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Abstract. We briefly introduce two novel and promising research lines
to explaining black-box models: perceptron (or threshold) connectives
in the context of Description Logic, and their possible use to bridge the
gap between statistical learning of models from data and logical reasoning
over knowledge bases; Trepan Reloaded, an approach that builds post-
hoc explanations of black-box classifiers in the form of decision trees
enhanced by domain knowledge. Our aim is to study how these two
frameworks interact on a theoretical level, and secondly, to investigate
use-cases in ML and AI in a comparative manner, specifically user-studies
that help determine human understandability of explanations generated
using these two frameworks by human users.

1 Background and Motivation

While interest in explainable Artificial Intelligence had subsided together with
that in expert systems after the mid-1980s [16], more recent successes in machine
learning technology have brought explainability back into the focus. This has led
to a plethora of new approaches for explanations of black-box models [8], aiming
to achieve explainability without sacrificing system performance. Only a few of
these approaches, however, focus on global explanations, and on how to integrate
and use domain knowledge to drive the explanation process (e.g., [13]) or how to
measure the understandability of explanations of black-box models (e.g., [14]).

For that reason, an important foundational aspect of explainable AI has re-
mained hitherto mostly unexplored: can the integration of domain knowledge,
e.g., as modeled by means of ontologies, help human understandability of expla-
nations?

2 Explanations via Weighted Threshold Operators

Weighted Threshold Operators are n-ary logical operators which compute a
weighted sum of their arguments and verify whether it reaches a certain thresh-
old. These operators have been extensively studied in the context of circuit
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complexity theory, and they are also known in the neural network commu-
nity under the alternative name of perceptrons. In [12], threshold operators
were studied in the context of Knowledge Representation, focusing in partic-
ular on Description Logics (DLs). In brief, if C1 . . . Cn are concept expressions,
w1 . . . wn ∈ R are weights, and t ∈ R is a threshold, we can introduce a new
concept ∇∇t(C1 : w1 . . . Cn : wn) to designate those individuals d such that∑
{wi : Ci applies to d} ≥ t.
In the context of DL and concept representation, such threshold expressions

are natural and useful, as they provide a simple way to describe the class of the
individuals that satisfy “enough” of a certain set of desiderata.

Consider the Felony Score Sheet used in the State of Florida3, in which
various aspects of a crime are assigned points, and a threshold must be reached to
decide compulsory imprisonment. For example, possession of cocaine corresponds
to 16 points if it is the primary offense and to 2.4 points otherwise, a victim injury
describable as “moderate” corresponds to 18 points, and a failure to appear for
a criminal proceeding results in 4 points. Imprisonment is compulsory if the
total is greater than 44 points and not compulsory otherwise. A knowledge base
describing the laws of Florida would need to represent this score sheet as part
of its definition of its CompulsoryImprisonment concept, for instance as

∇∇44(CocainePrimary : 16,ModerateInjuries : 18, . . .).

While it would be possible to also describe it (or any other Boolean function)
in terms of more ordinary logical connectives (e.g., by a DNF expression), a
definition in terms of threshold expressions is far simpler and more readable. As
such, the definition is more transparent and more explainable.

We refer the interested reader to [12] and to [6] for a more in-depth analysis
of the properties of this operator. Having threshold expressions in a language
of knowledge representation has notable advantages. First, in psychology and
cognitive science, the combination of two or more concepts has a more subtle
semantics than set theoretic operations. As shown in [15], threshold operators can
represent complex concepts more faithfully regarding the way in which humans
think of them. For this reason, explanations provided using threshold expressions
are in principle more accessible to human agents. Second, as illustrated in [6],
since a threshold expression is simply a linear classification model, it is possible to
use standard linear classification algorithms (such as the Perceptron Algorithm,
Logistic Regression, or Linear SVM) to learn its weights and its threshold given
a set of assertions about individuals (that is, given an ABox).

Extensions of Description Logic involving threshold operators have also been
discussed in [1] and [2]. The approaches presented in these two papers are, how-
ever, very different from the one summarised above: the former paper, indeed,
changes the semantics of DL by associating graded membership functions to
models and requiring them for the interpretation of expressions, while the latter
one extends the semantics of the DL ALC by means of weighted alternating

3 http://www.dc.state.fl.us/pub/scoresheet/cpc manual.pdf (accessed: 7 September
2020)
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parity tree automata. The approach described above is, in comparison, more di-
rect: no changes are made to the definitions of the models of the DL(s) to which
threshold operators are added, and the language is merely extended by means
of the above-described operators. Provided that the language of the original DL
contains the ordinary Boolean operators, adding the threshold operators to it
does no increase the expressive power (as already noted in [12]), but does not
increase the complexity of reasoning either [7].

3 Explanations via Decision Trees

In the ML literature, techniques for explaining black-box models are typically
classified as local and global methods [8]. Whilst local methods take into account
specific examples and provide local explanations, global methods aim to provide
an overall approximation of the behavior of the black-box model. Global expla-
nations are usually preferable over local explanations, because they provide a
more general view about the decision making process of a black-box.

A well-known global explanation method to explaining black-box classifiers
is Trepan [4]. Trepan is a tree induction algorithm that recursively extracts
decision trees from oracles, in particular from feed-forward neural networks. The
algorithm is model-agnostic, and it can in principle be applied to explain any
black-box classifier (e.g., Random Forest).

Trepan combines the learning of the decision tree with a trained machine
learning classifier (the oracle). At each learning step, the oracle’s predicted labels
are used instead of known real labels. The use of this oracle serves two purposes:
first, it helps to prevent the tree from overfitting to outliers in the training data.
Second, and more importantly, it helps to build more accurate trees.

In order to produce enough examples to reliably generate test conditions on
lower branches of the tree, Trepan draws extra artificial query instances that
are submitted to the neural network as if they were real data. The features of
these query instances are based on the distribution of the underlying data. Both
the query instances and the original data are submitted to the neural network
‘oracle’, and its outputs are used to build the tree.

In [3] we extended the classical Trepan algorithm to take into account ex-
plicit knowledge, modeled by means of ontologies, to drive the explanation ex-
traction process. In particular, we modified the information gain function for
choosing, in the creation of split nodes, features associated with more general
concepts in a domain ontology. This was achieved by defining a measure of in-
formation content of the concepts in an ontology using refinement operators (as
a case of point, the DL EL was considered). Linking explanations to structured
knowledge, in the form of ontologies, brings multiple advantages. It does not only
enrich explanations (or the elements therein) with semantic information—thus
facilitating effective knowledge transmission to users—but it also creates a po-
tential for supporting the customisation of the levels of specificity and generality
of explanations to specific user profiles [9].
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To measure the effects of the ontology on the understandability of explana-
tions with human users a preliminary on-line user study was conducted. The
study showed that decision trees generated by Trepan Reloaded, thus taking
domain knowledge into account, were more understandable than those generated
without the use of domain knowledge [3].

4 Evaluating Human Understandability of Explanations

Decision trees and threshold expressions appear to have complementary pros
and cons as explanatory tools for black-box classifiers. Decision trees have the
advantage of having clear visual representations. A human user can easily follow
them to understand what factors lead the classifier to reach which conclusion
in which circumstances; but on the other hand, especially in the case of very
large trees, it can be difficult for a user to follow the overall structure of the
decision tree or use it to engage in counterfactual reasoning (e.g., “would the
final decision of the classifier have been YES rather than NO if feature C1 had
been different?”). Threshold expressions, on the other hand, are arguably of less
immediate interpretability for a user; but have the advantage of specifying clearly
which factors influence positively or negatively the decision of the classifier, and
up to which (comparative) degree, thus making it easier for a user to evaluate the
effect that changing certain specific input features would have on the outcome.

Previous work attempting to measure the understandability of symbolic de-
cision models, and decision trees in particular [10,11], proposed syntactic com-
plexity measures based on the model’s structure. The syntactic complexity of an
explanation can be measured, for instance, in the case of decision trees, by count-
ing the number of internal nodes or leaves, or in the case of logical formulas, by
counting the number of symbols adopted. Having a measure like syntactic com-
plexity, that can be easily computed, is useful from an application perspective.
E.g., it may be used to prevent excessive complexity in building decision trees
and threshold expressions when explaining a black-box. On the other hand, the
syntactic complexity does not necessarily capture precisely the understandabil-
ity of explanations by users. A direct measure of user understandability is how
accurately a user can employ a given explanation to perform a decision. Another
measure of cognitive difficulty is the reaction time (RT) or response latency [5].
RT is a standard measure used by cognitive psychologists and has become a
staple measure of complexity in the domain of design and user interfaces [17].
Understandability depends on the cognitive load experienced by users, e.g., in
using the decision model to classify instances and in understanding the features
in the model itself. However, for practical processing human understandability
needs to be approximated by an objective measure.

We will compare two characterisations of the understandability of explana-
tions: (i) Understandability based on the syntactic complexity of an explanation
(number of internal nodes, leaves, symbols used in a weighted formulas, etc.),
and (ii) Understandability based on users’ performances and subjective ratings,
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reflecting, for instance, the cognitive load by users in carrying out tasks using a
given explanation format.

We aim at designing and conducting a user study to measure and compare
the understandability of explanations given in the form of decision trees and
threshold expressions with human users. This could be done in domains where
explanations are critical, such as justice, finance or medicine. Conducting and
analysing such experiments can provide useful recommendations and insights
under which conditions and tasks one representation is deemed more under-
standable than the other one by users.
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