
Technische Universität Dresden
Fakultät Informatik
Institut für Theoretische Informatik

Completion-based Role-depth Bounded
Least Common Subsumer

for Extensions of EL

Andreas Ecke

January 31, 2012

Advisor: Dr. Ing. Anni-Yasmin Turhan
Overseeing Professor: Prof. Dr.-Ing. Franz Baader

1 Introduction
Description Logics (DLs) are a formalism for knowledge representation. They can be
used to describe the terminological knowledge of an application domain in a way that
makes it possible to derive implicit knowledge from the explicit description. Descrip-
tion logics are the basis of modern ontology languages such as OWL and are widely
used in subjects like life sciences and the semantic web.
The terminology of an application domain is expressed in a TBox, which consists of

several axioms. Each axiom is based on atomic concepts and roles, which can be used
to create more complex concept descriptions by applying constructors. The axioms
describe the relationship between concept descriptions and roles. For example

Myocarditis v inflammation u ∃has-location.heart

expresses that myocarditis is a kind of inflammation located in the heart. In this case,
myocarditis, inflammation and heart are atomic concepts and has-location is a role.
Any DL system implements a variety of reasoning services, inference algorithms that

can derive certain implicit knowledge from ontologies. Some of the commonly used rea-
soning services are concept subsumption and classification. Subsumption tests whether
a concept description is a sub-concept of another concept description. Classification
computes all subsumption relations between atomic concepts of the ontology.
Reasoning in many of the descriptions logics is untractable. One notable excep-

tion is the description logic EL, for which many of the reasoning problems, among
others subsumption and classification, can be solved in polynomial time. One of the
extensions of EL that still retains tractability is EL+. Despite being quite limited, the
expressivity of EL+ is enough for some of the large bio-medical ontologies like Snomed
and the Gene Ontology1.
Another popular bio-medical ontology is Galen2. This ontology can be represented

in the DL ELHIfR+ , an extension of EL for which subsumption w.r.t. a general TBox
is know to be ExpTime-complete[1].
In recent years reasoners for EL+ that satisfy the upper polynomial time bound

for classification were developed[2]. These algorithms work by exhaustively applying
completion rules to a so-called completion graph. The algorithms have also been
extended to ELHIfR+ [11]. While not working polynomial time anymore, it still works
on a completion graph structure.
These completion graphs have been employed for the computation of other non-

standard inferences such as the least common subsumer (lcs) and most specific concept
(msc) for EL [9]. The least common subsumer is a generalization inference that, given
a set of concept descriptions, computes a single concept description that subsumes
all these and is least w.r.t. subsumption. Intuitively, it computes what the concept
descriptions have in common. Since for EL-TBoxes the lcs does not need to exist, the
introduced algorithms only compute an approximation that is least for a given role-
depth bound. The generalizations can be effectively used for engineering knowledge
bases in a bottom-up approach[6] and other applications like similarity measures.

1http://www.geneontology.org/
2http://www.opengalen.org

1

http://www.geneontology.org/
http://www.opengalen.org

Name Syntax Semantics

top > ∆I

conjunction C uD CI ∩DI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

inverse role r− {(y, x) ∈ ∆I ×∆I | (x, y) ∈ rI}

general concept inclusion C v D CI ⊆ DI

role inclusion axiom r1 ◦ . . . ◦ rk v r rI1 ◦ . . . ◦ rIk ⊆ rI

Table 1: Constructors and axioms for EL and some extensions

This paper extends the algorithm for the role-depth bounded least common sub-
sumer to EL+ and ELI, a fragment of ELHIfR+ . It also presents an implementation
of the algorithm for EL+ and shows optimization and simplification procedures which
improve the usability of the implementation and make the result easier to understand.

2 Description Logics with Existential Restrictions
Concept descriptions are inductively defined from a set of concepts names NC and a
set of role names NR by applying the constructors from Table 1. In particular, EL-
concept descriptions only allow for conjunctions, existential restrictions, and the top
concept >. The only allowed axioms are general concept inclusions (GCIs).
EL+ additionally allows for role inclusion axioms. These role inclusions can express

role hierarchies (of the form s v r) and transitive roles (r ◦ r v r). In addition to EL,
ELI-concept descriptions may have inverse roles, but no role inclusion axioms.
The semantics of EL and its extensions is defined by interpretations I = (∆I , ·I)

which consist of a non-empty set ∆I , called the domain, and the interpretation function
·I that maps every concept name A ∈ NC to a subset AI ⊆ ∆I of the domain and
every role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . The interpretation
functions are extended to complex concept descriptions and axioms as described in
the last column of Table 1.
If an interpretation I satisfies a GCI C v D or a role inclusion axiom r1 ◦ . . .◦rk v r

we write I |= C v D or I |= r1 ◦ . . . ◦ rk v r. A TBox is a set of axioms. An
interpretation I is a model for the TBox T , if it satisfies all the axioms in T . We
say that a concept description C is subsumed by a concept description D w.r.t. T
(denoted C vT D) if for every model I of T I |= C v D holds, and similary a role r
is subsumed by a role s w.r.t. T (denoted r vT s) if for every model I of T I |= r v s
holds.
We denote NC,T and NR,T the sets of concept names (including >) and role names

that occur in a TBox T .

2

3 Role-depth Bounded Least Common Subsumer
The least common subsumer (lcs) for concept descriptions C1 to Cn is a concept
description that subsumes all of C1, . . . , Cn w.r.t. a given TBox, and is the least one
w.r.t. subsumption. Formally, this can be defined as follows:

Definition 1 (Least Common Subsumer). Let T be a TBox and C1, . . . , Cn be con-
cept descriptions. Then the concept description D is the least common subsumer of
C1, . . . , Cn w.r.t. T iff

1. Ci vT D for all i ∈ {1, . . . , n}, and

2. for all concept descriptions E with Ci vT E for all i ∈ {1, . . . , n}
we have D vT E.

Because TBoxes as defined here can contain cycles, the least common subsumer does
not always exist [3]. For example, consider the TBox T = {A v ∃r.AuC,B v ∃r.B u
C}. The least common subsumer of A and B will have the form Cu∃r.(Cu∃r.(Cu . . .
and can not be expressed as a finite concept description.
To avoid infinite unraveling of cycles, the notion of role-depth bounds has been

introduced. For the role-depth bounded least common subsumers, we will just look for
the best least common subsumer or most specific up too a given bound. The role-depth
rd(C) of a concept description C is recursively defined as follows:

− 0, if C is the top concept > or a concept name

− max(rd(D), rd(E)), if C is a conjunction of the form D u E

− 1 + rd(D), if C is an existential restriction of the form ∃r.D.

Using this, we can define the role-depth bounded version of the least common sub-
sumer.

Definition 2 (Role-depth bounded least common subsumer). Let T be a TBox,
C1, . . . , Cn concept descriptions and k ∈ N. Then a concept description D is the
role-depth bounded least common subsumer of C1, . . . , Cn w.r.t. T and the role-depth
k (written k−lcs(C1, . . . , Cn)) iff

1. rd(D) ≤ k

2. Ci vT D for all i ∈ {1, . . . , n}

3. for all concept descriptions E with rd(E) ≤ k and Ci vT E ∀i ∈ {1, . . . , n},
we have D vT E.

3

4 Completion-based Subsumption
The algorithms to compute the role-depth bounded lcs we present rely on completion
sets that explicitly store subsumption relations between all concept names. This chap-
ter introduces the completion-based subsumption algorithms for ELI and EL+, which
compute these completion sets.
The completion algorithms work on a graph (V,E, S), where V is the set of nodes,

E is the set of role labeled edges (E ⊆ V ×NR,T × V) and S is a node-labeling which
corresponds to the set of subsuming concepts for each node (S(u) ⊆ NC,T for each
u ∈ V). The algorithms work in three steps: First, the TBox is normalized and an
initial graph (V,E, S) is constructed. In the second step, this graph is completed using
the axioms of the normalized TBox. After the completion, the subsumption relations
can be directly read off from the graph, thus giving a classification of the normalized
TBox. When we speak of a completion graph of a TBox T , we mean the graph (V,E, S)
from the completion algorithm for T after all completion rules have been exhaustively
applied.

4.1 Normalization
Definition 3 (Normal form). An EL+ (ELI) TBox T is in normal form, if all concept
inclusions in T have one of the following forms

A v B
A1 uA2 v B

A v ∃r.B
∃r.A v B

where A,A1, A2, B ∈ NC,T and r is role (or an inverse role for ELI). Additionally, for
EL+, all role inclusion axioms must have the form s v r or s ◦ t v r.

All TBoxes can be normalized by exhaustively applying the following normalization
rules.

NF1 C u D̂ v E −→ D̂ v A,C uA v E

NF2 ∃r.Ĉ v D −→ Ĉ v A,∃r.A v D

NF3 Ĉ v D̂ −→ Ĉ v A,A v D̂

NF4 B v ∃r.Ĉ −→ B v ∃r.A,A v Ĉ

NF5 B v C uD −→ B v C,B v D

where C,D,E, Ĉ, D̂ are concept descriptions over NC,T , NR,T such that Ĉ, D̂ 6∈
NC,T ; A is a new concept name.
For EL+, there is an additional rule to normalize role inclusion axioms, which in-

troduces a new role name u:

4

NF6 r1 ◦ r2 ◦ . . . ◦ rn v s −→ r1 ◦ r2 ◦ . . . ◦ rn−1 v u, u ◦ rn v s

The normalized TBox T ′ is a conservative extension of T as stated in [9].

4.2 Completion for EL+

The completion algorithm for EL+ was introduced by [5] and extended by [1]. Let T
be a normalized EL+-TBox. Then the set of nodes V for the graph (V,E, S) of T is
fixed with V = NC,T , E and S are initialized with E := ∅ and S(A) := {A,>} for all
A ∈ NC,T . The graph is completed by exhaustively applying the following completion
rules:

CR1 If A1 ∈ S(A), A1 @ B ∈ T and B 6∈ S(A),
then S(A) := S(A) ∪ {B}

CR2 If A1, A2 ∈ S(A), A1 uA2 v B ∈ T and B 6∈ S(A),
then S(A) := S(A) ∪ {B}

CR3 If A1 ∈ S(A), A1 v ∃r.B ∈ T and (A, r,B) 6∈ E,
then E := E ∪ {(A, r,B)}

CR4 If (A, r,B) ∈ E, B1 ∈ S(B), ∃r.B1 v C ∈ T and C 6∈ S(u),
then S(A) := S(A) ∪ {C}

CR5 If (A, r,B) ∈ E, r v s ∈ T and (A, s,B) 6∈ E,
then E := E ∪ {(A, s,B)}

CR6 If (A, r1, B), (B, r2, C) ∈ E, r1 ◦ r2 v s ∈ T and (A, s, C) 6∈ E,
then E := E ∪ {(A, s, C)}

This completion algorithm is sound and complete as shown in [4]. Specifically, we
have the following two lemmas.

Lemma 1 (Soundness of completion). Given a normalized EL+-TBox T and its com-
pletion graph (V,E, S), we have for each A,B ∈ V and r ∈ E:

1. If B ∈ S(A), then A vT B; and

2. if (A, r,B) ∈ E, then A vT ∃r.B.

Lemma 2 (Completeness of completion). Given a normalized EL+-TBox T and its
completion graph (V,E, S), we have for each A,B ∈ V and r ∈ E:

1. If A vT B for a concept name B, then B ∈ S(A); and

2. if A vT ∃r.B, then (A, r,B) ∈ E.

5

4.3 Completion for ELI
The completion algorithm for ELI was introduced in [11]. The basic idea is that the
node set V can not be fixed as in the case of EL+. This can be seen for the example
TBox T = {∃r−.A v C,A v ∃r.B}. In this TBox, A has an r-successor subsumed by
B and each r-predecessor A implies C. However, that does not mean that C is also
a subsumer of B – only those B, that are r-successors of A. Therefore, it would be
wrong to add C to the completion set S(B). To solve this problem, we need to have
a varying node set V , add a new node u to V for u = B u ∃r−.A and then add C to
the completion set S(u).
Formally, the node set V is defined as V ⊆ NC,T × 2{∃r.X|r is a role,X∈NC,T }. A node

A for A ∈ NC,T from the node set for EL+ would then correspond to the node (A, ∅)
in the node set for ELI. We will formalize the meaning of nodes in the node set V by
defining the concept descriptions that these nodes correspond to:

Definition 4 (Concept descriptions for nodes). Let T be a normalized TBox and
(V,E, S) its completion graph. Then we define for each node u = (A, φ) ∈ V

vconcept(u) = A u
l

∃r.X∈φ

∃r.X

The graph (V,E, S) for the completion algorithm for ELI starts with V = {(A, ∅) |
A ∈ NC,T }, E = ∅ and S((A, ∅)) = {A,>} for all A ∈ NC,T . The completions rules
for ELI are the following:

CI1 If A1 ∈ S(v) and A1 v B ∈ T and B 6∈ S(v),
then S(v) := S(v) ∪ {B}

CI2 If A1, A2 ∈ S(v) and A1 uA2 v B ∈ T and B 6∈ S(v),
then S(v) := S(v) ∪ {B}

CI3 If A1 ∈ S(u), v = (B, ∅) and A1 v ∃r.B ∈ T and (u, r, v) 6∈ E,
then E := E ∪ {(u, r, v)}

CI4 If (u, r, v) ∈ E, B1 ∈ S(v) and ∃r.B1 v C ∈ T and C 6∈ S(u),
then S(u) := S(u) ∪ {C}

CI5 If (u, r, v) ∈ E, v = (B,ψ), A1 ∈ S(u), ∃r−.A1 v B1 ∈ T and B1 6∈ S(v), then
v′ := (B,ψ ∪ {∃r−.A1})
if v′ 6∈ V then V := V ∪ {v′}, E := E ∪ {(u, r, v′}), S(v′) := S(v) ∪ {B1}
else E := E ∪ {(u, r, v′}), S(v′) := S(v′) ∪ {B1}

Then we can prove that the completion algorithm for ELI, which exhaustively
applies the completion rules to the graph, is sound and complete.

6

4.3.1 Soundness

Lemma 3 (Soundness of completion). Given the normalized TBox T and its comple-
tion graph (V,E, S), we have for each u, v ∈ V , r ∈ E and concept name C:

1. If C ∈ S(u), then vconcept(u) vT C; and

2. if (u, r, v) ∈ E, then vconcept(u) vT ∃r. vconcept(v)

Proof. Let (V0, E0, S0), . . . , (Vn, En, Sn) be a sequence of graphs, where (Vi, Ei, Si) is
the graph produced by the completion algorithm by the ith rule applications. The
lemma is proven by induction on the number i of these rule applications.
For i = 0, we know V0 = {(A, ∅) | A ∈ NC,T }, S0(u) = {>, A} for each u = (A, ∅) ∈

V0, and E0 = ∅. Therefore, for (1), C ∈ Sn((A, ∅)) implies C = > or C = A, and thus
vconcept((A, ∅)) vT C. Because of E0 = ∅, (2) holds.
For i > 0, we need to check how the completion graph (Vi, Ei, Si) changed compared

to (Vi−1, Ei−1, Si−1) and prove that any additions still satisfy the claims. The additions
depend on the completion rule which was applied in the ith step:

CI1 Suppose that after applying this rule, Si(u) = Si−1(u) ∪ {B}. This means that
there exist A1 ∈ Si−1(u) and A1 v B ∈ T . From the induction hypothesis we
know that vconcept(u) vT A1, and thus also vconcept(u) vT B holds. Therefore
(1) is still satisfied and, because CI1 does not change E, (2) is satisfied as well.

CI2 Suppose that after applying this rule, Si(u) = Si−1(u) ∪ {B}. This means that
there exist A1, A2 ∈ Si−1(u) and A1 uA2 v B ∈ T . From the induction hypoth-
esis we know that vconcept(u) vT A1 and vconcept(u) vT A2, and thus also
vconcept(u) vT B holds. Therefore (1) is still satisfied and, because CI2 does
not change E, (2) is satisfied as well.

CI3 Suppose that after applying this rule, Ei = Ei−1 ∪ {(u, r, v)}. This means that
there exist A1 ∈ Si−1(u) and A1 v ∃r.B ∈ T . From the induction hypothesis we
know that vconcept(u) vT A1, thus vconcept(u) vT ∃r.B. Because v = (B, ∅)
for some concept name B, (2) is satisfied and, because CI3 does not S(u) for any
u ∈ Vi, (1) is satisfied as well.

CI4 Suppose that after applying this rule, Si(u) = Si−1(u) ∪ {C}. This means that
there exist (u, r, v) ∈ Ei−1, B1 ∈ Si−1(v), and ∃r.B1 v C ∈ T . From the induc-
tion hypothesis, we know vconcept(u) vT ∃r. vconcept(v) and vconcept(v) vT
B1, thus vconcept(u) vT ∃r.B1. Together with ∃r.B1 v C ∈ T , this yields
vconcept(u) vT C. Therefore (1) is still satisfied and, because CI4 does not
change E, (2) is satisfied as well.

CI5 Suppose that after applying this rule, Ei = Ei−1 ∪ {(u, r, v′)}. This means that
there exist A1 ∈ Si−1(u), (u, r, v) ∈ Ei−1 with v = (B,ψ) and v′ = (B,ψ ∪
{∃r−.A1}), and ∃r−.A1 v B1 ∈ T .

7

1. This rule will add v′ to V if it is not already an element. In this case
Si(v′) = Si−1(v)∪{B1}. Because v′ = (B,ψ ∪{∃r−.A1}), vconcept(v′) vT
vconcept(v). Together with the induction hypothesis, that for each C ∈
Si−1(v) we have vconcept(v) vT C, we also have vconcept(v′) vT C. Re-
gardless of whether v′ is added to V , the addition of B1 to Si(v′) can be jus-
tified as follows: Because v′ = (B,ψ∪{∃r−.A1}), we have vconcept(v′) vT
∃r−.A1. Together with ∃r−.A1 v B1 ∈ T this yields vconcept(v′) vT B1.
Therefore (1) holds after applying CI5.

2. The addition of (u, r, v′) to Ei is justified as follows. Given an model I of
T and an element x ∈ vconcept(u)I , the induction hypothesis for (u, r, v) ∈
Ei−1 yields that vconcept(u) vT ∃r. vconcept(v) and therefore there must
be y ∈ vconcept(v)I such that (x, y) ∈ rI . This means we have (y, x) ∈
r−
I . Because of A1 ∈ Si−1(u) and hence vconcept(u) vT A1, we have

x ∈ AI1 , and therefore y ∈ (∃r−.A1)I . Thus y ∈ (vconcept(v)u∃r−.A1)I =
vconcept(v′)I , vconcept(u) vT ∃r. vconcept(v′) holds and (2) is satisfied.

4.3.2 Completeness

Simply put, we will prove the completeness by constructing a model for the TBox
T from the completion graph that shows that all concept names that are not in the
completion set S(u) of a node u are not subsumers of vconcept(u) and similary, when
there is no r-edge between nodes u and v′ with vconcept(v′) vT vconcept(v), the
subsumption vconcept(u) vT ∃r. vconcept(v) does not hold.
However, there is a problem with edges that were splitted by completion rule CI5.

For example, the TBox T = {A v ∃r.B, ∃r−.A v C} yields the following description
graph:

(A, ∅){>,A}

(B, ∅){>,B} (B, ∃r−.A){>,B,C}

r r

In this graph, the node (B, ∅) would have an r-predecessor with subsumer A, but
the subsumer set {>, B} of (B, ∅) does not include C – thus the direct interpretation
constructed from this completion graph would not be a model of T .
Therefore we restrict the proof for completeness of the completion algorithm for
ELI to nodes in the completion graph that are reachable by edges that were not split
by CI5. For this, we define a set Ebad of bad edges as follows. Given a description
graph (V,E, S), an edge (u, r, v) ∈ E belongs to the bad edge set Ebad iff there is an
∃r−.A v B ∈ T with A ∈ S(u) and B 6∈ S(v). The set Vgood is the set of all nodes
u = (A, φ) ∈ V such that φ = ∅ or that is reachable by edges from E \ Ebad from a
node (B, ∅).

8

Claim 1. Given the description graph (V,E, S) and the bad edge set Ebad, for each
(u, r, v) ∈ Ebad with v = (A, φ), there is an edge (u, r, v′) ∈ E \ Ebad with v′ = (A,ψ)
and φ ⊂ ψ.

Proof. This claim is proved as follows. Let (u, r, v) be a bad edge with v = (A, φ).
This means that there is ∃r−.A1 v B1 ∈ T with A1 ∈ S(u) and B1 6∈ S(v). Then we
know that ∃r−.A1 6∈ φ, otherwise completion rule CI5 would have added B1 to S(v) –
a contradiction to our assumption that B1 6∈ S(v).
Since ∃r−.A1 6∈ φ and the completion rules were applied exhaustively, there must

be a different node v′′ = (A, φ ∪ {∃r−.A1}) ∈ V with (u, r, v′′) ∈ E and B1 ∈ S(v′′).
If (u, r, v′′) ∈ E \Ebad the claim is proven. Otherwise there are still ∃r−.A′ v B′ ∈ T
with A′ ∈ S(u) and B′ 6∈ S(v′′). Each rule application of CI5 for such a GCI yields a
new node v′ = (A,ψ) ∈ V with (u, r, v′) ∈ E, B′ ∈ S(v′) and φ ⊂ φ ∪ {∃r−.A1} ⊆ ψ
until there are no more GCIs ∃r−.A′ v B′ ∈ T with A′ ∈ S(u) and B′ 6∈ S(v′). Then
by the definition of Ebad we have (u, r, v′) ∈ E \ Ebad which proves the claim.

Lemma 4 (Completeness of completion). Let u ∈ Vgood. Then

1. if vconcept(u) vT B for a concept name B, then B ∈ S(u); and

2. if vconcept(u) vT ∃r. vconcept(v) for v = (B,ψ) ∈ Vgood, then there is an v′

with vconcept(v′) vT vconcept(v) and (u, r, v′) ∈ E\Ebad, or for each v′′ ∈ Vgood
with (v′′, r−, u) ∈ E \ Ebad we have vconcept(v′′) vT vconcept(v).

Proof. We will show this result by contradiction. We assume that 1. B 6∈ S(u) and
2. there is no (u, r, v′) ∈ E or (v′, r−, u) ∈ E. We will then construct an interpreta-
tion I that is a model of T and that shows vconcept(u) 6vT B and vconcept(u) 6vT
∃r. vconcept(v).
The interpretation I is constructed as follows:

∆I = Vgood

AI = {u ∈ Vgood | A ∈ S(u)}
rI = {(u, v) ∈ Vgood × Vgood | (u, r, v) ∈ E \ Ebad}

∪ {(v, u) ∈ Vgood × Vgood | (u, r−, v) ∈ E \ Ebad}

We show that I is a model of T . For this, we show that I satisfies all general
concept inclusions in T by making a case distinction on their form.

A v B: Let u ∈ AI for u ∈ Vgood. By definition of I, we have A ∈ S(u). Due to rule
CI1, this implies B ∈ S(u), thus u ∈ BI .

A1 uA2 v B: Let u ∈ (A1 u A2)I = AI1 ∩ AI2 for u ∈ Vgood. By definition of I, we
have A1, A2 ∈ S(u). Due to rule CI2, this implies B ∈ S(u), thus u ∈ BI .

A v ∃r.B: Let u ∈ AI for u ∈ Vgood. By definition of I, we have A ∈ S(u). Due to
rule CI3, there exists (u, r, v) ∈ E with v = (B, ∅). There are two cases:

9

− (u, r, v) ∈ E \ Ebad. From the definition of I, we have (u, v) ∈ rI and,
because B ∈ S((B, ∅)), we have v ∈ BI . Together, this yields u ∈ (∃r.B)I .

− (u, r, v) ∈ Ebad. Claim 1 says there is v′ = (B,ψ) such that (u, r, v′) ∈
E \ Ebad and thus also v′ ∈ Vgood. Therefore (u, v′) ∈ rI . Because B ∈
S((B,ψ)) for all ψ, we have v′ ∈ BI . Together, this yields u ∈ (∃r.B)I .

∃r.A v B: Let u ∈ (∃r.A)I for u ∈ Vgood, i.e., there is v ∈ AI such that (u, v) ∈ rI .
According to the definition of rI , there are two cases:
− (u, r, v) ∈ E \ Ebad. Due to rule CI4 and A ∈ S(v), we have B ∈ S(u),

which means that u ∈ BI .
− (v, r−, u) ∈ E \ Ebad. Then, with s = r−, we have: (v, s, u) ∈ E \ Ebad,
∃s−.A v B ∈ T and A ∈ S(v). Since (v, s, u) 6∈ Ebad, rule CI5 yields
B ∈ S(u), hence u ∈ BI .

Now we only need to show that this model yields 1. vconcept(u) 6vT B if B 6∈ S(u)
and 2. vconcept(u) 6vT ∃r. vconcept(v) if there is no (u, r, v′) ∈ E \ Ebad with
vconcept(v′) vT vconcept(v) and there is (v′′, r−, u) ∈ E with vconcept(v′′) 6vT
vconcept(v).

1. First we show that u = (A, φ) ∈ vconcept(u)I for each u ∈ Vgood. We have
A ∈ S((A, φ)) for all (A, φ), i.e., u ∈ AI . Additionally, if φ 6= ∅, we know that u
has an incident edge in E \Ebad because u ∈ Vgood. Thus, there must be a node
v, such that for each ∃r.X ∈ φ it holds that X ∈ S(v) and (v, r−, u) ∈ E \ Ebad
because these ∃r.X ∈ φ can only be added by rule CI5 which also adds this edge.
Therefore u ∈ (∃r.X)I for each ∃r.X ∈ φ. This yields u ∈ vconcept(u)I .
Since B 6∈ S(u), we have, by definition of I, u 6∈ BI . Therefore u shows that
vconcept(u)I 6⊆ BI and thus vconcept(u) 6vT B.

2. Since vconcept(u) = Au
d
∃r.X∈φ ∃r.X, the subsumption vconcept(u) vT ∃r. vconcept(v)

must be due to one of two reasons:
a) There is an ∃r.X ∈ φ with X vT vconcept(v). Then, due to how rule CI5

works, for all v′ ∈ Vgood with (v′, r−, u) ∈ E\Ebad we would haveX ∈ S(v′),
i.e. v′ ∈ XI and hence v′ ∈ vconcept(v)I . This is a contradiction to our
assumption that for some v′ ∈ Vgood with (v′, r−, u) ∈ E \ Ebad we have
vconcept(v′) 6vT vconcept(v).

b) vconcept(u) vT ∃r. vconcept(v) follows from rule Y v ∃r.Z and pos-
sibly some rules ∃r−.Y ′ v Z ′ for vconcept(u) vT Y u

d
Y ′ and Z ud

r−.Y ′ vT vconcept(v). We already showed that if vconcept(u) vT Y
resp. vconcept(u) vT Y ′, then Y ∈ S(u) resp. Y ′ ∈ S(u). Then rule CI3
for Y v ∃r.Z and rules CI5 for ∃r−.Y ′ v Z ′ will yield a node v′ = (Z,ψ)
with (u, r, v′) ∈ E, Z ∈ S(v′) and ∃r−Y ′ ∈ ψ. Thus v′ ∈ vconcept(v)I
which, together with claim 1, is a contradiction to our assumption that
there is no v′ with vconcept(v′) vT vconcept(v) and (u, r, v′) ∈ E \ Ebad.

Therefore, we have vconcept(u) 6vT ∃r. vconcept(v).

10

The soundness and completeness results for the completion algorithms are impor-
tant for the correctness of the algorithms for the role-depth bounded least common
subsumer, which will be presented in the next section.

5 Algorithms for the Role-depth Bounded Lcs
We will now extend the algorithm to compute the role-depth bounded lcs in EL as
given in [9] to EL+ and ELI. The basic idea of this algorithm is the following: the
least common subsumer for two EL concept descriptions without an underlying TBox
can be computed by calculating the product of their corresponding description trees
[7]. With respect to a TBox T , we can construct the least common subsumer of two
concept descriptions by extending the cross-product construction up to the role-depth
bound to completion sets. These completion sets will then be combined and intersected
in an appropriate way.
Because the completion sets are constructed from the normalized TBox, the result-

ing concept descriptions may contain normalization names that were not part of the
original TBox. This can be expressed by the signature of the resulting concept de-
scription. For a concept C, the signature of C (denoted sig(C)) is the set of concept
names and role names that appear in C. Similarly, the signature of a TBox T (de-
noted sig(T)) is the set of concept names and role names that appear in T . Using
this, the following two lemmas prove that the normalization names, that occur only
in the signature of the normalized TBox, may be simply removed from the concept
description.

Lemma 5 (Denormalization 1). Let T be an EL+- or ELI-TBox and T ′ be the TBox
obtained from T by applying the normalization rules, C, D be concept descriptions
with sig(C) ⊆ sig(T), sig(D) ⊆ sig(T ′) and let D′ be the concept description obtained
from D by removing all normalization names A ∈ sig(T ′) \ sig(T) and all existential
restrictions ∃r.E for normalization names r ∈ sig(T ′)\sig(T). Then C vT ′ D implies
C vT D′.

Proof. Since D′ is obtained from D by removing some concept names and existential
restrictions, we have D vT ′ D′. Together with C vT ′ D, it follows that C vT ′ D′.
Because T and T ′ are sig(T)-inseparable (i.e., for all EL-concept descriptions C, D
with sig(C) ∪ sig(D) ⊆ sig(T), we have C vT D iff C vT ′ D, for a proof see [8]), we
finally get C vT D′.

The first denormalization result shows that if we denormalize the least common
subsumer computed in the normalized TBox, it is still a common subsumer in the
original TBox. To show that the denormalization also retains minimality, we need the
additional restriction that the least common subsumer is fully expanded.

Definition 5. Let T be a TBox and C be a concept description with sig(C) ⊆ sig(T).
Then C is fully expanded up to the role-depth k w.r.t. T , if

11

− for all concept names A ∈ NC,T with C vT A we have that A is a conjunct of
C and

− if k > 0 then for all concept descriptions F with C vT ∃r.F we have a concept
description F ′ with F ′ vT F such that ∃r.F ′ is a conjunct of C and F ′ is fully
expanded up to role-depth k − 1.

Lemma 6 (Denormalization 2). Let T be an EL+- or ELI-TBox and T ′ be the TBox
obtained from T by applying the normalization rules, C, D be concept descriptions with
sig(C) ⊆ T ′, sig(D) ⊆ T and let C ′ be the concept description obtained from C by
removing all normalization names A ∈ sig(T ′) \ sig(T) and all existential restrictions
∃r.E for normalization names r ∈ sig(T ′) \ sig(T). Let further k = rd(D) and let C
be fully expanded up to the role-depth k w.r.t. T ′. Then C vT ′ D implies C ′ vT D.

Proof. Since C is fully expanded up to the role-depth of D, and C v′T D, any part ofD
must also be in C. Since sig(D) ⊆ T , i.e. D does not contain any auxiliary concept or
role names, we can remove any of those from C without affecting subsumption. Hence
also C ′ vT ′ D, and because T and T ′ are sig(T)-inseparable, we have C ′ vT D.

5.1 Role-depth Bounded Lcs for EL+

Algorithm 1 computes the role-depth bounded least common subsumer for two concept
descriptions C and D.
This algorithm indeed yields the role-depth bounded least common subsumer, as

proven in [8]. Although this proof is for EL and not EL+ it is directly applicable here,
as the role inclusion axioms only matter for the construction of the completion graph,
not for the construction of the lcs. This can be seen since for example for a completion
graph (V,E, S), rule CR5 constructs for each edge (A, r,B) ∈ E and each super-role
r v s a new edge (A, s,B) ∈ E, therefore all role inclusion axioms are explicitely
included in the completion graph and do not need special treatment during the k-lcs
construction.

5.2 Role-depth Bounded Lcs for ELI
ELI allows for inverse roles. When traversing the completion graph, we may also
traverse an edge we just came from backwards (using the inverse role of the role
that the edge is labeled with). This is important, as you can see in the example for
T = {A v ∃r.>, B v ∃r.C,C v ∃r−.A}. This will result in the following completion
graph:

A

>

B

C

r r
r−

Traversing the completion graph to compute the lcs of A and B (without going
backwards), we would get the result > u ∃r.> and then get stuck in the > node.

12

Algorithm 1 Computation of a role-depth bounded EL+-lcs.
Procedure k-lcs (C,D, T , k)
Input: C,D: EL+ concept descriptions; T : EL+ TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded EL+-lcs of C,D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: (V,E, S) := apply-completion-rules(T ′)
3: L := k-lcs-r(A,B, (V,E, S), k)
4: return remove-normalization-names(L)

Procedure k-lcs-r(A,B, (V,E, S), k)
Input: A,B: concept names; (V,E, S): completion graph; k: natural number
Output: k-lcs(A,B): role-depth bounded EL+-lcs of A,B w.r.t. T and k

1: common-names := S(A) ∩ S(B)
2: if k = 0 then
3: return

l

P∈common-names
P

4: else
5: return

l

P∈common-names
P u

l

r∈NR

(l

(A,r,C)∈E,(B,r,D)∈E

∃r.k-lcs-r(C,D, (V,E, S), k − 1)
)

6: end if

However, the lcs of A and B is ∃r.∃r−.A, therefore we must allow the algorithm to go
backwards from > to A using the edge (A, r,>) as (>, r−, A) – this yields the correct
lcs. However, we can not go backwards along arbitrary edges; to go from A to C using
the edge (C, r−, A) as (A, r, C) would clearly be wrong, as we don’t have A vT ∃r.C.
The algorithm may only go back edges it already traversed.
Therefore, the recursive algorithm needs to know not only the current nodes, but

also the whole path from the start to the current node. This path is given in the
form [u0, r1, u1, r2, . . . , rn, un] where u0 is the starting node, un the current node, and
(ui−1, ri, ui) ∈ E are edges of the completion graph that have been traversed. For
each node u ∈ V and each path [u0, r1, u1, r2, . . . , rn, un], we will define the concept
description they correspond to.

Definition 6 (Concept descriptions for paths). Let T be a normalized TBox and
(V,E, S) its completion graph. Then we define for each path l = [u0, r1, u1, r2, . . . , rn, un]

lconcept(l) = vconcept(un)u∃r−n .(vconcept(un−1)u∃r−n−1.(. . .u∃r
−
1 . vconcept(u0) . . .))

Algorithm 2 computes the role-depth bounded least common subsumer for two con-
cept descriptions C and D. Basically, this algorithm is very similar to Algorithm 1 for
EL+, with three main differences:

− Algorithm 2 uses the whole path to the current nodes instead of the node itself.

13

− Whereas in algorithm 1 the nodes we visit from the current nodes are computed
implicitly, algorithm 2 stores any such successor node of the nodes A and B (or
better: the path to those) explicitly in the sets S1 and S2.

− Algorithm 2 also traverses all edges (A, r,B) from the current node A, but ad-
ditionally traverses the last edge backwards, if it is the inverse of r.

Now we will prove that Algorithm 2 is correct for ELI.

Algorithm 2 Computation of a role-depth bounded ELI-lcs.
Procedure k-lcs(C,D, T , k)
Input: C,D: ELI concept descriptions; T : ELI TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded ELI-lcs of C and D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: (V,E, S) := apply-completion-rules(T ′)
3: L := k-lcs-r([(A, ∅)], [(B, ∅)], (V,E, S), k)
4: return remove-normalization-names(L)

Procedure k-lcs-r(p1, p2, (V,E, S), k)
Input: p1 = [(A0, ∅), r1, . . . , rn, (An, φn)] and p2 = [(B0, ∅), s1, . . . , sn, (Bm, ψm)]:
two paths in the completion graph; (V,E, S): completion graph; k: natural number
Output: role-depth bounded ELI-lcs of lconcept(p1) and lconcept(p2) w.r.t. T and k

1: lcs :=
l

C∈S((An,φn))∩S((Bm,ψm))

C

2: if k > 0 then
3: for all r ∈ NR do
4: S1 := {[(A0, ∅), r1, . . . , rn, (An, φn), r, (A, φ)] | ((An, φn), r, (A, φ)) ∈ E}
5: if n > 0 ∧ r = r−n then
6: S1 := S1 ∪ {[(A0, ∅), r1, (A1, φ1), r2, . . . , (An−2, φn−2), rn−1, (An−1, φn−1)]}
7: end if
8: S2 := {[(B0, ∅), s1, . . . , sn, (Bm, ψm), r, (B,ψ)] | ((Bm, ψm), r, (B,ψ)) ∈ E}
9: if n > 0 ∧ r = s−m then

10: S2 := S2∪{[(B0, ∅), s1, (B1, ψ1), s2, . . . , (Bm−2, ψm−2), sm−1, (Bm−1, ψm−1)]}
11: end if
12: lcs := lcs u

l

l1∈S1
l2∈S2

∃r. k-lcs-r(l1, l2, (V,E, S), k − 1)

13: end for
14: end if
15: return lcs

5.2.1 Common Subsumer

First we prove that k-lcs-r for ELI indeed yields a common subsumer.

14

Lemma 7. Let L = k-lcs-r(p1, p2, (V,E, S), k) for the paths p1 = [u0, r1, u1, r2, . . . , rn, un]
and p2 = [v0, s1, v1, s2, . . . , sm, vm]. Then lconcept(p1) vT L and lconcept(p2) vT L.

Proof. We prove this by induction on the role-depth bound k.

Case k = 0: L is a conjunction of concept names
d
C∈S((An,φn))∩S((Bm,ψm)) C. By

Lemma 3 we know vconcept((An, φn)) vT C for each C ∈ S((An, φn)) and
hence lconcept(p1) vT vconcept((An, φn)) vT

d
C∈S((An,φn)) C vT L. Simi-

larly, lconcept(p2) vT vconcept((Bm, ψm)) vT
d
C∈S((Bm,ψm)) C vT L.

Case k > 0: Assume that the result holds for the role-depth bound k− 1. We have to
show that it is also correct for k. L is a conjunction of

d
C∈S((An,φn))∩S((Bm,ψm)) C

and existential restrictions. For the concept names
d
C∈S((An,φn))∩S((Bm,ψm)) C

the same arguments as in the base case can be applied, yielding lconcept(p1) vTd
C∈S((An,φn))∩S((Bm,ψm)) C. It remains to show that the conjunction of existen-

tial restrictions is a subsumer of lconcept(p1) and lconcept(p2).
All existential restrictions are of the form ∃r. k-lcs-r(l1, l2, (V,E, S), k−1) where l1
is either [u0, r1, u1, r2, . . . , rn, un, r, u] for (un, r, u) ∈ E or [u0, r1, u1, r2, . . . , rn−1, un−1]
for r = r−n . In the first case Lemma 3 for (un, r, u) ∈ E yields vconcept(un) vT
∃r. vconcept(u) and hence lconcept(p1) vT vconcept(un) vT ∃r. vconcept(u)
and thus lconcept(p1) vT ∃r.(vconcept(u)u∃r−. lconcept(p1)) = ∃r. lconcept(l1).
In the second case lconcept(p1) = vconcept(un)u∃r−n . lconcept(l1) vT ∃r. lconcept(l1).
Therefore in both cases we have lconcept(p1) vT ∃r. lconcept(l1). The same ar-
gument holds for lconcept(p2) vT ∃r. lconcept(l2). Because of the induction hy-
pothesis we know lconcept(l1) vT k-lcs-r(l1, l2, (V,E, S), k−1) and lconcept(l2) vT
k-lcs-r(l1, l2, (V,E, S), k − 1), therefore lconcept(p1) vT ∃r. lconcept(l1) vT
∃r. k-lcs-r(l1, l2, (V,E, S), k − 1) and lconcept(p2) vT ∃r. lconcept(l2) vT
∃r. k-lcs-r(l1, l2, (V,E, S), k− 1) which completes the proof that lconcept(p1) vT
L and lconcept(p2) vT L.

Corollary 1. Let T be a ELI-TBox, C, D ELI-concept descriptions w.r.t. T , and
L = k-lcs(C,D, T , k). Then C vT L and D vT L.

Proof. Let T ′ be the normalized TBox of T ∪ {A ≡ C,B ≡ D}, (V,E, S) be the
completion graph of T ′, and L′ = k-lcs-r([(A, ∅)], [(B, ∅)], (V,E, S), k). Then C ≡T ′

A = lconcept([(A, ∅)]) vT ′ L′ and D ≡T ′ B = lconcept([(B, ∅)]) vT ′ L′ by Lemma 7.
Together with Lemma 5, this yields that C vT remove-normalization-names(L′) = L
and D vT remove-normalization-names(L′) = L.

5.2.2 Minimality

Now that we know that k-lcs-r yields a common subsumer, we will show that this is
the least one w.r.t. vT .

15

Lemma 8. Let p1 and p2 be two paths in the completion graph (V,E, S) with p1 =
[u0, r1, . . . , rn, un] and p2 = [v0, s1, . . . , sm, vm], such that (ui−1, ri, ui) ∈ E \ Ebad
for all 1 ≤ i ≤ n and (vj−1, sj , vj) ∈ E \ Ebad for all 1 ≤ j ≤ m, u0 = (A, ∅) and
v0 = (B, ∅). Let k be a natural number and F a concept description with rd(F) ≤ k. If
lconcept(p1) vT F and lconcept(p2) vT F then L = k-lcs-r(p1, p2, (V,E, S), k) vT F .

Proof. We prove the claim by induction on the role-depth bound k.

Case k = 0: F must be a conjunction F = A1 u . . . u An. Since lconcept(p1) vT F
and lconcept(p2) vT F , we have lconcept(p1) vT Ai and lconcept(p2) vT Ai for
all 1 ≤ i ≤ n. Since p1 and p2 only traverse edges over E \Ebad, all possible rule
applications of CI5 during that path were applied, and we have vconcept(un) vT
Ai and vconcept(vm) vT Ai. Then Lemma 4 yields Ai ∈ S(un) and Ai ∈ S(vm)
for all 1 ≤ i ≤ n, i.e., Ai ∈

d
C∈S((An,φn))∩S((Bm,ψm)) C. Thus, L vT F .

Case k > 0: F is a conjunction of concept names and existential restrictions. The
concept names in F must appear in L by the same arguments as in the base
case.
Let ∃r.F ′ be a top-level conjunct of F . Since lconcept(p1) vT F and lconcept(p2) vT
F , we have lconcept(p1) vT ∃r.F ′ and lconcept(p2) vT ∃r.F ′, and, because p1
and p2 only traverse edges over E \ Ebad, there must be nodes u and v with
vconcept(u) vT F ′, vconcept(v) vT F ′, such that vconcept(un) vT ∃r. vconcept(u)
and vconcept(vm) vT ∃r. vconcept(v). Lemma 4 yields that there are u′ and v′ in
Vgood with (un, r, u′) ∈ E \ Ebad or u′ = un−1, r = r−n and similarly (vm, r, v′) ∈
E \ Ebad or v′ = vm−1, r = s−m, such that vconcept(u′) vT vconcept(u) and
vconcept(v′) vT vconcept(v). Therefore, there are new paths l1 ∈ S1 and l2 ∈
S2, such that lconcept(l1) vT F ′ and lconcept(l2) vT F ′. Since (un, r, u′), (vm, r, v′) ∈
E \ Ebad if we add an edge, i.e. the paths are still good, the induction hypothe-
sis yields k-lcs-r(l1, l2, (V,E, S), k − 1) vT F ′, i.e. ∃r. k-lcs-r(l1, l2, (V,E, S), k −
1) vT ∃r.F ′, and thus L = k-lcs-r(p1, p2, (V,E, S), k) vT F .

Corollary 2. Let T be a ELI-TBox, C, D ELI-concept descriptions w.r.t. T , L =
k-lcs(C,D, T , k) and F be a ELI-concept description with rd(F) ≤ k. If C vT F and
D vT F , then L vT F .

Proof. Let T ′ be the normalized TBox of T ∪ {A ≡ C,B ≡ D}, and (V,E, S)
be the completion graph of T ′. Then lconcept([(A, ∅)]) = A ≡T ′ C vT ′ F and
lconcept([(B, ∅)]) = B ≡T ′ D vT ′ F by assumption. Then Lemma 8 yields L′ =
k-lcs-r([(A, ∅)], [(B, ∅)], (V,E, S), k) vT ′ F . Because L’ is fully extended up to role-
depth k, the application of Lemma 6 yields that L = remove-normalization-names(L′) vT
F .

16

6 Simplification
The algorithms for the least common subsumer yield highly redundant concept de-
scriptions. These descriptions can be simplified, which makes the results much easier
to understand. The general idea for the simplification is to interpret the concept de-
scription as a tree structure. Then we can simply remove subtrees which are subsumers
of any sibling subtrees – they do not contain more information. For a conjunction of
concept names, this means that we remove all these that subsume other concept names
and only keep the least ones (regarding vT).
Algorithm 3 computes the simplification of a concept description for EL+, Algorithm

4 determines if a concept description is a subsumer of the other one. Note that the
algorithm may only be applied after the normalization names were removed, otherwise
it might remove names from the original TBox that subsume normalization names,
which get removed later during denormalization – this is clearly wrong.

Algorithm 3 Simplification
Procedure simplify(C, (V,E, S), T)
Input: C: EL+ concept description; (V,E, S): completion graph; T : EL+ TBox
Output: simplify(C): simplified concept description

1: Let C ≡ A1 u . . . uAn u ∃r1.D1 u . . . u ∃rm.Dm with Ai ∈ NC for 1 ≤ i ≤ n.
2: R := {Ai | 1 ≤ i ≤ n} ∪ {∃rj .Dj | 1 ≤ j ≤ m}
3: for all X ∈ R do
4: for all Y ∈ R do
5: if X 6= Y ∧ subsumes(X,Y, (V,E, S), T) then
6: R := R \ {X}
7: break
8: end if
9: end for

10: end for
11: for all X ∈ R do
12: if X ≡ ∃rj .Dj then
13: R := (R \ {∃rj .Dj}) ∪ {∃rj .simplify(Dj , (V,E, S), T)}
14: end if
15: end for
16: return

d
X∈RX

For the simplification to be correct, we only have to proof that the subsumer-
procedure is sound – that is, whenever it determines that one concept subsumes another
one, this must be indeed true. However, it may also return false if the first concept
subsumes the other one (i.e., it does not have to be complete), in which case the sub-
sumer does not get removed. This might yield a more redundant simplification, but it
is still a correct role-depth bounded lcs.
To prove that the subsumer-procedure is sound, we use a simple case distinction,

as both concept descriptions C and D might be either concept names, conjunctions

17

Algorithm 4 Subsumes
Procedure subsumes(C,D, (V,E, S), T)
Input: C,D: EL+ concept descriptions; (V,E, S): completion graph; T : EL+ TBox
Output: whether C subsumes D regarding T

1: if C ∈ NC then
2: if C = > then
3: return true
4: else if D ∈ NC then
5: return C ∈ S(D)
6: else if D ≡ F1 u . . . u Fn then
7: for all 1 ≤ i ≤ n do
8: if subsumes(C,Fi, (V,E, S), T) then
9: return true

10: end if
11: end for
12: end if
13: return false
14: else if C ≡ F1 u . . . u Fn then
15: for all 1 ≤ i ≤ n do
16: if not subsumes(Fi, D, (V,E, S), T) then
17: return false
18: end if
19: end for
20: return true
21: else if C ≡ ∃r.F then
22: if D ∈ NC then
23: return (C, r, F) ∈ E
24: else if D ≡ F1 u . . . u Fn then
25: for all 1 ≤ i ≤ n do
26: if subsumes(C,Fi, (V,E, S), T) then
27: return true
28: end if
29: end for
30: else if D ≡ ∃s.G then
31: if s vT r and subsumes(F,G, (V,E, S), T) then
32: return true
33: else
34: for all t ∈ NR do
35: if s◦ t vT r, G ≡ . . .u∃t.H u . . . and subsumes(F,H, (V,E, S), T) then
36: return true
37: end if
38: end for
39: end if
40: return false
41: end if
42: end if

18

or existential restriction, and show that whenever the algorithm returns true, we have
indeed D vT C. For example, if C is a conjunction C = F1 u . . . Fn, the procedure
only returns true if for all 1 ≤ i ≤ n we have that D is a subsumer of Fi which is
equivalent to D vT C. If both C and D are existential restrictions C = ∃r.F and
D = ∃s.G, then the procedure returns true if s vT r and F is a subsumer of G, or if
there is a role t with s ◦ t vT r and G = . . . u ∃t.H u . . . where F is a subsumer of H.
In both cases we clearly have D vT C. All other cases are proven similarly.

7 Optimization
The k-lcs-r procedure constructs the fully expanded result description, most of which
is removed again by the simplification procedure. For large ontologies with deep role
hierarchies, the fully expanded result may grow quite large, slowing the algorithm
down. Therefore, the general idea for optimization is to not generate the fully expanded
description, but apply some of the simplifications already during the construction of
the result.
The simplest optimization applies if one of the input concepts of the k-lcs-r procedure

already subsumes the other one, in which case it must be the least common subsumer
of the both. Therefore in k-lcs-r(A,B, S, k), if A ∈ S(B) we can simply return A and
if B ∈ S(A) we can return B.
However, this optimization interacts with the denormalization and the role-depth

bound in non-obvious ways. For example, consider the TBox T = {A v ∃r.∃r.K,B v
∃r.∃r.K, ∃r.∃r.K v ∃s.(L uM)} which gets normalized to T ′ = {A v ∃r.X1, X1 v
∃r.K,B v ∃r.X2, X2 v ∃r.K, ∃r.K v X3,∃r.X3 v X4, X4 v ∃s.X5, X5 v L,X5 v
M}. Running k-lcs-r without this optimization for role-depth 1 on A and B would
yield X4u∃r.X3u∃s.(X5uLuM), which denormalizes to >u∃r.>u∃s.(LuM), while
the optimization would yieldX4u∃r.X3u∃s.X5, which denormalizes to >u∃r.>u∃s.>.
This is clearly not the least common subsumer anymore!
Therefore, the optimization can only be applied to concept names from the original

TBox, never to normalization names. Then the returned concept name will never be
removed during the denormalization step and the resulting concept description is still
a least common subsumer. This optimization and the next one are shown in Algorithm
5.
For another optimization consider the TBox Tn = {A v D u ∃r.C1, B v E u
∃r.C1} ∪ {C1 v Ci | i ∈ {2 . . . n}}. In this case, the least common subsumer of A
and B is just ∃r.C1. However, the algorithm would generate the complete product
set {Ci | i ∈ {1, . . . , n}} × {Ci | i ∈ {1, . . . , n}} and recursively call k−lcs−r for each
pair, just to eliminate all ∃r.Ci for i > 1 and all ∃r.> afterwards in the simplification
step. Even for this simple example, the algorithm would require time quadratic in
the size of the input TBox. Clearly, evaluating the Cis for i > 1 is not necessary,
as they all subsume C1. The same is true for role hierarchies, where for example
T ′n = {A v D u ∃r.C1, B v E u ∃r.C1} ∪ {r v ri | i ∈ {2 . . . n}} would lead to the
same unnecessary quadratic runtime.
The idea for the optimization is to explicitly create the sets SA and SB of all

19

Algorithm 5 Computation of a role-depth bounded EL+-lcs.
Procedure k-lcs-o(C,D, T , k)
Input: C,D: EL+ concept descriptions; T : EL+ TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded EL+-lcs of C,D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: (V,E, S) := apply-completion-rules(T ′)
3: L := k-lcs-r-o(A,B, (V,E, S), k)
4: if L ≡T ′ A then
5: return C
6: else if L ≡T ′ B then
7: return D
8: else
9: return remove-normalization-names(L)

10: end if

Procedure k-lcs-r-o(A,B, (V,E, S), k)
Input: A,B: concept names; (V,E, S): completion graph; k: natural number
Output: k-lcs(A,B): role-depth bounded EL+-lcs of A,B w.r.t. T and k

1: if A ∈ S(B) and A is not a normalization name then
2: return A
3: else if B ∈ S(A) and B is not a normalization name then
4: return B
5: end if
6: common-names := S(A) ∩ S(B)
7: SA := remove-redundant({(r, C) | (A, r, C) ∈ E})
8: SB := remove-redundant({(s,D) | (B, s,D) ∈ E})
9: if k = 0 then

10: return
l

P∈common-names
P

11: else
12: return

l

P∈common-names
P u

l

(r,C)∈SA
(s,D)∈SB

t∈NR minimal with rvT t∧svT t

∃t. k-lcs-r-o(C,D, (V,E, S), k − 1)

13: end if

Procedure remove-redundant(S)
Input: S: set of role-successors
Output: remove-redundant(S): simplified set

1: for all (r, C) ∈ S do
2: for all (s,D) ∈ S do
3: if (r, C) 6= (s,D) and r vT s and D ∈ S(C) then
4: S := S \ {(s,D)}
5: end if
6: end for
7: end for
8: return S

20

role-successors (A, r, C) ∈ E and (B, r, C) ∈ E for input concepts A and B and to
remove all role-successors which are subsumers of other role-successors in the same
set. Recursive calls to k-lcs-r-o can then be made with one successor from each set
SA and SB. However, we have to be careful with role-successors with different role-
names. For example, for a role-successor (r, C) ∈ SA and a role-successor (s,D) ∈ SB,
a recursive call has to be made for all minimal (w.r.t. vT) role names t with r vT t
and s vT t. The following lemma shows that this optimization is correct.

Lemma 9. The results of the k-lcs-r and k-lcs-r-o procedures are equivalent.

Proof. Let T be a normalized TBox, (V,E, S) be its completion graph, A and B be two
concepts names, and k be a natural number. Let further L = k-lcs-r(A,B, (V,E, S), k)
and Lo = k-lcs-r-o(A,B, (V,E, S), k). We have to show that L ≡T Lo. First notice
that when the first optimization is applicable, then A ∈ S(B) or B ∈ S(A) and hence
A resp. B is equivalent to the least common subsumer. Otherwise we will show that
L ≡T Lo by indunction on the role-depth bound k.
For k = 0 both procedures return the same concept description, i.e., L = Lo.
For k > 0, we will first show that for each role name r and all edges (A, r, C) ∈ E,

(B, r,D) ∈ E, we have Lo vT ∃r. k-lcs-r(C,D, (V,E, S), k − 1). If (A, r, C) ∈ E,
then there exists (s1, C

′) ∈ SA with s1 vT r and C ∈ S(C ′). Similarly, there exists
(s2, D

′) ∈ SB with s2 vT r and D ∈ S(D′). Then ∃t. k-lcs-r-o(C ′, D′, (V,E, S), k− 1)
is a conjunct of Lo for all minimal t ∈ NR,T with s1 vT t and s2 vT t. Since
s1 vT r and s2 vT r, there is at least one minimal t0 ∈ NR,T with t0 v r for which
∃t0. k-lcs-r-o(C ′, D′, (V,E, S), k − 1) is conjunct of Lo.
Together with k-lcs-r-o(C ′, D′, (V,E, S), k−1) ≡T k-lcs-r(C ′, D′, (V,E, S), k−1) by

the induction hypothesis and k-lcs-r(C ′, D′, (V,E, S), k−1) vT k-lcs-r(C,D, (V,E, S), k−
1) for C ′ vT C and D′ vT D we have ∃t0. k-lcs-r-o(C ′, D′, (V,E, S), k − 1) vT
∃r. k-lcs-r(C,D, (V,E, S), k − 1).
Since Lo vT ∃r. k-lcs-r(C,D, (V,E, S), k − 1) for each role name r and all edges

(A, r, C) ∈ E, (B, r,D) ∈ E and also Lo vT C for C ∈ common-names, we have
Lo vT L. On the other hand k-lcs-r computes all of the recursive concept descriptions
(and possibly more) that k-lcs-r-o computes and hence L vT Lo. This yields that
L ≡T Lo.

8 Implementation
We implemented the role-depth bounded least common subsumer for EL+ in Gel.
This program internally uses the reasoner jCel3, which implements the completion-
based classification algorithms for EL+ and ELHIfR+ . The processing unit of jCel
applies the completion rule step by step. After all completion rules are applied, it starts
a post-processing phase, which constructs the concept hierarchy from the computed
completion sets. jCel also features a plug-in for the ontology editor Protégé4. Protégé

3http://jcel.sourceforge.net
4http://protege.stanford.edu/

21

http://jcel.sourceforge.net
http://protege.stanford.edu/

uses the OWL API5 to store ontologies, so jCel has to translate the axioms of the
ontology into an internal representation, on which the processing unit can work.

Gel expects the input to the k-lcs algorithm and the ontology in OWL API format.
According to Algorithm 5, it first adds new concept names and axioms for the input
concept descriptions to the ontology and then uses jCel to translate the extended on-
tology to the internal format. After that Gel invokes a custom processing class, which
extends the jCel processor: right before the post-processing phase, after all comple-
tion sets are computed, the Gel-processor applies the recursive k-lcs-r-o procedure.
The resulting least common subsumer is then simplified, translated back to OWL API
format and returned. Although Algorithm 5 only allows for two input concepts, the
implementation can compute the role-depth bounded lcs for arbitrary many concepts.
This is done by applying the binary k-lcs to the first two concepts and then succes-
sively computing the k-lcs of the result with the next concept. In previous tests we
found this to be faster then computing the n-ary k-lcs directly.
The implementation includes a Protégé plug-in. This plug-in contains an Protégé

ontology view, i.e., a component where the user can input concept descriptions and
select processing options such as the role-depth bound and whether to apply the simpli-
fication and optimizations. The plug-in then computes the role-depth bounded least
common subsumer and shows the user the resulting concept description. Figure 1
shows a screenshot of the Gel plug-in.

Gel was implemented in Java using the Eclipse IDE. Besides jCel and the OWL
API, it also uses the Protégé API for the concept description editor and for proper
integration into Protégé. It should run on any system with a Java interpreter and
Protégé installed.

8.1 Testing
We performed extensive testing, both with real-world ontologies and handcrafted test-
ontologies. The real-world ontologies used were the Gene Ontology and a simplified
variant of Galen called Not-Galen. For the role-depth bounded least common
subsumer, we computed the k-lcs for various input concept descriptions and role-depth
bounds both with and without optimizations, and tested if the results indeed subsumed
all inputs. For the large life science ontologies, we could not verify that the result was
indeed the least w.r.t. subsumption; however, for the handcrafted ontologies, this was
checked.

8.2 Evaluation
The role-depth bounded least common subsumer can have a size that is exponential in
the role-depth bound k. However, it largely depends on the ontology if such a worst-
case behavior occurs. For the Gene Ontology, the role-depth bounded least common
subsumer was always constructed and simplified almost instantly. The runtime was
totally dominated by the classification time for jCel.

5http://owlapi.sourceforge.net

22

http://owlapi.sourceforge.net

Figure 1: Screenshot of the Protégé plug-in

For NotGalen however, this was not the case. Some input concept pairs resulted
in large runtimes of the program, which were mostly dominated by the construction of
the result, i.e., the runtime of the k-lcs-r-procedure. Simplification of larger concepts
on the other hand was faster by a factor of 10 or more. Normalization and completion
of the Not-Galen ontology took around 330ms. Figure 2 shows the average k-lcs-r-
construction runtime of Gel on various input pairs for different values of k.
Figure 2 also shows the effect of the optimizations on the construction time. The

first optimization, which returns on of the input concepts if it subsumes the other
input concept, is able to cut off the k-lcs-r-o recursion before the maximum role-
depth is reached. This improves the runtime by a factor of around 2 compared to
the basic k-lcs-r procedure with no optimizations. The second optimization, which
removes redundant successor nodes before attempting the product construction, is
able to reduce the branching factor of the recursion. In our tests, it yielded even
better runtime improvements then the first optimization, on average by a factor of 30.
Both optimizations yielded better speed-ups for higher role-depth bounds. Combining
the optimizations yielded the best runtime for most cases, which indicates that both

23

0,1

1

10

100

1000

10000

1 2 3 4 5 6

C
o

n
st

ru
ct

io
n

 t
im

e
 [

m
s]

Role-depth bound

no optimization

optimization 1

optimization 2

optimization 1+2

Figure 2: Average k-lcs-r-construction time in Not-Galen

optimizations are independent of each other.
In practice, the runtime with only the first optimization (or no optimization at all)

was sometimes to large to be useful. For some input concepts, like PepticUlcer and
AreaOfAtrophicGastritis, it didn’t return a result within a reasonable time of one hour
for a role-depth bound for as low as 4. However with both optimizations enabled,
the result for a role-depth bound of 4 was computed in 1.9 seconds, which is still
reasonable for a classification time of 330ms. For the given case, the role-depth bound
can increased to values beyond 50, where the computation with both optimizations
enabled need around a minute to complete. The reason that the second optimization
is so effective on Not-Galen is that this ontology contains a deep role hierarchy,
where without the optimization for each role also all subsuming roles would generate
a recursive k-lcs-r call, which yields really large branching factors.
The runtime for the simplification is proportional to the size of the concept de-

scription before simplification (which is roughly proportional to the runtime of the
k-lcs-r-construction, with a little bit of overhead for the second optimization). How-
ever Figure 3 shows that simplification reduces the concept size significantly – even
with both optimizations enabled the size of the result is still reduced by a factor 16
on average. Of course, since both optimizations apply simplification steps during the
construction of the k-lcs, the size-reduction for results computed without optimizations
are much larger.

24

1

10

100

1000

10000

1 2 3 4 5 6

C
o

n
ce

p
t

si
ze

 r
e

d
u

ct
io

n

Role-depth bound

no optimization

optimization 1

optimization 2

optimization 1+2

Figure 3: Average size-reduction by simplification in Not-Galen

9 Conclusion and Future Work
In this paper we presented the role-depth bounded least common subsumer algorithm
for ELI and EL+, a simplification procedure and two optimizations for EL+, and
discussed their implementation on the basis of existing completion-based classifiers.
Gel is presented as an implementation working on jCel. This implementation is
evaluated for real-life ontologies, notably Not-Galen.
In future work, the algorithm can to be extended to work with further extensions of
EL, especially ELHIfR+ to be useful for the full Galen ontology, or even ALE with
value restrictions. The algorithms can also be optimized further. One idea for opti-
mization is incremental classification of the ontology. If one wants to compute several
generalizations without changing the ontology, then the ontology is classified everytime
in the current implementation, also only the definitions for the input concepts change
during the computations.
Right now, when computing the k-lcs of more then two concepts, the concepts are

generalized with the binary k-lcs from left to right. It might be possible to find better
(or even an optimal)application order for binary lcs that yields faster computation
times.
Many applications of the lcs like the bottom-up construction of knowledge bases also

need a msc implementation. In [10] a completion-based algorithm for the role-depth
bound msc in EL is introduced that is very similar to the k-lcs algorithm and that also
works for EL+. This algorithm is also implemented in Gel, but its extension to ELI
and further is still an open problem.

25

References
[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of

the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05,
Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

[2] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions
of the description logic EL useful in practice? In Proceedings of the Methods for
Modalities Workshop (M4M-05), Berlin, Germany, 2005.

[3] Franz Baader. Least common subsumers and most specific concepts in a descrip-
tion logic with existential restrictions and terminological cycles. In Georg Gottlob
and Toby Walsh, editors, Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pages 319–324. Morgan Kaufman, 2003.

[4] S. Brandt. Reasoning in ELH w.r.t. general concept inclusion axioms. LTCS-
Report LTCS-04-03, Chair for Automata Theory, Institute for Theoretical
Computer Science, Dresden University of Technology, Germany, 2004. See
http://lat.inf.tu-dresden.de/research/reports.html.

[5] Sebastian Brandt. Polynomial time reasoning in a description logic with exis-
tential restrictions, GCI axioms, and—what else? In R. López de Mantáras
and L. Saitta, editors, Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI-2004), pages 298–302. IOS Press, 2004.

[6] Sebastian Brandt and Anni-Yasmin Turhan. Using non-standard inferences in
description logics—what does it buy me? In In: KI Workshop on Applications of
Description Logics, 2001.

[7] Ralf Küsters Franz Baader and Ralf Molitor. Computing least common subsumer
in description logics with existential restrictions. In Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’99, pages 96–101.
Morgan Kaufmann, 1998.

[8] Rafael Peñaloza and Anni-Yasmin Turhan. Completion-based computation
of least common subsumers with limited role-depth for EL and prob-EL01.
LTCS-Report LTCS-10-02, Chair for Automata Theory, Institute for Theoreti-
cal Computer Science, Dresden University of Technology, Germany, 2010. See
http://lat.inf.tu-dresden.de/research/reports.html.

[9] Rafael Peñaloza and Anni-Yasmin Turhan. Role-depth bounded least com-
mon subsumers by completion for EL- and Prob-EL-TBoxes. In V. Haarslev,
D. Toman, and G. Weddell, editors, Proc. of the 2010 Description Logic Work-
shop (DL’10), volume 573 of CEUR-WS, 2010.

[10] Rafael Peñaloza and Anni-Yasmin Turhan. Towards approximative most specific
concepts by completion for el with subjective probabilities. In Proceedings of the
First International Workshop on Uncertainty in Description Logics (UniDL’10),
volume 613 of CEUR-WS, 2010.

26

[11] Q. H. Vu. Subsumption in the description logic ELHIf∇+ w.r.t. general tboxes.
Master’s thesis, Technische Universität Dresden, 2008.

27

	Introduction
	Description Logics with Existential Restrictions
	Role-depth Bounded Least Common Subsumer
	Completion-based Subsumption
	Normalization
	Completion for EL+
	Completion for ELI
	Soundness
	Completeness

	Algorithms for the Role-depth Bounded Lcs
	Role-depth Bounded Lcs for EL+
	Role-depth Bounded Lcs for ELI
	Common Subsumer
	Minimality

	Simplification
	Optimization
	Implementation
	Testing
	Evaluation

	Conclusion and Future Work

