
Explaining Classifiers in Ontology-Based Data
Access

Federico Croce[0000−0001−6779−4624] and Maurizio Lenzerini[0000−0003−2875−6187]

Sapienza University of Rome
surname @diag.uniroma1.it

1 Introduction

In this paper we address the problem of providing explanations for supervised
classification in the context of Ontology-Based Data Access (OBDA). Supervised
learning is the task of learning a function that maps an input to an output based
on input-output pairs provided as examples. When applied to classification, the
ultimate goal of supervised learning is to construct algorithms that are able to
predict the target output (i.e., the class) of the proposed inputs. To achieve this,
the learning algorithm is provided with some training examples that demonstrate
the intended relation of input and output values. Then the learner is supposed
to approximate the correct output, so as to be able to classify instances that
have not been shown during training.

The rise of machine learning use in many applications has brought new chal-
lenges related to classification. Here, we deal with the following challenge: how
to interpret and understand the reason behind a classifier’s prediction. Indeed,
understanding the behaviour of a classifier is recognized as a very important task
for wide and safe adoption of machine learning and data mining technologies,
especially in high-risk domains and in dealing with bias.

In this paper we assume that the classification task is performed in an
organization that adopts an Ontology-Based Data Management (OBDM) ap-
proach [11, 12]. OBDM is a paradigm for accessing data using a conceptual
representation of the domain of interest expressed as an ontology. The OBDM
paradigm relies on a three-level architecture, consisting of the data layer (which
we assume is constituted by a relational database), the ontology, and the map-
ping between the two. Consequently, an OBDM specification is a triple J =
〈O,S,M〉 which, together with an S-database D, form a so-called OBDM sys-
tem Σ = 〈J , D〉.

Given an OBDA system Σ = 〈J , D〉, we consider classifiers that are char-
acterized by a partial function λ : dom(D)n → {+1,−1}, where n ≥ 1 is
an integer. In other words, λ is a binary classifier such that the objects in-
volved in the classification task are represented as tuples in the S-database
D. We denote by λ+ (resp., λ−) the set of tuples that have been classified
positively (resp., negatively), i.e., λ+ = {t ∈ dom(D)n | λ(t) = +1} (resp.,
λ− = {t ∈ dom(D)n | λ(t) = −1}). Intuitively, our goal is to derive an expres-
sion over O that semantically describes the partial function λ in an appropriate

way w.r.t. Σ. So, we aim at deriving a “good” definition of λ using the concepts
and the roles of the ontology. Without loss of generality, we consider such an
expression to be a query q over O, and we formalize the notion of “semantically
describing” λ by requiring that the certain answers to q w.r.t. Σ include all the
tuples in λ+ (or, as many tuples in λ+ as possible), and none of the tuples in
λ− (or, as few tuples in λ− as possible). The resulting query q makes it easier
to understand the classifications made by λ, by reformulating the opaque ma-
chine learning model in a more descriptive query that uses the language of the
ontology. Therefore, we consider q to be an explanation of the classifier λ.

Our work is inspired by several approaches in the context of classical rela-
tional databases [16, 15, 2, 1]. In a nutshell, such an approach allow a user to
explore the database by providing a set of positive and negative examples to the
system, implicitly referring to the query whose answers are all the positive exam-
ples and none of the negatives. This idea has also been studied by the Description
Logics (DLs) community, with an attention to the line of research of the so-called
concept learning. In particular, the work in [9] has an interesting characteriza-
tion of the complexity of learning an ontology concept, formulated in expressive
DLs, from positive and negative examples. We also mention the concept learn-
ing tools in [3, 8, 14], that include several learning algorithms and support an
extensive range of DLs, even expressive ones such as ALC and ALCQ. Finally,
we consider the work in [10] to be related to our work. The authors study the
problem of deriving (unions of) conjunctive queries, with ontologies formulated
in Horn-ALCI, deriving algorithms and tight complexity bounds.

This paper is a continuation of the work presented in [7]. In particular, we
start from the framework illustrated therein, and we specialize it (see Section
2) in a number of ways: (i) the ontology is expressed in DL-Lite ([5, 4]), (ii)
the mappings are GAV, (iii) we consider specific criteria for deciding whether
a certain explanation is better than another. In this specialized framework, we
present an algorithm for computing an explanation of a binary classifer. For the
lack of space, the algorithm is illustrated only by means of an example.

2 The framework

Before formally defining when a query over O semantically describes λ, we in-
troduce some preliminary notions.

Definition 1. Let W be a set of atoms. We say that an atom α is reachable
from W if there exists an atom β ∈ W such that there is a constant c ∈ dom(D)
that appears in both α and β. ut

We now define which are the relevant atoms of an S-database D w.r.t. a tuple
t ∈ dom(D)n. To be as general as possible, we introduce a parametric notion of
border of radius r, where the parameter r is a natural number whose intended
meaning is to indicate how deep one is interested in exploring the database, for
identifying an atom as relevant. This notion is used for limiting the complexity of
the explanations. A bigger radius will contribute in the formation of more precise

explanations, but that can be difficult to interpret due to their length. On the
other hand, a shorter radius will lead to very short and simple explanations, that
can suffer from being too general. Let D be an S-database, and let t be a tuple
in dom(D)n. Consider the following definition:
– Wt,0(D) = {α ∈ D | α has a constant c appearing in t}
– Wt,j+1(D) = {α ∈ D | α is reachable fromWt,j}

Definition 2. For a natural number r, the border of radius r of t in D, denoted
by Bt,r(D), is:

Bt,r(D) =
⋃

0≤i≤r
Wt,i(D)

Example 1. Let the source database be D = {R(a,b), S(a,c), Z(c,d), W(d,e),
W(e,h), R(f,g)}, and let t = 〈a〉. We have that:
– Wt,0(D) = {R(a, b), S(a, c)}
– Wt,1(D) = {Z(c, d)}
– Wt,2(D) = {W (d, e)}

Finally, the border of radius 2 of t in D is Bt,2(D) =
{R(a, b), S(a, c), Z(c, d),W (d, e)}. ut

With the above notion at hand, we now define when a query qO over the
ontology O matches (w.r.t. an OBDM specification J) a border Bt,r(D).
Definition 3. A query qO J -matches a border Bt,r(D) of radius r of a tuple t

in a source database D, if t ∈ certBt,r(D)
qO,J . ut

Similarly to what described in [1, 9, 10], one may be interested in finding a
query qO over O, expressed in a certain language LO, that perfectly separates
the set of tuples in λ+ from the set of tuples in λ−. That is, a query qO ∈ LO
such that, for a given radius r, the following two conditions hold:
1. for all t ∈ λ+, qO J -matches Bt,r(D),
2. for all t ∈ λ−, qO does not J -match Bt,r(D).

However, even in very simple cases, such query is not guaranteed to exist. In
general, the goal of our framework is to find a query qO over O, expressed in a
certain language LO, that meets, in the best possible way, a set ∆ of criteria.
We formalize this idea by introducing a set of functions F , one for each criterion
δ ∈ ∆, and a mathematical expression Z having a variable zδ for each criterion
δ ∈ ∆. Specifically, for a certain criterion δ ∈ ∆, the value of the function
fΣ,rδ,λ (qO) represents how much the query qO meets criterion δ for the classifier
λ w.r.t. the OBDM system Σ = 〈J , D〉 and the considered radius r. Without
loss of generality, we consider all such functions to have the same range of values
as their co-domain. Then, after instantiating each variable zδ in Z with the
corresponding value fΣ,rδ,λ (qO), the total value of the obtained expression, denoted
by ZF (qO), represents the Z-score of the query qO under F .

Among the various possible queries in a certain query language LO, it is rea-
sonable to look for the ones giving the highest score. This leads to the following
main definition of our framework:

Definition 4. A query qO LO-best describes λ w.r.t. an OBDM system Σ =
〈J , D〉, a radius r, a set of criteria ∆, a set of functions F , and an expression
Z, if qO ∈ LO and there exists no query q′O ∈ LO such that ZF (q′O) > ZF (qO).

For the purpose of this paper, we will be considering LO = UCQ, and the
following set of criteria:

δ1 = “Maximize the number of tuples t ∈ λ+ such that qO J -matches Bt,r(D)”
δ2 = “Minimize the number of tuples t ∈ λ− such that qO J -matches Bt,r(D)”
δ3 = “Minimize the number of disjuncts of the query qO”

Furthermore, the following functions will be associated to each criteria:

– fδ1(qO) = |{t ∈ λ+ | qO J -matches Bt,r(D)}|
|λ+|

– fδ2(qO) = 1− |{t ∈ λ
− | qO J -matches Bt,r(D)}|

|λ−|

– fδ3(qO) = 1
|{CQs in qO}|

3 Illustrating the algorithm via an example

In this section, we use an example to illustrate an algorithm for explaining the
outcome of a binary classifier, that is coherent with the framework we introduced
in the previous section. Consider the following database D:

STUD λ

λ+

A10 +1
B80 +1
C12 +1
D50 +1

λ− E25 -1

LOC
Sap Rome
TV Rome
Pol Milan

ENR
A10 Math TV
B80 Math Sap
C12 Science Norm
D50 Science TV
E25 Arts Pol

1) Compute the borders of a chosen radius, for each classified tuple of the
database. The borders of radius 1 are:

BA10,1(D) = {STUD(A10), ENR(A10, Math, TV), LOC(TV, Rome)}
BB80,1(D) = {STUD(B80), ENR(B80, Math, Sap), LOC(Sap, Rome)}
BC12,1(D) = {STUD(C12), ENR(C12, Science, Norm)}
BD50,1(D) = {STUD(D50), ENR(D50, Science, TV), LOC(TV, Rome)}
BE25,1(D) = {STUD(E25), ENR(E25, Arts, Pol), LOC(Pol, Milan)}

LetO = {MathStudent v ScientificStudent,ScienceStudent v ScientificStudent},
and M be:

ENR(x, Math, z) MathStudent(x)
ENR(x, Science, z) ScienceStudent(x)

ENR(x, y, z) enrolledIn(x, z)
LOC(x, y) locatedIn(x, y)

2) Consider each border associated to the tuples in λ+ as a CQ and compute
the complete s-to-o rewriting of each query, as described in [6]. The outcome of
this step is a CQ over O, for each border:

q1(A10)← MathStudent(A10) ∧ enrolledIn(A10, TV) ∧ locatedIn(TV, Rome)
q2(B80)← MathStudent(B80) ∧ enrolledIn(B80, Sap) ∧ locatedIn(Sap, Rome)
q3(C12)← ScienceStudent(C12) ∧ enrolledIn(C12, Norm)
q4(D50)← ScienceStudent(D50) ∧ enrolledIn(D50, TV) ∧ locatedIn(TV, Rome)

3) This step aims at reducing the number of queries generated by the previous
ones. The goal is not trivial, because on the one hand, one would like to keep the
specificity of the grounded queries, to make the explanation more closely related
to the tuples classified as positive examples. On the other hand, one would like
the query explaining the classifier to be as general as possible. To overcome this
issue, we introduce the notion of query pattern. We say that two CQs have the
same pattern, if they are conjunctions of the same set of atoms. Our approach
is based on the intuition that similar tuples of the database will be described by
similar properties, and will form similar query patterns when processed by the
previous steps of the algorithm. For each pattern, we keep only the constants
that are shared by all the queries of the pattern. All the other constants will be
substituted by new variables:

q5(x)← MathStudent(x) ∧ enrolledIn(x, y) ∧ locatedIn(y, Rome)
q6(C12)← ScienceStudent(C12) ∧ enrolledIn(C12, Norm)
q7(D50)← ScienceStudent(D50) ∧ enrolledIn(D50, TV) ∧ locatedIn(TV, Rome)

4) Let k be the highest number of atoms in a query pattern, in our example
k = 3. This step enumerates, evaluates, and computes the Z-score of all the
possible UCQs such that: (i) each CQ only uses atoms that belongs to at least
one query pattern, and (ii) each CQ has at most k atoms. The output of the
algorithm will be the UCQ that has the highest Z-score. Consider the expression
Z = zδ1 × zδ4 × zδ5

3 , i.e. the average of the evaluations of each function of F . One
can verify that, in this example, the query q(x)← ScientificStudent(x) achieves
the perfect Z-score of 1.0, and is therefore the best explanation of the classifier
λ.

4 Conclusions

Our short term goal in this research is to carry out an evaluation of both the
framework and the technique presented in this paper to real world settings. Also,
we will explore possible optimisations of the algorithm presented in this paper,
both in terms of the number of queries evaluated, and on possible alternative
criteria to be used. Finally, this work needs to be compared with other works
based on similar reverse engineering processes, such as [13].

5 Acknowledgements

This work has been partially supported by Sapienza under the PRIN 2017 project
“HOPE” (prot. 2017MMJJRE), and by European Research Council under the
European Union’s Horizon 2020 Programme through the ERC Advanced Grant
WhiteMech (No. 834228).

Bibliography

[1] P. Barceló and M. Romero. The Complexity of Reverse Engineering Prob-
lems for Conjunctive Queries. Proceedings of the 16th International Seman-
tic Web Conference, 2017, page 17 pages, 2017.

[2] A. Bonifati, R. Ciucanu, and S. Staworko. Learning join queries from user
examples. ACM Trans. Database Syst., 40(4):24:1–24:38, Jan. 2016.

[3] L. Bühmann, J. Lehmann, P. Westphal, and S. Bin. Dl-learner structured
machine learning on semantic web data. In Companion Proceedings of the
The Web Conference 2018, WWW ’18, pages 467–471, Republic and Canton
of Geneva, Switzerland, 2018. International World Wide Web Conferences
Steering Committee.

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. Journal of Automated Reasoning, 39(3):385–429, 2007.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere. DL-
Lite: Practical reasoning for rich DLs. In Proceedings of the Seventeenth
International Workshop on Description Logic (DL 2004), volume 104 of
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2004.

[6] G. Cima, M. Lenzerini, and A. Poggi. Semantic characterization of data ser-
vices through ontologies. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI 2019), pages 1647–1653,
2019.

[7] F. Croce, G. Cima, M. Lenzerini, and T. Catarci. Ontology-based explana-
tion of classifiers. In Proceedings of the Workshops of the EDBT/ICDT 2020
Joint Conference, Copenhagen, Denmark, March 30, 2020, volume 2578 of
CEUR Workshop Proceedings. CEUR-WS.org, 2020.

[8] N. Fanizzi, G. Rizzo, C. d’Amato, and F. Esposito. Dlfoil: Class ex-
pression learning revisited. In Proceedings of the Twenty-First Interna-
tional Conference on Knowledge Engineering and Knowledge Management
(EKAW 2018), 2018.

[9] M. Funk, J. C. Jung, C. Lutz, H. Pulcini, and F. Wolter. Learning de-
scription logic concepts: When can positive and negative examples be sepa-
rated? In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pages 1682–1688. International Joint
Conferences on Artificial Intelligence Organization, 7 2019.

[10] V. Gutiérrez-Basulto, J. C. Jung, and L. Sabellek. Reverse engineering
queries in ontology-enriched systems: The case of expressive horn descrip-
tion logic ontologies. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pages 1847–1853. In-
ternational Joint Conferences on Artificial Intelligence Organization, 7 2018.

[11] M. Lenzerini. Ontology-based data management. In Proceedings of the
Twentieth International Conference on Information and Knowledge Man-
agement (CIKM 2011), pages 5–6, 2011.

[12] M. Lenzerini. Managing data through the lens of an ontology. AI Magazine,
39(2):65–74, 2018.

[13] M. Ortiz. Ontology-mediated queries from examples: a glimpse at the dl-lite
case. In GCAI 2019. Proceedings of the 5th Global Conference on Artificial
Intelligence, volume 65 of EPiC Series in Computing, pages 1–14, 2019.

[14] U. Straccia and M. Mucci. pfoil-dl: Learning (fuzzy) el concept descriptions
from crisp owl data using a probabilistic ensemble estimation. In Proceedings
of the 30th Annual ACM Symposium on Applied Computing, SAC ’15, pages
345–352, New York, NY, USA, 2015. ACM.

[15] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query reverse engineering.
The VLDB Journal, 23(5):721–746, Oct. 2014.

[16] M. M. Zloof. Query-by-example: The invocation and definition of tables and
forms. In Proceedings of the 1st International Conference on Very Large
Data Bases, VLDB ’75, pages 1–24, New York, NY, USA, 1975. ACM.

