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ABSTRACT
Ontology-mediated query answering can be used to access large

data sets through a mediating ontology. It has drawn considerable

attention in the Description Logic (DL) community where both

the complexity of query answering and practical query answering

approaches based on rewriting were investigated in detail. Surpris-

ingly, there is still a gap in what is known about the data complexity

of query answering w.r.t. ontologies formulated in the inexpressive

DL FL0. While it is known that the data complexity of answering

conjunctive queries w.r.t. FL0 ontologies is coNP-complete, the

exact complexity of answering instance queries was open until

now. In the present paper, we show that answering instance queries

w.r.t. FL0 ontologies is in P for data complexity. Together with the

known lower bound of P-completeness for a fragment of FL0, this

closes the gap mentioned above.
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1 INTRODUCTION
In the early days of DL research, the inexpressive DL FL0, which

has only conjunction, value restriction and the top concept as con-

cept constructors, was considered to be the smallest possible DL.

In fact, when providing a formal semantics for so-called property

edges of semantic networks in the first DL system KL-ONE [5],

value restrictions were used. For this reason, the language for con-

structing concepts in KL-ONE and all of the other early DL systems

[4, 14, 17, 21] contained FL0. It came as a surprise when it was

shown that subsumption reasoning w.r.t. acyclic FL0 terminolo-

gies (TBoxes) is coNP-hard [15]. The complexity increases when
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more expressive forms of TBoxes are used: for cyclic TBoxes to

PSpace [1, 10] and for general TBoxes consisting of general concept

inclusions (GCIs) even to ExpTime [2]. Thus, w.r.t. general TBoxes,

subsumption reasoning in FL0 is as hard as subsumption reasoning

in ALC, its closure under negation. These negative complexity

results for FL0 were one of the reasons why the attention in DL

research shifted from FL0 to EL, which is obtained from FL0 by

replacing value restriction with existential restriction as a construc-

tor. In fact, subsumption reasoning in EL stays polynomial even

in the presence of general TBoxes [6].

In the present paper, we are not concerned with subsumption

reasoning, but with ontology-mediated query answering [16]. In

this setting, one has a DL TBox T as well as an ABox A (repre-

senting the data) together with a query q, and one wants to know

whether TBox and ABox imply that a given tuple is an answer to

the query. As queries, one usually considers conjunctive queries or

instance queries. In the latter case, the query is actually a concept of

the employed DL. As usual in a database context, one distinguishes

between combined complexity and data complexity: in the former,

the complexity is measured in the combined size of all three in-

puts T , A, q, whereas in the latter one assumes T and q to be of

constant size, and measures the complexity only in the size of the

ABox A.

With respect to combined complexity, FL0 behaves the same

as ALC also for ontology-mediated query answering. Both an-

swering instance queries and answering conjunctive queries w.r.t.

general FL0 TBoxes are ExpTime-complete, just as for ALC. The

upper bound is inherited from ALC [12], and the lower bound

obviously follows from ExpTime-hardness of subsumption in FL0

w.r.t. general TBoxes [2].

However, w.r.t. data complexity, FL0 exhibits an interesting be-

haviour, which differs from the one of ALC and of EL. In fact,

in ALC and in EL, the data complexity for instance queries and

for conjunctive queries are the same, namely both coNP-complete

for ALC [11, 20] and P-complete for EL [8, 19]. In contrast, for

FL0, the data complexity is coNP-complete for conjunctive queries,

whereas it is P-complete for instance queries. For the case of con-

junctive queries, the coNP upper bound is inherited from ALC,

and the coNP lower bound is shown for a certain fragment of FL0

in the proof of Theorem 4.5 in [8]. In this fragment, GCIs may have

a value restriction ∀r .A or a concept nameA as left-hand side, and a

concept name B as right-hand side. For instance queries, the P lower

bound is shown for another fragment of FL0, where left-hand sides

of GCIs are conjunctions of concept names and right-hand sides

are value restrictions ∀r .A or concept namesA (Theorem 4.3 in [8]).

For this fragment, a P upper bound is also established in [8], but the

exact data complexity of answering instance queries w.r.t. general

FL0 TBoxes is left open in [8].
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In the present paper, we close this gap by proving a P upper

bound for the data complexity of answering instance queries w.r.t.

general FL0 TBoxes.

2 THE DESCRIPTION LOGIC FL0

In Description Logics, concept constructors are used to build complex

concepts out of concept names (unary predicates) and role names
(binary predicates). A particular DL is determined by the available

constructors. The DL FL0 has the constructors top concept (⊤),

conjunction (C⊓D), and value restriction (∀r .C). To be more precise,

the set of FL0 concepts is inductively defined as follows:

• ⊤ and every concept name is an FL0 concept,

• if C,D are FL0 concepts and r is a role name, then C ⊓ D
and ∀r .C are FL0 concepts.

The semantics of FL0 is defined using first-order interpretations

I = (∆I , ·I ) consisting of a non-empty domain ∆I and an inter-

pretation function ·I that assigns a set AI ⊆ ∆I to each concept

name A and a binary relation r I ⊆ ∆I × ∆I to each role name r .
This function is extended to FL0 concepts as follows:

⊤I = ∆I and (C ⊓ D)I = CI ∩ DI ,

(∀r .C )I = {x ∈ ∆I | ∀y ∈ ∆I : (x ,y) ∈ r I ⇒ y ∈ CI }.

An FL0 TBox T is a finite set of general concept inclusions (GCIs),
which are expressions of the form C ⊑ D for FL0 concepts C,D.
The interpretation I is a model of T if it satisfies all the GCIs in

T , i.e., CI ⊆ DI holds for all GCIs C ⊑ D in T . An FL0 ABox A
is a finite set of assertions, which are expressions of the form C (a)
(concept assertion) or r (a,b) (role assertion), where C is an FL0

concept, r a role name, and a,b are elements of an additional set

of individual names. The ABox A is simple if all the concepts C in

concept assertions C (a) are concept names. An interpretation then

additionally assigns to every individual name a in A an element

aI ∈ ∆I . The interpretation I is a model of A if it satisfies all the

assertions in A, i.e., aI ∈ CI (resp. (aI ,bI ) ∈ r I ) holds for all
assertions C (a) (resp. r (a,b)) in A. A knowledge base K = (T ,A)
consists of a TBox T together with an ABoxA. The interpretation

I is a model ofK if it is a model of both the TBox T and the ABox

A.

Given an FL0 TBox T and two FL0 concepts C,D, we say that

C is subsumed by D (denoted asC ⊑T D) ifCI ⊆ DI for all models

I of T . These two concept descriptions are equivalent (denoted as

C ≡T D) if C ⊑T D and D ⊑T C . If the TBox is empty, we write

C ≡ D instead ofC ≡∅ D. The subsumption problem is the problem

of deciding, for a given TBox T and given concepts C,D, whether
C ≡T D holds or not.

In the presence of an ABoxA, we can also consider the instance
problem: given an individual name a and an FL0 concept C we say

that a is an instance of C in A w.r.t. T (written (T ,A) |= C (a)) if

aI ∈ CI for all models I of the knowledge base K = (T ,A). In
this case we say that a is a certain answer of the instance query C
on the knowledge base K = (T ,A). The instance problem is the

problem of deciding, for a given knowledge base K = (T ,A) and
a given assertion C (a), whether (T ,A) |= C (a) holds or not.

For the DL FL0, the subsumption and the instance problem are

ExpTime-complete [2]. For the instance problem, this complexity

result is w.r.t. combined complexity, where the size of the input is

the sum of the sizes of C , T , and A. In this paper, we are more

concerned with data complexity. In this setting, one assumes that

the ABox is simple and that the size of T and C is constant. Data

complexity is thus measured as a function of the size of A.

In the rest of this paper, we assume without loss of generality

that all the GCIs in FL0 TBoxes are of the following normal form:

A ⊑ B, A1 ⊓A2 ⊑ B, A ⊑ ∀r .B, or ∀r .A ⊑ B,

where A,A1,A2 are concept names or the top-concept ⊤, B is a

concept name, and r is a role name. By adapting the normalisation

rules for EL as described in [3], one can transform a given TBox T

into a normalised TBox T ′ where all GCIs have this form. This can

be achieved in polynomial time and results in a normalised TBox

of linear size. This new TBox T ′ is a conservative extension (see

[3]) of the original TBox T , and thus has the same consequences

over the vocabulary (i.e., concepts and role names) of T .

We will make use of the following property of FL0, which fol-

lows from the properties of the so-called least functional models

introduced and studied in [18]. However, below we will give a

self-contained proof of this property.

Lemma 2.1. Let T be a normalised FL0 TBox, S the set of concept
names occurring in T , and S ′ ⊆ S a subset of S that is closed under
subsumption w.r.t. T , i.e., if B ∈ S is such that

d
S ′ ⊑T B, then

B ∈ S ′. Then there is a model I of T and an element d ∈ ∆I such
that {B ∈ S | d ∈ BI } = S ′.

Before we can prove this lemma, we need to introduce a few

notions and show some auxiliary results. Since ∀r .(C⊓D) ≡ ∀r .C⊓
∀r .D, any FL0 concept description is equivalent to a conjunction of

nested value restrictions of the form ∀r1.∀r2. · · · ∀rn .A, where A is

a concept name. Here the top concept ⊤ is assumed to be the empty

conjunction. In addition, A is the same as ∀ε .A, where ε denotes
the empty word.

In the following, we will write such nested value restrictions

∀r1.∀r2. · · · ∀rn .A as ∀w .A, where w = r1r2 . . . rn is viewed as a

word over the alphabet NR of all role names occurring in a given

FL0 TBox T .

Given an FL0 concept C that contains only concept and role

names occurring in T , we define the value restriction set of C w.r.t.

T as

V (C,T ) := {(w,A) | C ⊑T ∀w .A}.

We can use this set to construct a tree-shaped model I (C,T ) of T
as follows:

• ∆I (C,T )
:= N ∗R , i.e., ∆

I (C,T )
consists of all finite words

over NR ;

• r I (C,T )
:= {(w,wr ) | w ∈ N ∗R }, i.e., for every role r ∈ NR ,

the wordw has exactly one r -successor, which iswr ;

• AI (C,T )
:= {w | (w,A) ∈ V (C,T )} for every concept name

A.

An example of such a tree-shaped model is illustrated in Figure 1.

The following lemma states that I (C,T ) is indeed a model of T .

Later on, wewill useI (C,T ) to prove Lemma 2.1: the interpretation

I and the element d of ∆I whose existence is claimed in that lemma

will be I (C,T ) and the empty word ε ∈ ∆I (C,T )
, respectively.

Lemma 2.2. Let T be an FL0 TBox andC a conjunction of concept
names. Then I (C,T ) is a model of T and ε ∈ CI (C,T ) .
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Figure 1: Graph representation of I (C,T ) for C = A ⊓ B and
T = {A ⊑ ∀r .A,B ⊑ ∀s .B}.

Proof. In order to show that I (C,T ) is a model of T , we con-

sider the different shapes that normalised GCIs can have:

• Consider a GCI of the form A1 ⊓ A2 ⊑ B, and let w ∈ N ∗R
be such that w ∈ (A1 ⊓ A2)

I (C,T )
. Then w ∈ A

I (C,T )
i

for i = 1, 2, and thus C ⊑T ∀w .Ai , which implies that

C ⊑T ∀w .(A1 ⊓A2). Since value restrictions are monotonic

w.r.t. subsumption, this implies C ⊑T ∀w .B, and thus w ∈

BI (C,T )
.

• A GCI of the form A ⊑ B can be treated in the same way.

• Consider a GCI of the form A ⊑ ∀r .B, and let w ∈ N ∗R
be such that w ∈ AI (C,T )

. Then w ∈ AI (C,T )
implies

C ⊑T ∀w .A. Usingmonotony of value restrictions, we obtain

C ⊑T ∀wr .B, and thuswr ∈ BI (C,T )
. Sincewr is the only

r -successor ofw , this shows thatw ∈ (∀r .B)I (C,T )
.

• Consider a GCI of the form ∀r .A ⊑ B, and assume thatw ∈
(∀r .A)I (C,T )

. Sincewr is an r -successor ofw , this implies

that wr ∈ AI (C,T )
, and thus C ⊑T ∀wr .A. Monotony of

value restrictions yieldsC ⊑T ∀w .B, and thusw ∈ B
I (C,T )

.

Thus,I (C,T ) is a model ofT . It remains to show that ε ∈ CI (C,T )
,

i.e., ε ∈ AI (C,T )
for all concept names A occurring in the conjunc-

tion of concept names C . Indeed, we have C ⊑T A = ∀ε .A, and

thus (ε,A) ∈ V (C,T ), which yields ε ∈ AI (C,T )
. □

We are now ready to prove Lemma 2.1. Thus, let T be a nor-

malised FL0 TBox, S the set of concept names occurring in T , and

S ′ ⊆ S a subset of S that is closed under subsumption w.r.t. T . We

defineC :=
d
S ′ and claim that I := I (C,T ) and d := ε satisfy the

properties required by the lemma, i.e., {B ∈ S | ε ∈ BI (C,T ) } = S ′.

To show this identity, first assume that ε ∈ BI (C,T )
. The definition

of I (C,T ) then yields C ⊑T ∀ε .B = B, and thus B ∈ S ′ since
S ′ is closed under subsumption. Conversely, assume that B ∈ S ′.
Then B is a conjunct in C , which yields C ⊑T B = ∀ε .B, and thus

ε ∈ BI (C,T )
. This completes the proof of Lemma 2.1.

3 THE DATA COMPLEXITY OF INSTANCE
QUERIES IN FL0

In this section, wewill introduce a procedure for answering instance

queries, show its correctness, and prove that it has polynomial

time data complexity. Thus, we will assume that the ABox A is

simple, and measure the complexity in the size of the ABox only,

i.e., assume that the TBox T and the query C are of constant size.

The main idea underlying the procedure is that we use propagation

a b

c
IA∗

. . .

Ia

. . .

Ib

. . .

Ic

Figure 2: Example of interpretation I (c.f. Lemma 3.1).

of value restrictions over role assertions as well as subsumption

computations to extend the given ABox with additional concept

assertions. The claim is then that the assertion C (a) follows from
the input knowledge base K = (T ,A) iff C (a) is contained in the

extended ABox A∗.

To be more precise, let T be a normalised FL0 TBox,A a simple

ABox, and C an instance query. We can assume without loss of

generality that C is a concept name.
1
Let S be the set of concept

names occurring in T .

Starting with A ′ := A, we extend the ABox by applying the

following two steps iteratively until the ABox does not change

anymore:

(1) If A(a) ∈ A ′, r (a,b) ∈ A ′,A ⊑ ∀r .B ∈ T and B (b) < A ′,
then extend A ′ with B (b). Apply this rule as long as it adds

concept assertions to A ′. Continue with Step 2.

(2) If S ′ = {A ∈ S | A(a) ∈ A ′} and
d
S ′ ⊑T B for a concept

name B ∈ S such that B < S ′, then extend A ′ with B (a).
Apply this rule as long as it adds concept assertions to A ′.

If no new concept assertions were added in this step at all,

then terminate; otherwise continue with Step 1.

Since the TBox is assumed to be of constant size, the cardinality

of the set S is also constant. For every individual name a, only a

constant number of concept assertions can be added. Thus, overall

there is only a linear number of additions. Also note that performing

each subsumption test

d
S ′ ⊑T B takes constant time since the

size of T and of S ′ are bounded by a constant. LetA∗ be the ABox

obtained by extending the input ABox A in this way.

Lemma 3.1. The individual a is a certain answer of C on (T ,A)
iff C (a) ∈ A∗.

Proof. First, assume that C (a) ∈ A∗. It is easy to see that all

the assertions added during the iteration actually follow from the

current knowledge base (T ,A ′), and thus hold in every model

of the original knowledge base (T ,A). Consequently, C (a) ∈ A∗

implies that C (a) holds in every model of (T ,A), which shows

that a is a certain answer of C on (T ,A).
Second, assume thatC (a) < A∗. We use this to construct a model

I of (T ,A∗) in whichC (a) does not hold. SinceA ⊆ A∗, I is also

a model of (T ,A), which implies that a is not a certain answer of

C on (T ,A). The model I consists of several parts.

(1) First, we construct an interpretation IA∗ whose domain

consists of all individuals occurring inA∗. The role relation-

ships between these individuals are given byA∗, i.e., for two

individuals a,b occurring in A∗ we have (a,b) ∈ r IA∗ iff

1
Since both C and T are assumed to be of constant size, we can simply introduce a

name AC for C using the GCIs AC ⊑ C and C ⊑ AC .



r (a,b) ∈ A∗. Similarly, for an individual a occurring in A∗

and a concept name A ∈ S we have a ∈ AIA∗ iff A(a) ∈ A∗.
(2) For each individual a occurring in A∗, we consider the set

S ′(a) := {A ∈ S | A(a) ∈ A∗}. This set is closed in the sense

of Lemma 2.1 since in Step 2 of the extension procedure no

more concept names could be added. Let Ia be a model of T

and da ∈ ∆
Ia

be such that {B ∈ S | da ∈ B
Ia } = S ′(a). Such

a model exists due to Lemma 2.1.

(3) Without loss of generality we assume that all the domains

∆Ia are disjoint from each other, but da is actually equal to

a. The interpretation I is now the union of IA∗ with all the

models Ia for individuals a occurring in A∗ (see Fig. 2 for

an illustrating example).

Note that for all concept names A occurring in T we actually have

a = da ∈ AIa iff A(a) ∈ A∗ iff a ∈ AIA∗ , and thus a ∈ AI iff

A(a) ∈ A∗. There might be assertions B (a) ∈ A∗ for concept

names B not occurring in T , and for those we have a ∈ BIA∗ and

thus also a ∈ BI , even though da < B
Ia
. However, the extension

of Ia with such additional concept memberships does not interfere

with the satisfaction of GCIs of T since B does not occur in T .

The role successors of an individual a occurring in A∗ are the role

successors in the ABox plus the ones in Ia .

By construction, I is a model of A∗. We show that it is also a

model of T by case distinction according to the form of the GCI to

be satisfied:

• Consider a GCI of the form A1 ⊓ A2 ⊑ B, and let d ∈ ∆I

be such that d ∈ AI
1
and d ∈ AI

2
. If d is not an individual

name fromA∗, then there is such an individual name a such

that d ∈ ∆Ia \ {a}. According to the definition of I, we have

d ∈ AIa
1

and d ∈ AIa
2
. But then the fact that Ia is a model of

T yields d ∈ BIa , which implies d ∈ BI .
Assume that d = a is an individual name from A∗. Then

A1,A2 ∈ S ′(a). Since this set is closed, we also have B ∈
S ′(a), which yields B (a) ∈ A∗. Thus a ∈ BI since we have

already seen that I is a model of A∗.

• A GCI of the form A ⊑ B can be treated in the same way.

• Consider a GCI of the formA ⊑ ∀r .B, and let d ∈ ∆I be such

that d ∈ AI . If d is not an individual name from A∗, then

there is such an individual name a such that d ∈ ∆Ia \ {a}.
Consequently, all the r -successors of d in I are actually ele-

ments of ∆Ia . Since Ia is a model of T , all these r -successors
must belong to BIa , and thus to BI .
Assume that d = a is an individual name from A∗. We

need to show that the r -successors of d in I belong to BI .
For the ones actually belonging to Ia , this follows from the

fact that Ia is a model of T . Now, consider an individual

b such that r (a,b) ∈ A∗. But then the fact that no more

concept assertions could be added in Step 1 of the extension

procedure implies that B (b) ∈ A∗, and thus b ∈ BI .
• Consider a GCI of the form ∀r .A ⊑ B, and assume that d ∈
∆I satisfies d ∈ (∀r .A)I . Clearly, there exists an individual

a from A∗ such that d ∈ ∆Ia . Since all the r -successors
of d in Ia are also r -successors of d in I, this implies that

d ∈ (∀r .A)Ia . Thus, the fact that Ia is a model of T implies

d ∈ BIa , which yields d ∈ BI .

We have thus shown that I is a model of the knowledge base

K = (T ,A). In addition, we have a < CI since C (a) < A∗. This
shows that a cannot be a certain answer of C on (T ,A). □

Since A∗ can be computed in time linear in the size of the data

and checking whetherC (a) ∈ A∗ is also possible in linear time this

shows our desired data complexity result.

Theorem 3.2. The data complexity of answering instance queries
w.r.t. general FL0 TBoxes is P-complete.

Proof. The complexity upper bound (in P) is an immediate

consequence of Lemma 3.1 and the fact that A∗ can be computed

in time linear in the size of the data. P-hardness has been shown in

[8] for a fragment of FL0. □

4 CONCLUSION
We have shown in this paper that the data complexity of answering

instance queries w.r.t. general FL0 TBoxes is in P. This upper bound

matches the known lower bound of P-hardness that holds even for

a fragment of FL0. On the one hand, the P-hardness results is a

negative result since it shows that in FL0 first-order rewritability

of queries is not possible [8]. From a practical point of view this

means that one cannot simply reduce ontology-mediated query

answering w.r.t. FL0 ontologies to answering SQL queries over

the ABox viewed as a relational database. On the other hand, the

P upper bound means that Datalog rewritability [7, 9, 13] might

be a viable option for obtaining a query answering procedure that

is more practical than the one introduced in this paper. As future

work we will address this issue, i.e., try to find a Datalog rewriting

approach for FL0 instance queries w.r.t. general FL0 TBoxes.
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