

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to nonmonotonic reasoning

Winter Semester 2019/20

Exercise Sheet 1

17th October 2019

Dr. (habil.) Anni-Yasmin Turhan

Exercise 1.1 We consider substitutions. The *composition* of two substitutions $\sigma = [X_1/t_1, ..., X_n/t_n]$ and $\rho = [Y_1/s_1, ..., Y_m s/s_m]$ is defined as follows

$$\sigma \circ \rho = \{X_i/t_i\rho \mid X_i \neq t_i\rho \text{ for } 1 \leq i \leq n\} \cup \{Y_j/s_j \mid Y_j \not\in \{X_i, \dots, X_n\} \text{ for } 1 \leq j \leq m\}.$$

(a) Given the substitutions $\sigma = [V_1/p(), V_3/t(p'(), p''())]$ and $\rho = [V_2/V_3, V_4/f_2(V_3, p()), V_5/V_2]$ and the formulae:

$$\varphi_a = \exists V_1 (t_1(V_1, p_1(V_2)) \land t_2(f(V_4, p()), V_5)))$$

$$\varphi_b = (t_1(V_1, p_1(V_2)) \land t_2(f(V_4, p()), V_4))$$

Is $\sigma \circ \rho$ a ground substitution?

- (b) Is $\varphi_a(\sigma \circ \rho)$ a ground formula? Is $\varphi_b(\sigma \circ \rho)$ a ground formula?
- (c) Show that substitions are closed under composition.

Exercise 1.2 "For any formula φ and admissible substitution σ , the formula $\forall X \varphi \longrightarrow (\varphi \sigma)$ is a tautology." Does this claim hold or not? Prove or refute the claim.

Exercise 1.3 We are turning to Default logic. Devise a default theory that models the bike shop domain.