
Step-wise Explaining How to Solve Constraint
Satisfaction Problems

Emilio Gamba[0000−0003−1720−9428], Bart Bogaerts[0000−0003−3460−4251], and
Tias Guns[0000−0002−2156−2155]

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
{firstname.lastname}@vub.be

Abstract. We investigate the problem of step-wise explaining how to
solve constraint satisfaction problems. More specifically, we study how
to explain the inference steps that one can take during propagation. The
main challenge is finding a sequence of simple explanations, where each
explanation should aim to be cognitively as easy as possible for a human
to verify and understand. This contrasts with the arbitrary combination
of facts and constraints that the solver may use when propagating. We
identify the explanation-production problem of finding the best sequence
of explanations for the maximal consequence of a CSP. We propose the
use of a cost function to quantify how simple an individual explanation
of an inference step is. Our proposed algorithm iteratively constructs the
explanation sequence, agnostic of the underlying constraint propagation
mechanisms, by using an optimistic estimate of the cost function, to
guide the search for the best explanation at each step. Using reasoning
by contradiction, we develop a mechanism to break the most difficult
steps up and give the user the ability to zoom in on specific parts of the
explanation.

Keywords: Explainable Artificial Intelligence · Constraint Solving · Ex-
planation · Automated Reasoning

1 Introduction

In the last few years, as AI systems employ more advanced reasoning mechanisms
and computation power, it becomes increasingly difficult to understand why
certain decisions are made. Explainable (XAI), a subfield of AI, aims to fulfill
the need for trustworthy AI systems to understand how and why the system
made a decision, e.g. for verifying correctness of the system, as well as to control
for biased or systematically unfair decisions.

Explanations have been investigated in constraint solving before, most no-
tably for explaining over-constrained, and hence unsatisfiable, problems to a user.
The QuickXplain method [7] for example, uses a dichotomic approach that recur-
sively partitions the constraints to find a minimal conflict set. Many other papers
consider the same goal and search for explanations of over-constrainedness [9,13].

Despite the fact that we do not (specifically) aim to explain over-constrained
problems, our algorithms will also internally make use of methods to extract a



minimal set of conflicting constraints often called a Minimal Unsatisfiable Subset
(MUS) or Minimal Unsatisfiable Core [10].

While explainability of constraint optimisation has received little attention so
far, in the related field of planning, there is the emerging subfield of eXplainable
AI planning (XAIP) [5], which is concerned with building planning systems that
can explain their own behaviour. This includes answering queries such as “why
did the system (not) make a certain decision?”, “why is this the best decision?”,
etc. In contrast to explainable machine learning research [6], in explainable plan-
ning one can make use of the explicit model-based representation over which the
reasoning happens. Likewise, we will make use of the constraint specification
available to constraint solvers, more specifically typed first-order logic [12].

This research fits within the general topic of Explainable Agency [8], whereby
in order for people to trust autonomous agents, the latter must be able to explain
their decisions and the reasoning that produced their choices. To provide the
constraint solver with Explainable Agency [8], we first formalize the problem of
step-wise explaining the propagation of a constraint solver through a sequence of
small inference steps. Next, we use an optimistic estimate of a given cost function
quantifying human interpretability to guide the search to simple, low-cost, ex-
planations thereby making use of minimal unsatisfiable subsets. We extend this
approach using reasoning by contradiction to produce additional explanations
of still difficult-to-understand inference steps. Finally, we discuss the challenges
and some outlooks to explaining how to solve constraint satisfaction problems.

Publication history This workshop paper is an extended abstract of previous
papers presented at workshops and conferences [4,3,1] and a journal paper under
review [2].

2 Background and Problem definition

The overarching goal of this paper is to generate a sequence of small reasoning
steps, each with an interpretable explanation, and for that we introduce the
necessary background.

A (partial) interpretation I is defined as a finite set of literals , i.e., expres-
sions of the form P (d) or ¬P (d) where P is a relation symbol typed T1×· · ·×Tn

and d is a tuple of domain elements where each di is of type Ti. For example,
eat(Tperson, Tfood) defines a relation linking an entity of type person with an
entity of type food, if a person eats a certain kind of food. If ‘Sam ate pizza, and
Luke did not eat rice’, then the clue can be interpreted as the partial interpre-
tation ISam−Luke = {eat(Sam, P izza),¬eat(Luke, Rice)}.

A partial interpretation is consistent if it does not contain both an atom and
its negation. It is called a full interpretation if it either contains P (d) or ¬P (d)
for each well-typed atom P (d).

In the context of first-order logic, the task of finite-domain constraint solving
is better known as model expansion [11]: given a logical theory T (corresponding
to the constraint specification) and a partial interpretation I with a finite domain



(corresponding to the initial domain of the variables), find a model M more
precise than I (a partial solution that satisfies T ).

We define the maximal consequence of a theory T and partial interpre-
tation I (denoted max(I, T )) as the precision-maximal partial interpretation In
such that I ∧ T |= In. More precisely, In corresponds to the intersection of all
CSP solutions.

2.1 Simple Explanation

Let Ii−1 and Ii be partial interpretations such that Ii−1 ∧ T |= Ii. We say that
(Ei, Si, Ni) explains the derivation of Ii from Ii−1 if the following holds:

– Ni = Ii \ Ii−1 (i.e., Ni consists of all newly derived facts),
– Ei ⊆ Ii−1 (i.e., the explaining facts are a subset of what was previously

derived),
– Si ⊆ T (i.e., a subset of the constraints used), and
– Si ∧ Ei |= Ni (i.e., all newly derived information following from this expla-

nation).

Part of our goal of finding easy to interpret explanations is to avoid redun-
dancy. That is, we want a non-redundant explanation (Ei, Si, Ni) where none
of the facts in Ei or constraints in Si can be removed while still explaining
the derivation of Ii from Ii−1; in other words: the explanation must be subset-
minimal. While subset-minimality ensures that an explanation is non-redundant,
it does not quantify how interpretable a explanation is. For this, we will assume
the existence of a cost function f(Ei, Si, Ni) that quantifies the interpretability
of a single explanation.

Formally, for a given theory T , a cost function f and initial partial inter-
pretation I0, the explanation-production problem consists of finding a non-
redundant explanation sequence for (I, T)

〈(I0, (∅, ∅, ∅)), (I1, (E1, S1, N1)), . . . , (In, (En, Sn, Nn))〉

such that a predefined aggregate1 over the sequence (f(Ei, Si, Ni))i≤n is min-
imised.

Consider the following problem of 3 persons going to a restaurant ordering
food and drinks, but we do not know the orders:

1. “Sam decides to eat pizza.”
2. “The one who ate rice drank Tea.”
3. “Pasta does not go well with Juice.”
4. “John orders water, and Luke always drinks Tea.”

We extend the problem statement with the following relations:

{eat(Tperson, Tfood), drink(Tperson, Tdrinks), match(Tfood, Tdrinks)}

1 An aggregate like max() will moderate the most difficult step, while average() en-
forces an overall simpler explanation sequence.



Every type has its corresponding entities:

– Tfood = {Pizza,Rice, Pasta};
– Tperson = {Sam,Luke, John}
– Tdrinks = {Tea, Juice,Water}

Furthermore, we use a cost function f which favours the use of simple constraints
(ex: interpretation of a clue, simple inference techniques such as bijectivity2 or
transitivity3) and penalizes the use of combination of constraints (combining a
clue with an inference mechanism).

In the beginning, the partial interpretation I0 is empty. From the clue (1), we
can derive a new fact relating Sam and pizza I1 = {eat(Sam,P izza)}. In fact,
we can also derive that Sam did not eat Pasta and Rice. Formally, the tuple
(E1, S1, N1) explains the inference step I1 to I2, where

– E1 = { eat(Sam,P izza) }
– S1 = { ∀ p ∈ Tperson, ∃! f ∈ Tfood : eat(p, f) } (bijectivity)
– N1 = { ¬eat(Sam,Pasta),¬eat(Sam,Rice) }

2.2 Nested Explanation

Each explanation in the sequence will be non-redundant and hence as small
as possible. Yet, in our earlier work some explanations were still quite hard to
understand, mainly since multiple constraints had to be combined with a number
of previously derived facts. We propose the use of simple nested explanations
using reasoning by contradiction, hence reusing the techniques from previous
section.

Given a non-trivial explanation (E,S,N), a nested explanation starts from
the explaining facts E, and the counterfactual assumption of the negation of a
newly derived fact. At each step, it only uses clues from S and each step is easier
to understand (has a strictly lower cost) than the parent explanation which
has cost f(E,S,N). A contradiction is then derived from the counterfactual
assumption. Each of the reasoning steps leading to the contradiction are what
constitutes the nested explanation sequence.

3 Explanation-Producing search

Ideally, we could generate all explanations of each fact in max(I0, T ), and search
for the lowest scoring sequence among those explanations. However, the number
of explanations for each fact quickly explodes with the number of constraints,
and is hence not feasible to compute. Instead, we will iteratively construct the se-
quence, by generating candidates for a given partial interpretation and searching
for the ‘easiest’ one among those.

2 Each entity of one type is linked to exactly one entity of each other type.
3 The entities are logically linked, for example: If eat(Sam, P izza) and
match(Pizza, Juice), then consistently Sam should be consistently linked with Juice
drink(Sam, Juice)



The task of finding a non-redundant explanation itself can be reduced to
finding a Minimal Unsat Subset (MUS), which means that, whenever one of the
facts in E or constraints in S is removed, the result is no longer an explanation.
More formally, E and S form a minimal set that entail n if and only if {E∧S∧¬n}
is a minimal unsatisfiable set.

Using an optimistic estimate of the cost function f , we guide the search
towards the next cost-minimal non-redundant explanation (E ⊆ I, S ⊆ T, {n})
that explains n (and possibly explains more).

We refer to [1] for further details on the explanation-producing algorithm
and [2] introducing the concept of what we call nested explanation sequences.

4 Discussion and Future work

In terms of efficiency, the main bottleneck of the current algorithm is the search
towards the next cost-minimal explanation. More precisely, generating candidate
explanations requires repeatedly searching for a MUS for increasing constraint
sets, which is a hard problem by itself. Therefore, in future work we want to
investigate unsat-core optimization with respect to a cost-function, as well as
exploring other heuristics to construct non-redundant explanation sequences.

References

1. Bogaerts, B., Gamba, E., Claes, J., Guns, T.: Step-wise explanations of con-
straint satisfaction problems. In: 24th European Conference on Artificial Intel-
ligence (ECAI) (2020), accepted

2. Bogaerts, B., Gamba, E., Guns, T.: A framework for step-wise explaining how to
solve constraint satisfaction problems (2020)

3. Claes, J., Bogaerts, B., Canoy, R., Gamba, E., Guns, T.: Zebratutor: Explaining
how to solve logic grid puzzles. In: Proceedings of BNAIC and Benelearn. CEUR
Workshop Proceedings, vol. 2491 (2019)

4. Claes, J., Bogaerts, B., Canoy, R., Guns, T.: User-oriented solving and explaining of
natural language logic grid puzzles. In: The Third Workshop on Progress Towards
the Holy Grail (2019)

5. Fox, M., Long, D., Magazzeni, D.: Explainable planning. In: IJCAI’17 workshop
on Explainable AI (arXiv:1709.10256)

6. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM computing surveys
(CSUR) 51(5), 1–42 (2018)

7. Junker, U.: Quickxplain: Conflict detection for arbitrary constraint propagation
algorithms. In: IJCAI’01 Workshop on Modelling and Solving problems with con-
straints (2001)

8. Langley, P., Meadows, B., Sridharan, M., Choi, D.: Explainable agency for intelli-
gent autonomous systems. In: Twenty-Ninth IAAI Conference (2017)

9. Leo, K., Tack, G.: Debugging unsatisfiable constraint models. In: International
Conference on AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems. pp. 77–93. Springer (2017)



10. Marques-Silva, J.: Minimal unsatisfiability: Models, algorithms and applications.
In: 2010 40th IEEE International Symposium on Multiple-Valued Logic. pp. 9–14.
IEEE (2010)

11. Mitchell, D.G., Ternovska, E., Hach, F., Mohebali, R.: Model expansion as a frame-
work for modelling and solving search problems. Tech. Rep. TR 2006-24, Simon
Fraser University, Canada (2006)

12. Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for first-order
logic and inductive definitions. ACM Trans. Comput. Log. 14 (2013)

13. Zeighami, K., Leo, K., Tack, G., de la Banda, M.G.: Towards semi-automatic
learning-based model transformation. In: Proceedings of CP. pp. 403–419 (2018)


	Step-wise Explaining How to Solve Constraint Satisfaction Problems

