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Abstract

It is well-known that the unification problem for a binary associative-commutative-
idempotent function symbol with a unit (ACUI -unification) is polynomial for unification
with constants and NP-complete for general unification. We prove that the same is true
if we add a finite set of ground identities. To be more precise, we first show that not
only unification with constants, but also unification with linear constant restrictions is
in P for any extension of ACUI with a finite set of ground identities. Using well-known
combination results for unification algorithms, this then yields an NP-upper bound for
general unification modulo such a theory. The matching lower bound can be shown as in
the case without ground identities.

1 Introduction

As shown by Kapur and Narendran [7], general ACUI -unification is NP-complete, while ele-
mentary unification and unification with free constants is in P. In particular, this also implies
that the word problem in ACUI is decidable in polynomial time. Marché proved in [8] that the
word problem remains decidable if ACUI is extended with a finite set of ground identities, but
no complexity bounds are given. This result actually holds for a signature possibly containing
several ACUI symbols and free function symbols.

We are interested in whether decidability of unification for ACUI is also stable under adding
ground identities. In this paper, we answer this question affirmatively for the case of a single
ACUI symbol. The ground identities may contain this symbol and additional constant symbols,
but no additional function symbols of arity greater than 0. In this setting, we can actually
prove that not only decidability of unification, but also the complexity results transfer. To this
purpose, we show that unification with linear constant restrictions, a notion that generalizes
unification with free constants, is decidable in P. Then, using known combination results by
Baader and Schulz [4], we can conclude that general unification is decidable in NP.

Our interest in ACUI -unification modulo an additional ground theory stems from the fact
that the theory ACUI is a common subtheory of the equational theories corresponding to the
Description Logics FL0 and EL: for FL0, ACUI is extended with unary function symbols
that behave like homomorphisms and for EL the additional unary function symbols behave like

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA)



ACUI Unification modulo Ground Theories Baader, Marantidis and Mottet

monotone operators. Unification in FL0 is known to be ExpTime-complete [3] and NP-complete
in EL [2]. However, it is not known how to extend these decidability results to unification in
the presence of so-called general TBoxes, though for EL there are some positive results for a
restricted form of TBoxes [1]. Since, from an equational theory point of view, general TBoxes
correspond to finite sets of ground identities, we are interested in equational theories for which
decidability of unification is stable under adding finite sets of ground identities. We will show
in this paper that ACUI is such a theory.

2 ACUIG-unification with linear constant restriction

We assume in the following that the reader is familiar with basic notions of unification theory,
and in particular the difference between unification with constants, unification with linear con-
stant restriction, and general unification. Detailed definitions and a discussion of this difference
can be found in [5].

Let Σ = {+,0} for a binary function symbol + and a constant symbol 0. We denote the
equational theory that states that + is an associative, commutative, and idempotent symbol
with unit 0 by ACUI . Furthermore, let F be a countably infinite set of constants and V a
countably infinite set of variables. The set of terms built from Σ, F and V is denoted by
TΣ(V, F ), and the set of ground terms, i.e., terms that do not contain variables, by TΣ(F ). If G
is a finite set of ground identities using terms in TΣ(F ), then we denote the equational theory
ACUI ∪ G with ACUIG . The constants from F not occurring in G are called free constants.
For example, if a, b, c ∈ F and x, y ∈ V , then x+ y and a+ x belong to TΣ(V, F ), and a+ b+ b
and b + a + a are elements of TΣ(F ). The latter two terms are actually equivalent modulo
ACUI . If G contains the identity a + b = c, then these terms are also equivalent to a + b + c.
In fact, b+ a+ a =ACUI a+ b+ b =ACUI a+ b =ACUI a+ b+ a+ b =ACUIG a+ b+ c.

A substitution is a mapping σ : V → TΣ(V, F ), which is the identity for all but finitely
many variables. It can be homomorphically extended to a mapping from TΣ(V, F ) to TΣ(V, F )
in the obvious way.

Definition 1 (ACUIG-unification problem with linear constant restriction).

Input: A finite system Γ = {s1 =? t1, . . . , sk =? tk} of equations between terms in TΣ(V, F ), a
finite set of ground identities G = {g1 = h1, . . . , g` = h`} between terms of TΣ(F ), and a linear
order ≺ on X ∪D, where X ⊆ V is the set of variables occurring in Γ and D ⊆ F is the set of
free constants occurring in Γ.

Question: Is there a substitution σ such that σ(si) =ACUIG σ(ti) for every i = 1, . . . , k and
for every x ∈ X and d ∈ D we have that d does not occur in σ(x) if x ≺ d. Such a substitution
is called an ACUIG-unifier of Γ w.r.t. ≺.

Now, let Γ be an ACUIG-unification problem with linear constant restriction ≺, and C =
{a1, . . . , an} be the finite set of constants occurring in Γ and in G, and X = {x1, . . . , xm} the
finite set of variables occurring in Γ. In order to check whether Γ has a unifier w.r.t. ≺ it is
sufficient to consider substitutions that are the identity on V \X and replace every x ∈ X by a
term in TΣ(C), i.e., a ground term containing (in addition to 0) only constants from C. In fact,
any ACUIG-unifier of Γ w.r.t. ≺ can be turned into one satisfying this property by replacing
variables and constants in F \ C with 0. If we apply such a substitution to the terms si, ti
occurring in Γ, then we obtain terms in TΣ(C).

Modulo ACUI , terms in TΣ(C) can be represented as subsets of C. These sets just consist
of the constants occurring in the terms. Two ground terms are equivalent modulo ACUI iff
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the corresponding sets are equal. For this reason, we often assume in the following that ground
terms are represented as such sets. However, in the presence of a set of ground identities G,
different sets may represent terms that are equivalent modulo ACUIG . In our above example,
the terms a + b + b and b + a + a are both represented by the set {a, b}, whereas a + b + c is
represented by {a, b, c}. Intuitively, the identity a+ b = c can be used to add c to the set {a, b}.

We will now show how we can decide whether two sets represent terms that are equivalent
modulo ACUIG . For this purpose we saturate the sets by using the identities in G to add
constants to them, as we have done with c in our example. For each identity gi = hi in G, let
Gi, Hi ⊆ C be the sets corresponding to gi, hi.

Given a set A ⊆ C, its saturation is obtained by iteratively applying the identities of G
as follows: begin with setting A∗ := A; as long as there is an identity gi = hi in G such that
Gi ⊆ A∗ and Hi 6⊆ A∗ (or Hi ⊆ A∗ and Gi 6⊆ A∗), extend A∗ by setting A∗ := A∗ ∪ Hi

(respectively, by setting A∗ := A∗ ∪Gi). This saturation process terminates after a number of
iterations that is bounded by the cardinality of G. In fact, once an identity gi = hi was applied
in the saturation process, it is no longer applicable since the set A∗ then contains Gi ∪Hi. It is
also easy to see that the result of the saturation does not depend on the order in which rules are
applied. Thus, each set A has a unique saturation A∗, which can be computed in polynomial
time.

As an example, consider the set of ground identities

G = {a+ b+ c = d, b+ c+ e = f}

and the term s = a + f . The saturation process for s starts with setting A∗s := As = {a, f}.
For the second identity, we have that Af = {f} ⊆ A∗s, but Ab+c+e = {b, c, e} 6⊆ A∗s. Hence,
we can extend A∗s to A∗s := A∗s ∪ Ab+c+e = {a, b, c, e, f}. Now, for the first identity, we have
that Aa+b+c = {a, b, c} ⊆ A∗s, but Ad = {d} 6⊆ A∗s, and thus we obtain A∗s := A∗s ∪ Ad =
{a, b, c, d, e, f}. This is the final saturated set since it cannot be further extended using the
identities in G.

The following lemma is an easy consequence of the definition of saturation.

Lemma 2. Let A,B ⊆ C. Then the following holds:

A ⊆ A∗, A∗∗ = A∗, A ⊆ B ⇒ A∗ ⊆ B∗, A∗ ∪B∗ ⊆ (A ∪B)∗.

Proposition 3. Let As, At ⊆ C be sets respectively representing the terms s, t ∈ TΣ(C). Then
s =ACUIG t iff A∗s = A∗t . In particular this implies that the word problem for ACUIG is
decidable in polynomial time.

Proof. Decidability in polynomial time obviously follows from the equivalence in the first state-
ment since the saturation A∗ of a set A ⊆ C can be computed in polynomial time.

To show the equivalence, first assume that A∗s = A∗t . To conclude from this that s =ACUIG t,
it is sufficient to show that saturation steps correspond to rewrite steps in ACUIG . Thus,
assume that l ∈ TΣ(C) has the corresponding set Al, and that gi = hi is an identity in G
such that Gi ⊆ Al. Then l is of the form l = gi + l′. We now have l = gi + l′ =ACUIG

gi + gi + l′ =ACUIG hi + l, and the set corresponding to the term hi + l is Al ∪Hi.

Second, assume that A∗s 6= A∗t . To show that this implies s 6=ACUIG t, we construct a
model A of ACUIG in which this identity does not hold. As interpretation domain, we use all
saturated sets, i.e., ∆ := {A∗ | A ⊆ C}. The binary symbol + is interpreted as union followed
by saturation, i.e., A∗+B∗ := (A∗∪B∗)∗, 0 as ∅∗, and c ∈ C as {c}∗. Given a term u ∈ TΣ(C)
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with corresponding set Au, its interpretation in this algebra is A∗u. This can easily be shown
by induction on the structure of u, where the induction step uses the fact that

(A∗ ∪B∗)∗ = (A ∪B)∗, (1)

which is an easy consequence of Lemma 2. Thus, A∗s 6= A∗t implies that the terms s, t have
different interpretations in A. To show s 6=ACUIG t, it is thus sufficient to show that A satisfies
all identities of ACUIG . For the identities in ACUI this is an easy consequence of (1) and the
fact that set union is associative, commutative and idempotent and has ∅ as unit. Now consider
an identity gi = hi ∈ G. When saturating the corresponding sets Gi and Hi, one can in a first
step go both from Gi and from Hi to Gi ∪ Hi (unless this step is void due to an inclusion).
Saturating further, one thus obtains identical saturated sets, which shows that gi and hi are
interpreted in A by the same saturated set.

Continuing our example, recall that the term s = a + f has the saturated set A∗s =
{a, b, c, d, e, f}. It is easy to see that for t = b + d + e saturation produces the sequence
of

At = {b, d, e} → {a, b, c, d, e} → {a, b, c, d, e, f} = A∗t ,

where in the first step the identity d = a + b + c is applied, and in the second the identity
b+ c+ e = f . Thus, we have A∗s = A∗t , which shows that s = a+ f =ACUIG b+ d+ e = t.

Next, we introduce an algorithm that solves ACUIG-unification with linear constant restric-
tion in polynomial time. Intuitively, it starts with a maximal substitution that respects the
linear order ≺. Next, whenever an equation is not satisfied, that is, when an element appears
on one side but not on the other, we trim the substitution, so that it no longer introduces this
violation. Upon termination, the algorithm provides a solution if one exists, or outputs Fail
otherwise. By a slight abuse of notation we assume that the substitutions σ considered in the
algorithm actually map to sets of constants rather than ground terms. In addition, for a term
t ∈ TΣ(X,C) we use σ(t) to denote also the set corresponding to the term σ(t).

Algorithm 1: Computation of unifier

Input: An ACUIG-unification problem with linear constant restriction ≺, as introduced
in Definition 1.

Output: A unifier σ : X → 2C or Fail.
Set σ(x) := {c ∈ C | c ≺ x or c occurs in G} for all x ∈ X
while some equation s =? t in Γ is not satisfied by σ do

if there is a variable x in s such that σ(x) 6⊆ σ(t)∗ or y in t such that σ(y) 6⊆ σ(s)∗

then
Set σ(x) := σ(x) ∩ σ(t)∗ for all variables x in s
Set σ(y) := σ(y) ∩ σ(s)∗ for all variables y in t

else
return Fail

end

end
return σ

Before proving correctness of this algorithm, we give an example that illustrates how it tests
for the existence of an ACUIG-unifier w.r.t. a linear constant restriction. Consider the system
of equations

Γ = {g + x2 =? a+ x1, b+ x1 =? c+ f + g, c+ x2 =? a+ c+ e},
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the set of ground identities

G = {a+ b+ c = d, b+ c+ e = f}

considered in our previous examples, and the linear order

x2 ≺ g ≺ x1.

Note that g is the only free constant occurring in Γ, and thus it is the only constant occurring in
this linear constant restriction. Also note that without g ≺ x1, the second equation of Γ would
not be solvable. In addition, without G this second equation would not be solvable either: b
belongs to the left-hand side, but could never belong to the right-hand side without additional
ground identities.

The algorithm begins by setting

σ(x1) := {a, b, c, d, e, f, g} and σ(x2) := {a, b, c, d, e, f}.

Next, the algorithm enters the while loop and picks in each iteration an equation that is not
satisfied:

• The second equation is not satisfied by σ. In fact, we have that σ(c+f+g)∗ = {b, c, e, f, g},
and hence σ(x1) 6⊆ σ(c+f+g)∗. The algorithm proceeds to set σ(x1) := {a, b, c, d, e, f, g}∩
{b, c, e, f, g} = {b, c, e, f, g}.

• The third equation is not satisfied by σ. We have that σ(a+ c+ e)∗ = {a, c, e}, and hence
σ(x2) 6⊆ σ(a+ c+ e)∗. The algorithm proceeds to set σ(x2) := {a, b, c, d, e, f}∩{a, c, e} =
{a, c, e}.

• The first equation is not satisfied by σ. We have that σ(x1) = {b, c, e, f, g} 6⊆ σ(g+x2)∗ =
{a, c, e, g}. The algorithm proceeds to set σ(x1) := {b, c, e, f, g} ∩ {a, c, e, g} = {c, e, g}.

The algorithm then terminates since all equations are satisfied, and yields the substitution
σ = {x1 7→ c+ e+ g, x2 7→ a+ c+ e} as output.

Proposition 4. Algorithm 1 terminates in polynomial time. If Γ has a unifier, then it provides
a unifier as output, and otherwise it fails.

Proof. Termination in polynomial time is an easy consequence of the fact that in each iteration
of the while-loop, at least one constant is removed from the image of a variable, or the loop is
exited.

Since the algorithm only returns a substitution if the while-loop is exited regularly, this
substitution satisfies all the equations of Γ. It satisfies the linear constant restriction due to
the fact that the original substitution satisfies it and that constants are only removed from, but
never added to, the image of variables during the run of the algorithm. Consequently, if the
algorithm returns a substitution, then this substitution is a unifier of Γ w.r.t. ≺. This shows
that the algorithm must return Fail in case Γ has no unifier w.r.t. ≺.

To prove the completeness of the algorithm, assume that σ̂ is a unifier of Γ, and that the
algorithm terminates during the rth iteration of the while-loop. Let σ(0) be the substitution σ
before the first iteration of the while-loop. For i ∈ {1, . . . , r − 1}, let σ(i) be the substitution
obtained at the end of the ith iteration of the while-loop.

We extend ⊆ to substitutions in a natural way, by using pointwise comparison. We prove
by induction on i that σ̂ ⊆ σ(i), for all i ∈ {0, . . . , r − 1}. Since σ̂ satisfies the linear constant
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restriction, we have σ̂ ⊆ σ(0). Let now i ∈ {0, . . . , r − 2}, and assume that we already know
that σ̂ ⊆ σ(i). We must prove σ̂ ⊆ σ(i+1).

Since the algorithm does not exit the while-loop at this stage, there is an equation s =? t
in Γ that is not satisfied by σ(i). In addition, since the algorithm does not fail at iteration i,
there exists a variable x in s such that σ(x) 6⊆ σ(t)∗ or y in t such that σ(y) 6⊆ σ(s)∗. Clearly,
for every x ∈ X that does not appear in this equation, we have σ̂(x) ⊆ σ(i)(x) = σ(i+1)(x). Let
now x be a variable occurring in s (variables in t can be treated analogously). To prove that
σ̂(x) ⊆ σ(i+1)(x), it suffices to prove that σ̂(x) ⊆ σ(i)(x) and that σ̂(x) ⊆ σ(i)(t)∗. The first
statement is true by the induction hypothesis. Now, we have

σ̂(x)
(1)

⊆ σ̂(s)
(2)

⊆ σ̂(s)∗
(3)
= σ̂(t)∗

(4)

⊆ σ(i)(t)∗,

where (1) holds because x occurs in s, (2) by Lemma 2, (3) because σ̂ is a unifier of Γ, and (4)
by Lemma 2 since σ̂ ⊆ σ(i). This finishes the induction proof.

Therefore, we now know that σ̂ ⊆ σ(r−1). There are two possible reasons for the algorithm
terminating in the rth iteration. Either the while-loop is exited regularly or the algorithm
returns Fail. In the first case, σ(r−1) is a unifier and the algorithm returns this substitution.

It remains to show that the second case cannot occur. In this case, we have σ(r−1)(s)∗ 6=
σ(r−1)(t)∗ for some equation s =? t in Γ, but σ(r−1)(x) ⊆ σ(r−1)(t)∗ for all variables x in s and
σ(r−1)(y) ⊆ σ(r−1)(s)∗ for all variables y in t. This can only be the case if there is a constant
c ∈ C such that c occurs in s, but c 6∈ σ(r−1)(t)∗; or c occurs in t, but c 6∈ σ(r−1)(s)∗. We show
that this is impossible.

Thus assume that c occurs in s (the case where c occurs in t can be treated symmetrically).
We have

c
(1)
∈ σ̂(s)

(2)

⊆ σ̂(s)∗
(3)
= σ̂(t)∗

(4)

⊆ σ(r−1)(t)∗,

where (1) holds since c occurs in s, (2) by Lemma 2, (3) since σ̂ is a unifier of Γ, and (4) by
Lemma 2 since σ̂ ⊆ σ(r−1).

The following theorem is an immediate consequence of Proposition 4.

Theorem 5. Let ACUI be the equational theory that states that the binary function symbol
+ is associative, commutative, and idempotent, and has the constant symbol 0 as unit, and let
ACUIG be an extension of ACUI by finitely many ground identities built using +,0, and addi-
tional constant symbols. Then the ACUIG-unification problem with linear constant restrictions
is decidable in polynomial time.

3 General ACUIG-unification

General ACUIG-unification problems differ from the ones we have considered until now in that
the terms used in Γ may contain “free” function symbols, i.e., function symbols not occurring
in the identities of ACUIG . For example, {f(x + a, a + b) =? f(b + y, x)} is such a general
ACUIG-unification problem since it contains the additional function symbol f that does not
occur in the identities of ACUIG .

The following was proved by Baader and Schulz [4] and provides an upper bound for general
ACUIG-unification.

Theorem 6 ([4]). If solvability of Ei-unification problems with linear constant restrictions is
decidable in NP for i = 1, 2, then unifiability in the combined theory E1 ∪ E2 is also decidable
in NP.
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In particular, this implies that, if E-unification with linear constant restriction is decidable
in NP, the same is true for general unification, by choosing as the second theory the empty
theory.

Theorem 7. For every finite set of ground identities G, general ACUIG-unification is NP-
complete.

Proof. Membership in NP is an immediate consequence of Theorem 5 together with Theorem 6.
NP-hardness can be shown by the same reduction from the set-matching problem as used in

[6] to show that general ACI -unification is NP-hard. To be more precise, this reduction yields
ACI -unification problems of the form

Γ = {g(s1) + . . .+ g(sm) =? g(t1) + . . .+ g(tm)},

where + is an associative, commutative, and idempotent function symbol, g is a unary free
function symbol and the terms s1, . . . , sm, t1, . . . , tn contain only free function symbols and
variables. The presence of a unit and of ground identities in ACUIG do not change solvability
of such problems compared to ACI since

• in the top-level sum the additional identities cannot be used due to the fact that all terms
on this level start with the free function symbol g;

• while the variables occurring in the terms g(s1), . . . , g(sm), g(t1), . . . , g(tn) may be re-
placed by terms containing + and constant symbols from G, these “alien” subterms can
be abstracted away by free constants.

This shows that such a problem Γ is solvable modulo ACI iff it is solvable modulo ACUIG ,
which completes our proof of NP-hardness of general ACUIG-unification.

4 Conclusion

We have shown that ACUIG-unification with linear constant restrictions is decidable in P, and
general ACUIG-unification is NP-complete. Note, however, that according to our definition
of ACUIG this result holds for a single ACUI -symbol + and ground identities G built using
only + and free constant symbols. Due to the combination results of Baader and Schulz [4], we
can also deal with several ACUI -symbols +1, . . . ,+n and sets of ground identities G1, . . . , Gn,
where the identities in Gi are built using only +i and free constant symbols not occurring in
any of the other sets Gj (i 6= j). The combination results show that unification in the union of
such theories can be decided in NP. However, this result cannot deal with situations where the
ground identities share constants, or contain several ACUI -symbols, or contain free function
symbols. It is an open problem whether unification in such “mixed” theories remains decidable.
It is only known from Marché’s results [8] that the word problem is decidable in this setting,
and it would be interesting to see whether the same is true for unification.

Motivated by the applications in Description Logics mentioned in the introduction, we also
intend to investigate what effect adding ground identities to extensions of ACUI has on the
unification problem.
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