox Ta, where the a stands for ‘abstracted’. The
fact that Ca is satisfiable w.r.t. Ta is clearly not enough to guarantee
that C is satisfiable w.r.t. T . For instance, the ALCP(D)-concept
∃r.(x < Sx ∧ Sx < x) is unsatisfiable, while its abstraction
∃r.(B1�B2) is not. To avoid this effect, the second step creates from
the model of the abstracted concept a so-called constraint graph, a
structure for storing the information from the constraints that were
abstracted away. It turns out that if such constraint graph allows a
homomorphism to our concrete domain, then this guarantees that the
constraints are satisfied.

For the rest of this section let us fix a signature σ, a negation-closed
σ-structure D as concrete domain with the EHD-property, and an
ALCP(D)-concept C and TBox T , both in constraint normal form,
in which only the atomic constraints θ1, . . . , θn occur. Let di be the
depth of each θi, and let B1, . . . , Bn ∈ NC \ Sub(T , C).
Definition 21. Let P = r1 . . . rp and c be a conjunction of the atomic
constraints θ1, . . . , θm with m ≤ n with depths s.t. 0 =: d0 ≤
d1 ≤ · · · ≤ dm ≤ dm+1 := p (if this is not the case, it suffices to
reorder the constraints). Define the abstraction of an existential path
constraint E = ∃P.c(Si1x1, . . . , S

ikxk), as

Ea = ∃P1.(B1�∃P2.(B2�· · · ∃Pm.(Bm�∃Pm+1.�) . . . ) , (1)

where ∃Pi is short for ∃rdi−1+1 . . .∃rdi . If di = di+1, then
∃Pi+1 is empty. Let c′ be a disjunction of atomic constraints con-
taining θ1, . . . , θm with 0 =: d0 ≤ d1 ≤ · · · ≤ dm ≤
dm+1 := p. Define the abstraction of a universal path constraint
E = ∀P.c′(Si1x1, . . . , S

ikxk) as

Ea = ∀P1.(B1 �∀P2.(B2 � · · · ∀Pm.(Bm �∀Pm+1⊥) . . . ) . (2)

We define Ca and Ta as the ALC-concept and TBox obtained by C
and T by replacing every occurrence of a path constraint E by its
abstraction Ea.

Let us consider C = ∃.r1r2r3(x = y ∧ x < S2x∧ S1y = S2x),
its abstraction Ca is B1 � ∃r1.∃r2.(B2 � B3 � ∃r3.�) , where the
new concept names are assigned to the atomic constraints in order
of appearance. Notice how we use the locality of constraints from
ALCP(D) to individuate the ‘lower’ node involved in the constraint
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(the one at depth di) and mark it as belonging to the fresh concept Bi.
This way, when considering a tree-model of the abstracted concept
Ca w.r.t. Ta, all paths of length di that end in a node marked with Bi

should satisfy the constraint θi.
Definition 22. Given an n-tree D-interpretation I = ([1, n]∗, ·I , γI)
s.t. B1

I = · · · = Bm
I = ∅, we define the abstraction of I as the

interpretation Ia = ([1, n]∗, ·Ia), where ·Ia is defined as

• AIa = AI for all A ∈ (NC \ {B1, . . . , Bm}),
• rIa = rI for all r ∈ NR,
• if θj = R(Si1x1, . . . , S

ikxk) has depth dj , then u ∈ Bj
Ia iff

– u = wv for some w, v ∈ [1, n]∗ with |v| = dj , and

– (γ(wv1, x1), . . . , γ(wvk, xk)) ∈ RD ,

where vt denotes the prefix of v of length it.

Hence, the fact that an element wv with |v| = dj belongs to the
interpretation of Bj means that the atomic constraint θj is satisfied
along every path that starts in node w and descends in the tree via
wv. Now let RegC,T be the set of register variables occurring in C
and T .
Definition 23. Take an n-tree interpretation J = ([1, n]∗, ·J )
where BJ

1 , . . . , BJ
m can be non-empty. We define the constraint

graph GJ of J as a countable σ-structure GJ = (([1, n]∗ ×
RegC,T ), R

G
1 , R

G
2 , . . . ) as follows: The interpretation RG of the rela-

tion R ∈ σ contains all k-tuples ((wv1, x1), . . . , (wvk, xk)), where
k = ar(R), for which there are 1 ≤ j ≤ m and v ∈ [1, n]dj s.t.
wv ∈ BJ

j , and θj = R(Si1x1, . . . , S
ikxk), where vt still denotes

the prefix of v of length it.

The domain of GJ has one element for each pair (v, x) where v is
a member of the domain of J and x is a register variable appearing
in C. When we abstract an atomic constraint θi we replace it with
its placeholder Bi, but any occurrence of Bi marks a path where θi
needs to hold. Such information is stored in the relations of RG .
Example 24. Let D be a concrete domain having < and = in its
signature. Suppose the concept names B1 and B2 are used to replace
the atomic constraints θ1 = (x = y) and θ2 = (x < Sx) of depth
d1 = 0 and d2 = 1, respectively. Figure 1 depicts the constraint
graph associated with an ordinary 2-tree interpretation J .

In the next theorem, we illustrate the connection between the sat-
isfiability of an ALCP(D)-concept w.r.t. a TBox, and the satisfiabil-
ity of its abstraction. We denote by #E(T , C) the number of ex-
istentially quantified subconcepts that occur in Sub(T , C). Let C
be an ALCP(D)-concept and T a TBox—both in constraint normal
form—and let n = d ·#E(C, T ) where d is the maximum depth of
all constraints appearing in Sub(T , C). Then the following holds:

Theorem 25. C is satisfiable w.r.t. T iff there exists an ordinary n-
tree interpretation I = ([1, n]∗, ·I) s.t. I |=Ta Ca and s.t. GI 
 D.

Proof. Let θ1, . . . , θm, d1, . . . , dm and RegC,T be as before.
(⇒) W.l.o.g. assume that I = ([1, n]∗, ·I , γI) is an n-tree D-

interpretation s.t. I |=T C. Our first claim is that Ia |=Ta Ca,
which we show by induction on the structure of C, proving that for
all v ∈ [1, n]∗ and for all subconcepts E ∈ Sub(T , C), u ∈ EI

implies u ∈ EIa
a . Due to space limitations, we show only some

cases. The remaining ones are shown in [8].

• If E ∈ Sub(T , C) is a concept name, then Ea = E.
• If E = F � G, then u ∈ EI implies u ∈ F I and u ∈ GI . By

induction hypothesis we have that u ∈ F Ia
a and u ∈ GIa

a which
yields u ∈ (Fa �Ga)

Ia = EIa
a .

• If E = ∃r.F and u ∈ EI , then there exists an element v ∈
[1, n]∗, s.t. (u, v) ∈ rI and v ∈ F I . Then (u, v) ∈ rIa by
definition of Ia and v ∈ F Ia

a by induction hypothesis. Together
we obtain u ∈ (∃r.Fa)

Ia = EIa
a .

• Let E = ∃P.c(Si1x1, . . . , S
itxt) with P = r1 · · · rp. Since C

and T are in constraint normal form, we can assume that (even-
tually renaming the atomic constraints) c = θ1 ∧ · · · ∧ θn where
the depths d1, . . . , dn satisfy that 0 =: d0 ≤ d1 ≤ · · · ≤ dn ≤
dn+1 := p. Since u ∈ EI , we know that there exists a tuple
(u0, . . . , up) ∈ P I s.t. u0 = u and that D |= c

(
γ(ui1 , x1),

. . . , γ(uit , xt)
)
. If we have θi = R(Sj1y1, . . . , S

jkyk), this
means that (γ(uj1 , y1), . . . , γ(ujk , yk)) ∈ RD . By definition of
Ia, this implies that udi ∈ BIa

i . Now, since (a, b) ∈ rI im-
plies (a, b) ∈ rIa , then (u0, . . . , up) ∈ P Ia as well. This, to-
gether with the fact that udi ∈ BIa

i for i = 1, . . . , n, implies that
u ∈ (∃P1.(B1 � ∃P2.(B2 � . . .∃Pn.(Bn � ∃Pn+1.�) . . . ))Ia ,
where ∃Pi is short for ∃rdi−1+1 . . .∃rdi . This shows the claim.
The second claim is that GIa 
D. Specifically, we want to prove
that the valuation function

γI : ([1, n]∗ × RegC,T ) → D

is a homomorphism. For this, suppose that there is a tuple(
(u1, x1), . . . , (uk, xk)

)
∈ RG . By Definition 23 this means that

there exist j ∈ {1, . . . ,m} and wv ∈ (Bj)
Ia s.t. θj has the form

R(Si1x1, . . . , S
ikxk) with depth dj and s.t. v = v1 · · · vdj and

ut = wvit for all t = 1 . . . k. By Definition 22, this means that
(γI(u1, x1), . . . , γI(ut, xt)) ∈ RD , as wanted.

(⇐) Now we show that, given an ordinary n-tree interpretation
I = ([1, n]∗, ·I) s.t. I |=Ta Ca and a homomorphism h from
GI to D, we can construct a D-interpretation J s.t. J |=T C.
Let’s define J = ([1, n]∗, ·J , h), where ·J coincides with ·I on
all concept and role names, and is extended to all concepts using
the valuation function h. We can again prove by induction that, for
all concepts E ∈ Sub(T , C) and for all u ∈ [1, n]∗, u ∈ (Ea)

I

implies u ∈ EJ (we show only one interesting case):
Suppose E = ∃P.c(Si1x1, . . . , S

ikxk) where P = r1 · · · rp is a
role-path of length p and c is a conjunction of atomic constraints
θ1 ∧ · · · ∧ θn with depths d1, . . . , dn such that 0 =: d0 ≤ d1 ≤
· · · ≤ dn ≤ dn+1 := p. Then the abstraction of E is

Ea = ∃P1.(B1 � ∃P2.(B2 � . . .∃Pn.(Bn � ∃Pn+1.�) . . . )

with Pi = rdi−1+1 · · · rdi . If u ∈ (Ea)
I , then there exists a

tuple (u0, . . . , up) ∈ P I with u0 = u and s.t. udi ∈ (Bi)
I

for i = 1, . . . , n. Fix i ∈ {1, . . . , n}, if θi has the form
R(Sj1y1, . . . , S

jtyt), according to Definition 23, this means that
((uj1 , y1), . . . , (ujt , yt)) ∈ RG . Now, since h is a homomor-
phism from GI to D, we have (h(uj1 , y1), . . . , h(ujt , yt)) ∈ RD ,
which means that D |= R(h(uj1 , y1), . . . , h(ujt , yt)). Since this
is true for an arbitrary i ∈ {1, . . . , n} this holds true for the con-
junction θ1∧· · ·∧θn, that is D |= c(h(ui1 , x1), . . . , h(uik , xk)).
Also, since rI = rJ , we know that (u0, . . . , up) ∈ PJ .
This means that u ∈ EJ , as wanted.

We are now almost ready to give the proof of the main result, of
this paper: Theorem 20. We only need a few additional results.
Definition 26. Given an n-tree ordinary interpretation I =
([1, n]∗, ·I), we define an n-tree T (I) over the signature {S} ∪
NC ∪ NR, where NC and NR are seen as unary predicates whose
interpretation is given by: AT (I) = AI for each A ∈ NC and
rT (I) = {xi ∈ [1, n]∗ | (x, xi) ∈ rI} for all r ∈ NR.
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Figure 1. An ordinary 2-tree interpretation (where B1 and B2 have non-empty interpretations) and its associated constraint graph GJ from Example 24.

Remark 27. The only difference between an n-tree interpretation I
and its induced n-tree T = T (I) is that roles are turned into unary
predicates s.t., if a pair (x, y) ∈ rI , now y ∈ rT . In particular, if
we define GT = (([1, n]∗ × RegC,T ), R

G
1 , R

G
2 , . . . ) (the constraint

graph of T ) exactly as in Definition 23, only substituting the inter-
pretation J with T , then GI = GT .

Lemma 28. Given C and T an ALC-concept and TBox in nnf, we
can write a FO-formula ϕ over the signature {S} ∪NC ∪NR, where
all elements of NC∪NR are seen as unary symbols, s.t. for any n-tree
interpretation I = ([0, 1]∗, ·I), I |=T C if and only if T (I) |= ϕ.

Proof. The method is similar to the one in [2, Chapter 3], with the
only difference that here roles and features are seen as unary pred-
icates added to the second node of the relation. This can be safely
done due to the use of tree-shaped models. We define two transla-
tions πx and πy which inductively map ALC-concepts to FO formu-
las with only one free variable, x or y respectively:

• πi(A) := A(i) for each A ∈ NC and i = x, y;
• πi(¬A) := ¬A(i) for each A ∈ NC and i = x, y;
• πi(D � E) := πi(D) ∧ πi(E) for i = x, y;
• πi(D � E) := πi(D) ∨ πi(E) for i = x, y;
• πi(∃r.D):=∃j.S(i,j)∧r(j)∧πj(D) for (i,j)=(x,y) or (y,x);
• πi(∀r.D):=∀j.(S(i,j)∧r(j))→πj(D) for (i,j)=(x,y) or (y,x);

Now let RT be the set of role names appearing in C and T , and let
F ⊆ RT be feature names. Keep in mind that the root ε of a tree is
definable in FO. We define

ψRT := ∀(x �= ε).
∨

r∈RT

r(x) ∧
∧

r,s∈RT ,r �=s

¬(r(x) ∧ s(x))

ψF := ∀x.∀(y �= z). S(x, y) ∧ S(x, z) →
∧
f∈F

¬(f(y) ∧ f(z)) .

The formula ψRT enforces that each pair of elements (x, y), where
y is a successor of x, is assigned a unique role name. ψF ensures
that the functionality of the features is respected. Then we can prove
easily that given a tree-shaped interpretation I and a TBox T =
{CT }, I |=T C if and only if T (I) is a model for the following FO
formula ϕ = ∃x.πx(C) ∧ ∀x.πx(CT ) ∧ ψRT ∧ ψF .

Lemma 29. Let C, T and ϕ be as in Lemma 28. Given an n-tree T
over the relational signature {S} ∪ NR ∪ NF that satisfies ϕ we can
build an n-tree interpretation I s.t. T = T (I) and s.t. I |=T C.

Sketch of proof. The fact that T |= ϕ means in particular that T |=
ψRT ∧ψF , which guarantees that each node of the tree T is assigned
at most one role name, and that the functionality of the features is

respected. We can therefore safely define AI = AT for all A ∈ NC

and rI = {(x, y) ∈ ([1, n]∗)2 | S(x, y) and y ∈ rT } for all r ∈ NR

and obtain a tree shaped interpretation. It is easy to see that T (I) =
T , and I |=T C can be proved by structural induction.

Next we show a useful property of BMWB, which is also needed
to prove our main result.
Definition 30. Let k ∈ N and let A = (A,RA

1 , RA
2 , . . . ) be a

structure over the signature σ that does not contain relation symbols
∼, P1, P2, . . . , Pk (∼ is binary and all Pi are unary). The k-copy of
A, denoted by A×k, is the (σ∪{∼, P1, P2, . . . , Pk})-structure with
domain (A× {1, 2, . . . , k}) and

• for all R ∈ σ if R has arity m, RA×k

is defined as

{((a1, i), . . . , (am, i)) | (a1, . . . , am) ∈ RA, 1 ≤ i ≤ k} ,

• ∼A×k

= {((a, i1), (a, i2)) | a ∈ A, 1 ≤ i1, i2 ≤ k}, and
• for each 1 ≤ m ≤ k, Pm

A×k

= {(a,m) | a ∈ A}.

Given a structure A, the k-copy operation creates a new structure,
A×k, which contains k many copies of A: there are k disjoint sub-
structures of A×k (identifiable through the predicates P1, . . . , Pk)
which, seen as σ-structures, are isomorphic to A. The additional bi-
nary predicate ∼ relates all those members of A×k which are a du-
plicate of the same element in A.

The following proposition states that BMWB is compatible with
the k-copy operation, i.e., whatever property is specified on A×k

using BMWB can also be recognized by BMWB directly on A.

Proposition 31 (Prop. 2.26 of [4]). Let k ∈ N, A some infinite struc-
ture over the signature σ, and τ = σ∪{∼, P1, P2, . . . , Pk} where ∼
is a fresh binary relation symbol and k a fresh unary relation symbols
P1, . . . , Pk. Given a BMWB-sentence ϕ over τ , we can compute a
BMWB-sentence ϕk over σ s.t. A×k |= ϕ iff A |= ϕk.

Let τ ⊆ σ, we say a τ -structure A with domain A is FO-
interpretable in a σ-structure B with domain B, if there exists a
FO-formula ϕ such that A ∼= {b ∈ B | B |= ϕ(b)}, and for
each R ∈ τ of arity k, there exists an FO-formula ϕR such that
RA ∼= {(b1, . . . , bk) ∈ Bk | B |= ϕR(b1, . . . , bk)}. Intuitively, we
can use FO to describe in B a substructure that is isomorphic to A.

Lemma 32. Suppose RegC,T = {x1, . . . , xk}, then for an n-tree T
over the signature {S} ∪ NC ∪ NR, GT is FO-interpretable in T×k.

Proof. The domains of GT and T×k, ([1, n]∗ × {x1, . . . , xk}) and
([1, n]∗ ×{1, 2, . . . , k}) respectively, are in a bijection via the map-
ping f : (v, xk) �→ (v, k). We extend the bijection f to tu-
ples of elements of ([1, n]∗ × {x1, . . . , xk}) as f(a1, . . . , at) =
(f(a1), . . . , f(at)).
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We claim that the relations RG
1 , R

G
2 , . . . from GT can be repre-

sented in T×k using FO. We describe how: suppose the relation
R ∈ σ of arity t is used to form one of the atomic constraints
θ = R(Si1y1, . . . , S

ityt), with y1, . . . , yt ∈ {x1, . . . , xk} and d =
max{i1, . . . , it}. Then we know that a tuple

(
(v1, y1), . . . , (vt, yt)

)
belongs to RG if (1) there exist elements w0, w1, . . . , wd ∈ [1, n]∗

s.t. wil = vl for l = 1, . . . , t and S(wj−1, wj) holds in T for
j = 1, . . . , d, and (2) vd ∈ BT

j . We would like to identify the tu-
ples in T×k in bijection through f with those tuples in GT satisfying
Conditions (1) and (2). These are the ones that satisfy the following
FO-formula

ϕθ(a1, . . . , at) = ∃b0 . . .∃bd
∧

j=1,...,d

S(bj−1, bj) ∧

∧
l=1,...,t

bil ∼ al ∧
∧

i=1,...,t

Pzi(ai)

where i1, . . . , it are the same indices appearing in θ =
R(Si1y1, . . . , S

ityt) and zi is s.t. yi = xzi . Once ϕθj is defined
for the atomic constraints θ1, . . . , θn, which appear in C and T ,
we state the following: if the relation R of arity t is used in all
and only θj1 , . . . , θjk , then ā = (a1, . . . , at) ∈ RG if and only
if ϕR(f(ā)) = ϕθj1

(f(ā)) ∨ · · · ∨ ϕθjk
(f(ā)) holds. If the rela-

tion R ∈ σ of arity t is not used in any of the atomic constraints
θj1 , . . . , θjk , then there will be no tuple in GT which belongs to RG .
Therefore (a1, . . . , at) ∈ RG iff ϕR(f(ā)) = ⊥ holds.

Corollary 33 (of Lemma 32). If α is a BMWB-formula over the
signature σ, we can write a BMWB formula α′ over the signature
{S}∪NC ∪NR ∪{∼, P1, Pn} s.t. GT |= α if and only if T×k |= α′.

Sketch of proof. The formula α′ is obtained from α by replac-
ing any occurrence of a formula R(a1, . . . , at) by the formula
ϕR(a1, . . . , at) defined in the proof of Lemma 32.

We are now finally ready to give the proof of our main result.

Proof of Thm. 20. Let C be an ALCP(D)-concept and T a TBox
respectively. Let n = d ·#E(T , C) where d is the maximum depth
of all constraints that appear in Sub(T , C). Due to Lemma 15 we
can assume w.l.o.g., that C and T are in constraint normal form. By
Theorem. 25, we have to check, whether there is an ordinary n-tree
interpretation I s.t. I |=Ta Ca and GI 
 D.

Let τ ⊆ σ be the finite subsignature consisting of all relation
symbols that occur in C and T . Note that GI is actually a count-
able τ -structure. Since the concrete domain D has the property
EHD(BMWB), one can compute from τ a BMWB-sentence α s.t.
for every countable τ -structure B we have B |= α iff B 
 D. Our
new goal is to decide whether there is an ordinary n-tree interpreta-
tion I s.t.

I |=Ta Ca and GI |= α . (3)

Now Ta and Ca are ordinary ALC-concepts. We can use
Lemma 28, Lemma 29 and Remark 27, and obtain a FO formula
ϕ s.t. if Ca is satisfied w.r.t. Ta by some n-tree interpretation I, then
ϕ is satisfied by an n-tree T s.t. GI = GT . Also, if ϕ is satisfied
by some n-tree T , then there exists an n-tree interpretation I s.t.
I |=Ta Ca and s.t. GT = GI .

Then finding I s.t. (3) holds is equivalent to finding an n-tree T
s.t. T |= ϕ and GT |= α . By Corollary 33, we can find a BMWB-
formula β s.t. GT |= α iff T×k |= β. But we also know, due to
Proposition 31, that we can compute a formula βk s.t. T×k |= β
iff T |= βk. At this point we have to check whether there exists an

n-tree T s.t. T |= ϕ ∧ βk , where ψ ∧ βk is a BMWB-sentence. By
Theorem 3 this is decidable, which completes the proof.

5 Conclusion and Future Work

We have introduced a novel way to integrate concrete domains in
ALC, via path constraints. The resulting logic, ALCP(D), is of in-
comparable expressiveness with the several variants of ALC(D) that
are present in the literature. We have seen, however, how on the do-
mains that we are interested in, our logic is strictly more expressive:
ALCP(D) allows not only feature-paths, but also full role-paths, to
connect abstract individuals and their concrete attributes.

We exploit the path-structure of the constraints to show that
ALCP(D) is compatible with the EHD-method from [6] and show
the very general result: satisfiability for ALCP(D) is decidable w.r.t.
general TBoxes, if the concrete domain D is negation-closed and has
the EHD-property. This solves the problem that has been open for
more than a decade (see [13]), whether reasoning in ALC with non-
dense concrete domains such as the natural numbers or the integers
would be decidable in the presence of general TBoxes, since these
domains enjoy our required properties. Such domains did not sat-
isfy the ω-admissibility criterion that was formulated in [16]. In this
sense, we prove that this ω-admissibility is not a necessary condition
to guarantee the decidability of reasoning over a concrete domain in
the presence of general TBoxes.

We could have easily chosen a more expressive DL than ALC as
underlying logic. In principle we could add any concept constructor
preserving the tree model property, and that can be then translated to
MSO over trees with one successor and unary predicates only (see
lemma 28). Examples of such constructors would be transitive clo-
sure, role hierarchy and qualified number restriction.

The main open question remains the complexity. The EHD method
is a reduction to satisfiability of WMSO+B over infinite binary
trees, which is shown to be decidable in [3]. Here the authors do
not provide complexity bounds for their decision procedure. On the
other hand, the WMSO+B-formulas that need to be checked for
decidability are fixed and depend solely on the concrete domain.
Roughly speaking, once we fix our domain D, the EHD method
transforms a given ALCP(D)-TBox and -concept into a constraint
normal form which already results in a blow-up of the size. This in
turn get transformed into an MSO-formula ϕ (which is clearly non
optimal). We then have to decide whether a conjunction of ϕ and
a fixed WMSO+B-formula ψ (which depends on D) is decidable.
Analyzing this procedure would very hardy lead to tight complexity
bounds. In our opinion the EHD-method is more of an admissibility
criterion, which provides easy conditions on a concrete domain D to
establish whether reasoning with it remains decidable or not.

Also, it would be interesting to know if one can add constant pred-
icates of the form (=q)q∈Q to the domain Q from Prop. 19 and prove
that the resulting structure still has the EHD-property. We conjecture
that a method similar to the one presented in [7] for constant predi-
cates over the integers could be applied to this case.

Another follow-up question is whether the EHD method be can
adapted to show decidability for fuzzy concrete domains, similarly as
it was shown in [17] for the criterion of ω-admissibility.
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[17] Dorian Merz, Rafael Peñaloza, and Anni-Yasmin Turhan, ‘Reasoning in
ALC with fuzzy concrete domains’, in Proceedings of 37th edition of
the German Conference on Artificial Intelligence (KI’14), eds., Carsten
Lutz and Michael Thielscher, volume 8736 of Lecture Notes in Artifi-
cial Intelligence, pp. 171–182. Springer Verlag, (2014).

[18] Wolfgang Thomas, ‘Languages, automata, and logic’, in Handbook of
Formal Languages, pp. 389–455. Springer, (1996).

[19] David Toman and Grant E. Weddell, ‘Applications and extensions of

PTIME description logics with functional constraints’, in Proceedings
of the 21st International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 948–954, (2009).

[20] W3C OWL Working Group. OWL 2 web ontology language docu-
ment overview. W3C Recommendation, 27th October 2009. http://
www.w3.org/TR/2009/REC-owl2-overview-20091027/.

C. Carapelle and A.-Y. Turhan / Description Logics Reasoning w.r.t. General TBoxes Is Decidable for Concrete Domains1448

http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190987
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190987
https://lat.inf.tu-dresden.de/research/reports/2016/CaTu-LTCS-16-01.pdf
https://lat.inf.tu-dresden.de/research/reports/2016/CaTu-LTCS-16-01.pdf
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

	Introduction
	Preliminaries
	The Description Logic 
	 has the Tree Model Property
	Strong Negation Normal Form

	The EHD Method
	The EHD-Property
	Satisfiability of 

	Conclusion and Future Work

