
Towards Comprehensible ASP Reasoning
by Means of Abstraction

Zeynep G. Saribatur

Institute of Logic and Computation,
TU Wien, Vienna, Austria

Abstract. The inability to understand the complex structures of the
recently advanced AI systems urges for more symbolic and rule-based
representations geared towards transparency in AI. Answer Set Program-
ming (ASP), with its expressivity and representation power, is a conve-
nient tool for problem-solving and for representing and reasoning about
agent behavior. However, when shown the decision-making rules, it can
be challenging for humans to get to the core of the behavior, if these rules
are of complex nature or contain many details that are distracting. We
highlight the potential of the recently introduced abstraction concept in
ASP towards tackling this problem, by focusing on the relevant details
of the reasoning task that can allow for better human comprehensibility.

1 Introduction

There is an increasing need to have an understanding on the behavior of designed
AI agents. Especially with the advance of machine learning systems, obtaining
explanations for the behavior is not easy, since these systems rely on highly
complex and deep structures, which are far from intuition. So far, the focus of
research with such systems has been mostly on post-hoc interpretability, that is
on explaining the decisions, which can not show how the system actually works,
and thus diverge from the goal to understand the behavior itself. This suggests
putting more focus on adopting a knowledge representation and reasoning (KR)
perspective into the need to understand the core elements of the designed model
that plays a role in the behavior and the decision-making.

The expressivity and representation power makes Answer Set Programming
(ASP) [8, 3] a convenient tool for problem-solving, with the idea of declaratively
representing a problem as a “program” whose models (called “answer sets” [8])
correspond to the solutions of the problem; making it suitable for investigating
ways in understanding the problem with its key elements. Studies in explaining
how ASP programs find a solution (or none) to a problem have mainly focused
on debugging answer sets or finding justifications (see [7] for a recent survey).
These approaches can be used to understand the problem at hand and provide
explanations, e.g., in planning [13]. However, as noted in [7], the obtained expla-
nations may contain too many details which prevent one from seeing the crucial
parts. This is where some notion of abstraction would come in handy.

2 Zeynep G. Saribatur

Humans unwittingly make use of abstraction when reasoning and under-
standing. Among the several interpretations on its meaning, one that comes up
is the capability of abstract thinking, achieved by removing irrelevant details
and identifying the “essence” of the problem [10]. The notion of relevance is
especially important in problem-solving, since the problem at hand may become
too complex to solve if every detail is taken into account. Another view on ab-
straction is the generalization aspect, which is the process of distinguishing the
common properties among the objects. Overall, the general aim of abstraction
is to simplify the problem at hand to one that is easier to deal with and to
understand.

Recently, we took the initial steps in bringing the notion of abstraction to
ASP [14, 15, 6],1 with the motivation to get rid of irrelevant details for reasoning
and to get to the essence of the problems at hand. In this extended abstract,
we give a brief overview of the newly introduced concepts and highlight the
potential of the results in the comprehensibility of problem-solving in ASP.

2 Abstraction in ASP

Abstraction is on over-approximating a given program Π, with vocabulary A,
by constructing a simpler program Π ′ with a vocabulary reduced to A′, and
ensuring that the results of reasoning on the original program are not lost. More
formally, Π ′ is called an abstraction of Π, if there exists a mapping m : A → A′,
where |A|≥|A′|, such that for any answer set I of Π, I ′ = {m(α) | α ∈ I} is
an answer set of Π ′. We refer to m as an abstraction mapping, and it gives us
the possibility to do clustering over the atoms of Π. The reduced vocabulary
simplifies the search for an abstract answer set I ′ at the abstract program Π ′,
while an additional check is needed to see whether an original answer set I exists
in Π that can be mapped to I ′. An abstract answer set I ′ is called spurious if it
can not be mapped back to some I. Additionally, due to the over-approximation,
we can infer that if the abstraction Π ′ is unsatisfiable (i.e., has no answer sets),
then the original program Π is unsatisfiable. This property comes in handy when
searching for the cause for unsatisfiability while abstracting away the rest.

We introduced methods to construct abstract programs for two kinds of
abstraction mappings: abstraction by omission [14] and domain abstraction [15].
The former is about omitting atoms from a program, i.e., clustering them into
>, and considering an abstract program over the remaining atoms, while the
latter investigates abstraction over non-ground ASP programs given a mapping
over their domain (i.e., the Herbrand universe) that singles out the domain
elements. In order to automatically obtain abstractions, we proposed a CEGAR-
style [5] abstraction refinement approach (implemented in prototypical tools2),
that starts with an initial highly coarse abstraction and then refines it upon
encountering spurious answer sets and getting rid of them, until a non-spurious

1 In collaboration with Thomas Eiter and Peter Schüller.
2 http://www.kr.tuwien.ac.at/research/systems/abstraction/

Towards comprehensible ASP reasoning by means of abstraction 3

Fig. 1: Abstractions that remove details irrelevant to (un)solvability

1

2 3

4

5

6

7

8

Original graph

1

2 3

4

Abstract graph

(a) Non-3-colorable graph (on left) re-
mains non-colorable when some nodes
are omitted (on right)

1 2 3 4 5 6 7 8 9 10

Task 1

Task 2 Task 3

Task 1
Task 2

Task 3

7 slots
5 slots

2 slots

(b) A valid task scheduling (for the instance
shown on top) can be found even when some
time slots are clustered (shown at the bottom)

answer set (or unsatisfiability) is encountered. The resulting abstraction then
can be used to get an understanding of the problem at hand.

2.1 Removing irrelevant details

Determining relevance is important in understanding a problem with its key
elements and abstraction can be a tool to distinguish the relevancy. For problems
that are unsolvable, the relevant details of the problem would be the ones that
cause the unsolvability. For example, if a graph is not 3-colorable, in order to
understand the reason, one would focus on the nodes/edges that cause this and
the remaining details would be irrelevant (Fig. 1(a)). Given the corresponding
unsatisfiable answer set program, our methodology can automatically construct
an abstract program where the atoms related to some nodes/edges are omitted
from the vocabulary, while the unsatisfiability is still preserved [14]. The omitted
parts of the graph can then be understood as irrelevant to the unsolvability.

Irrelevant details can also exist when solving a problem, since not every de-
tail may need to be taken into account to find a solution. For example, consider
a scheduling problem with tasks of certain durations that need to be scheduled
within a given time interval, with additional constraints of not having slot in-
tersections among some tasks. Fig. 1(b) shows an instance with 3 tasks, where
task 1 and task 2 should not intersect with task 3. We can automatically find a
domain abstraction [15] on the time domain that clusters some slots (e.g., slots
4−7 clustered to k4) where it is possible to find a schedule that satisfies the con-
straints and that can be mapped back to the original problem. This abstraction
can be used to distinguish the key time slots for solving the problem.

As a possible application on grid-cell problems, we also considered a multi-
dimensional domain abstraction to deal with structural aspects, and in particu-
lar with hierarchical abstraction over the domain [6]. We were interested to see

4 Zeynep G. Saribatur

Fig. 2: User study on explanatory abstractions for unsatisfiable Reachability
problem instances compared with the abstractions found by our tool [6]

(a) an expected user ex-
planation that marks the
obstacles

(b) an unexpected user
explanation that marks
the cells

•

(c) abstraction on the
grid-cell domain, found by
the tool, that preserves
unsatisfiability

Fig. 3: Abstractions that distinguish common properties

1

2

3

64 5

m

1

2

3

64 5

(a) 3-colorability

b1
 t1

b3

 t2

b2

 t10

b1 b3

 tˆ2

b2m

 tˆ1

(b) Blocksworld with multiple tables

whether the automatically obtained abstractions from our tool matched the in-
tuition behind a human explanation to unsolvability. Ten participants were given
different instances of a grid-cell environment where not every cell was reachable
from the starting point. They were asked to mark the area which shows the
reason for having unreachable cells in these instances (e.g., Fig. 2(a)-(b)). The
results showed the “zooming-in” capability of the abstraction method to have a
human-like focus on certain parts of the grid to show the unsolvability reason
(Fig. 2(c)). Interestingly, we also observed different understandings of showing a
reason (e.g., the difference of markings in Fig. 2(a) and (b)) which acknowledged
the challenge of defining a single meaning to “explanation”.

2.2 Generalization

Distinguishing the common properties among the elements would obtain a higher-
level view that simplifies the problem, making it easier to understand. Domain
abstraction [15] gives us such an ability. For example, in a graph coloring problem
the nodes with no edges can be considered as one node and assigned the same
color (Fig. 3(a)). We can achieve an abstract program with such an abstraction
on the graph, where any coloring at the abstract level will have a corresponding
original coloring. We refer to such abstractions with no spurious answer sets as

Towards comprehensible ASP reasoning by means of abstraction 5

faithful. These abstractions can be used for reasoning at the abstract level and
for understanding the common properties of the clustered elements.

Generalization is especially appealing for planning problems, since it allows to
compute a plan that can work for multiple instances of a problem. For example,
consider the Blocksworld problem with multiple tables [15]. From a given initial
state, the aim is to find a plan that piles up the blocks on a chosen table. Fig. 3(b)
illustrates an initial state with t1 being the chosen table. A faithful abstraction
can be automatically found where all other tables are clustered into one, showing
that distinguishing these tables is not important for the plan computation. No
matter on which table the block b3 is initially located, a plan of 4-steps, that
moves b2 to some table, moves b3 to t1, and moves b2 and then b1 on top of b3,
will be valid. Abstraction allows us to see this commonality of the objects.

3 Discussion

The newly introduced concept of abstraction in ASP shows potential to aid in
achieving human-comprehensibility of problem-solving, which would contribute
to bringing a KR perspective to the explainability and transparency of AI sys-
tems. The obtained results are encouraging and they open up avenues for future
research, especially in terms of finding ways to make use of abstraction in order
to help the users in understanding the decision-making behavior.

The concept of abstraction in KR is not new (e.g., [9, 12]). Especially for
planning problems, reasoning at the abstract level to compute plans and delv-
ing into the details when necessary receives ongoing attention, e.g., [1, 2], also
for ASP-related languages [17, 16]. However, how to find and decide on a good
abstraction to do the reasoning over is a challenge by itself and usually the ab-
stract representations are constructed by the researchers themselves, whereas
our methodology can be used as a guide to distinguish the key elements of a
problem and to decide on abstractions. Though, one can expect to have dif-
ferences among the abstractions which are better for comprehensibility vs. for
efficiency. Furthermore, there are some recent works in planning that make use of
abstraction and focus on giving explanations for choosing a plan or for not find-
ing a plan (see the recent survey [4]). Nevertheless, the potential of abstraction
in achieving comprehensibility of rule-based programs remains to explored.

Lastly, as noted in the recent survey on explanation in AI [11], most of the re-
cent research in explanation takes into account what researchers think as “good”
explanation, but the human-angle should be considered as well. When providing
explanations, humans implicitly make use of their background knowledge, do
not need to explicitly state the relations among the objects, and thus achieve
various levels of abstraction. Achieving such different abstraction layers in ex-
planations remains an interesting challenge. Our results also acknowledged the
need for studying the meaning of “explanation” and the ability to obtain an
understanding of a problem using abstraction, when aiming to bring humans
into the loop.

6 Zeynep G. Saribatur

References

1. Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus
action theories. In: Proc. AAAI. pp. 1048–1055 (2017)

2. Bercher, P., Alford, R., Höller, D.: A survey on hierarchical planning - one abstract
idea, many concrete realizations. In: Proc. IJCAI. pp. 6267–6275 (2019)

3. Brewka, G., Eiter, T., Truszczyski, M.: Answer set programming at a glance. Com-
mun. ACM 54(12), 92–103 (2011)

4. Chakraborti, T., Sreedharan, S., Kambhampati, S.: The emerging landscape of
explainable automated planning & decision making. In: Proc. IJCAI. pp. 4803–
4811 (2020)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

6. Eiter, T., Saribatur, Z.G., Schüller, P.: Abstraction for zooming-in to unsolvability
reasons of grid-cell problems. In: Proc. XAI@IJCAI (2019)

7. Fandinno, J., Schulz, C.: Answering the “why” in answer set programming - A
survey of explanation approaches. TPLP 19(2), 114–203 (2019)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3), 365–385 (1991)

9. Giunchiglia, F., Walsh, T.: A theory of abstraction. AIJ 57(2-3), 323–389 (1992)
10. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42

(2007)
11. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.

AIJ (2018)
12. Nayak, P.P., Levy, A.Y.: A semantic theory of abstractions. In: Proc. IJCAI. pp.

196–203 (1995)
13. Nguyen, V., Son, T.C., Stylianos, V.L., Yeoh, W.: Conditional updates of answer

set programming and its application in explainable planning. In: Proc. AAMAS.
pp. 1954–1956 (2020)

14. Saribatur, Z.G., Eiter, T.: Omission-based abstraction for answer set programs. In:
Proc. KR. pp. 42–51. AAAI Press (2018)

15. Saribatur, Z.G., Schüller, P., Eiter, T.: Abstraction for non-ground answer set
programs. In: Proc. JELIA, pp. 576–592. LNCS, Springer (2019)

16. Sridharan, M., Gelfond, M., Zhang, S., Wyatt, J.: Reba: A refinement-based archi-
tecture for knowledge representation and reasoning in robotics. JAIR 65, 87–180
(2019)

17. Zhang, S., Yang, F., Khandelwal, P., Stone, P.: Mobile robot planning using ac-
tion language BC with an abstraction hierarchy. In: Proc. LPNMR. pp. 502–516.
Springer (2015)

