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Abstract. A rule foam converts a neural black-box classifier into a prob-
abilistic rule-based ontology where a fresh Bayesian posterior describes
the relative rule firings for each input pattern. The rules define a gen-
eralized probability mixture that in turns yields the Bayesian posterior
over the rules or subsystems. The rules and posterior explain each ob-
served input-output pair and further give a confidence measure of the
predicted output in terms of the mixture’s conditional variance. A ran-
dom foam creates and combines several foams by randomly sampling the
neural classifier. It’s mixture structure gives a Bayesian posterior over
the constituent foam systems and a finer-grained Bayesian posterior over
each system’s rules. We illustrate the foam technique on a deep neural
classifier trained on the CIFAR-10 image dataset.
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1 Converting Neural Classifiers to Rule Foams

A rule foam is an adaptive and statistical rule base that can approximate and
help explain the mapping structure of a sampled neural classifier. The rule if-
part fuzzy sets often resemble bubbles of varying diameters as in Figure 1. A
generalized probability mixture p(y|x) governs the rule structure and gives rise
to a Bayesian posterior over the rules [9].

The neural classifier is a deep black box that maps input patterns to out-
put class labels coded as unit bit vectors. The neural network lacks a statistical
explanation both of its throughput mapping structure and of its output classi-
fication prediction. The rule foam’s mixture p(y|x) gives a proxy or explainer
system where the mixed probability densities correspond to rules. This gives a
fresh Bayesian posterior distribution p(j|y, x) over its rules for each input pattern
x and the input’s corresponding observed output classification y. The mixture’s
second moment also gives a conditional covariance that serves as a confidence
measure of the predicted output given what the foam system has learned.

The rule foam samples from the trained classifier and approximates it with m
if-then rules RA1→B1 , . . . ,RAm→Bm . The foam acts as a type of proxy ontology
for the neural black box. Figure 2 shows a sample rule from a 5000-rule foam
that approximates the neural classifier trained on the CIFAR-10 image dataset.
The if-parts Aj and then-parts Bj are quite general and can define probability
densities or fuzzy sets.
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A generalized probability mixture p(y|x) describes them if-then rulesRA1→B1
,

. . . ,RAm→Bm
[5]. The mixture p(y|x) absorbs them rulesRA1→B1

, . . . ,RAm→Bm

into p(y|x) = p1(x) pB1(y|x) + · · · + pm(x) pBm(y|x) as we explain in the next
section. The mixture structure gives at once a Bayesian posterior p(j|y, x) that
describes the relative rule firing of the jth rule for each pattern input x and ob-
served output y. Figure 3 shows the 7 most-probable rules for the trained foam’s
classification of the frog-pattern input. This probabilistic information helps de-
scribe the system’s classification performance and can assist other classification
algorithms such as pruning.

A rule foam and its governing mixture p(y|x) differ from Bayesian ontologies
that encode independence assumptions among random graphical random vari-
ables [2]. It also differs from using a conditional probability [7] to directly model
rules because the generalized mixing weights pj(x) give the relative importance
of each rule likelihood density pBj

(y|x) and because the resulting mixture struc-
ture gives rise to the Bayesian posterior over the rules as they fire. The proxy
system of [3] is interpretable but does not give a confidence measure of the clas-
sifier’s output. The rule system in [1] does use fuzzy sets but it does not have a
probabilistic structure over the rules as in a rule foam.

A random foam creates independent foams by randomly sampling with re-
placement from the same neural network. It then combines these independent
foam systems combining their throughput rules or their outputs [9]. The mix-
ture structure combines with the additive structure of the foam systems to give
telescoped Bayesian posteriors and conditional variances over both over the com-
bined systems and over their constituent rules. Random foams can combine their
throughput rule structure while random forests combine only their outputs. Fig-
ure 4 shows a 10-foam random foam and both its between-foam posteriors and
within-foam rule posteriors on the MNIST data set of hand-written digits.

Consider a K-class image classification problem. The input image x belongs
to one of the K classes C1, ..., CK that partition in the input pattern space.
The rule foam has m if-then rules RA1→B1

, . . . ,RAm→Bm
in its rule base. Let

Rj ∈ R denote the j-th rule for simplicity. The if-part of the Rj is a reference
image Ic if we let such a class centroid act as a proxy for the entire fuzzy class
of Cj (the fuzzy class or set defines a bubble in the foam). The then-part of Rj
is the class Ck and thus a unit bit vector. So the rules are in general subsets of
the input-output product space. The jth rule Rj or RjIc→Ck

with if-part Ic and
then-part Ck states that

RjIc→Ck
= Rj(Ic, Ck) = IF (input X looks like Ic) THEN (X ∈ Ck). (1)

Further information about the image could also help explain the rule and thereby
the system. The rule foam fires all m rules for each input x. It then weights and
combines these rules to give the final output F (x). We show below that this
corresponds to computing the conditional expectation E[Y |X = x] with respect
to the system’s generalized mixture p(y|x). The rule foam’s output F (x) ∈ [0, 1]K

is a K-dimensional probability vector. The kth component of this vector gives
the predicted class probability P (x ∈ Ck).
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Fig. 1. Rule foam: The neural classifier trains on the 2-class dataset. Then the rule
foam trains on this neural classifier. Each circle or bubble in the rule foam represents
the if-part fuzzy set of an if-then rule. The rule foam has larger rules in the class interior
and smaller rules near the class boundary. This helps mitigate rule explosion.

The rule foam also defines a Bayesian posterior distribution over all its rules
for each input-output pair. The next section shows how this posterior arises
from the system’s mixture p(y|x). The rule foam gives P (Rj |Ck, x) for all j =
1, ...,m given the observed input pattern x and output y or Ck. These posteriors
measure how much each rule contribute to the output F (x) and thus to the final
classification output Ck. This makes the rule foam interpretable in a probabilistic
sense as well as a modular rule-based sense.

Suppose that the foam misclassifies the pattern input x. The Bayesian poste-
riors point to the rule that contributed the most towards this misclassification.
Figure 3 shows why studying these rule weights can give insight into the mis-
classification. The Bayesian posterior can also help identify and prune useless or
harmful rules.

The rule foam’s rule base represents the knowledge about this K-class image
classification problem. The rule foam also gives a Bayesian posterior distribution
over its rule-base R. So the rule foam defines a type of proxy Bayesian ontology
for this knowledge domain given the trained deep network. The next section
gives the mathematical details.

2 Mixture Structure of Additive Rule-based Systems

A standard additive model (SAM) fuzzy system approximates the function f :
Rd → R using m ”if-then” fuzzy rules. The j-th rule has the fuzzy if-part set
Aj ⊂ Rd and the fuzzy then-part set Bj ⊂ R. The fuzzy sets Aj and Bj have
their respective unit-interval-valued indicator functions aj : Rd → [0, 1] and
bj : R → [0, 1] such that aj(x) = Degree(x ∈ Aj) and bj(y) = Degree(y ∈ Bj).
The jth fired then-part set Bj(x) has set function bj(y|x) = aj(x)bj(y) because
the system is standard.

The rule-based system’s total fired then-part set B(x) sums the fired rules
by summing the fired then-part sets: B(x) =

∑m
j=1 wjaj(x)Bj for rule weight
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Fig. 2. Example of one rule from a 5000-rule foam. The neural classifier trained on the
CIFAR-10 dataset. Then the rule foam trained on random samples from the trained
neural classifier. The if-part of the 2835th rule resembles a horse. The corresponding
then-part set is the class ‘horse’ and the unit bit vector that codes for it.

wj . Then the fuzzy rules define the generalized probability mixture p(y|x) [5]:

p(y|x) =
b(y|x)∫
b(y|x)dy

=

m∑
j=1

wjaj(x)Vj∑m
j=1 wjaj(x)Vj

bj(y)

Vj
=

m∑
j=1

pj(x)pBj (y) (2)

where aj and bj are the jth rule’s respective if-part and then-part fuzzy set
functions. The volume Vj =

∫
bj(y)dy > 0 is the volume of then-part set Bj .

The SAM structure bj(y|x) = aj(x)bj(y) gives the likelihood as bj(y|x) = bj(y).
The fuzzy system F : Rd → R arises naturally as the first moment of p(y|x):

F (x) = E[Y |X = x] =

∫
y p(y|x) dy =

m∑
j=1

pj(x)cj (3)

where cj is the j-th then-part centroid. The system output F (x) also arises
as F (x) = Centroid(B(y|x)). Mixing just two normal bell curves can always
exactly represent any bounded non-constant real function f such that f(x) =
E[Y |X = x] for curves centered at the infimum α and supremum β of f [5]:
p(y|x) = w(x)N(y|α, σ2

α) + (1 − w(x))N(y|β, σ2
β) for any variances σ2

α and σ2
β

if w(x) = β−f(x)
β−α defines the Watkins coefficients as in the exact two-rule SAM

representation of a bounded real function [11]. We recover the Watkins SAM
representation in the deterministic limit when the variances σ2

α and σ2
β go to zero

and thus when the bell curves reduce to delta spikes [6]. Consider the exponential
target function e−x with α = 0 and β = 1. Then the representing mixture is
p(y|x) = (1− e−x)N(y|0, 1) + e−xN(y|1, 1). This gives E[Y |X = x] = e−x.
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Fig. 3. A snapshot of the rule foam”s Bayesian posterior over all its rules. The input
pattern is on the left. The seven highest posteriors are on the right. The x-axis lists the
rule numbers. The y-axis lists the corresponding posterior probability. The figure also
shows the if-parts of the seven rules. Rule 621 contributes the most towards classifying
the input pattern.

The SAM rule-based system measures the uncertainty in its output through
the conditional variance

V [Y |X = x] =

m∑
j=1

pj(x)σ2
Bj

+

m∑
j=1

pj(x)(cj − F (x))2 (4)

where σBj
is the j-th rule’s then-part dispersion. The second term in equation

(4) imposes an interpolation penalty on the system for guessing with respect to
the given set of rules. We are more confident in the system’s output relative to
the stored rules if the variance is low and less so when the variance is high.

The same mixture structure gives rise to the Bayesian posterior over the rules.
This holds because the generalized mixture p(y|x) in (2) has the same form as
the elementary theorem on total probability: p(y|x) = p1(x) pB1

(y|x) + · · · +
pm(x) pBm(y|x). The mixing weights pj(x) define generalized rule priors and the
pBj (y) define generalized rule likelihoods. This total-probability structure gives
at once a posterior probability density over the rules from Bayes theorem:

p(j|y, x) =
P (Z = j, Y = y|X = x)

p(y|x)
=
pj(x)pBj (y)

p(y|x)
=

pj(x)pBj (y)∑m
j=1 pj(x)pBj

(y)
(5)

for the j-th rule firing given observed input x and output y. These posteriors
also give the contribution of each rule to the final output. Figure 3 shows 7 of the
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5,000 rule-posterior probabilities for a given CIFAR-10 input image. See [8] for
further details on how to implement a classifier rule foam using adaptive vector
quantization.

3 Combining q-many Rulebased Subsystems

Additive fuzzy systems combine through a convex combination of their fired
then-part sets. So the q additive systems F1, . . . , Fq combine by adding their
weighted rule firings vkbk(y|x):

b(y|x) =

q∑
k=1

vkbk(y|x) =

q∑
k=1

mk∑
j=1

vkwkj a
k
j (x)bkj (y) (6)

where vk is the weight of the kth SAM system Fk and where bk(y|x) sums all rule
firings in this subsystem. The jth rule of this SAM has weight wkj , the if-part

set function akj (x), and the then-part set function bkj (y).

Additively combining any q rule-based systems F 1, . . . , F q gives a generalized
mixture p(y|x) that mixes q conditional probability p1(y|x), . . . , pq(y|x):

p(y|x) =

∑q
k=1 v

kbk(y|x)∑q
l=1 v

l
∫
bl(y|x)dy

=

∑q
k=1 v

kbk(y|x)U
k(x)

Uk(x)∑q
l=1 v

lU l(x)
(7)

=

q∑
k=1

[
vk∑q

l=1 v
lU l(x)

]pk(y|x) =

q∑
k=1

uk(x)pk(y|x). (8)

So even in this general case a Bayesian posterior results over the q subsystems:

p(k|y, x) =
uk(x)pk(y|x)∑q
l=1 u

l(x)pl(y|x)
. (9)

The additive structure of the q SAM subsystems further simplifies this overall
mixture into a double sum of generalized priors times rule likelihoods:

p(y|x) =

q∑
k=1

mk∑
j=1

vkwkj a
k
j (x)V kj∑q

k=1

∑mk

j=1 v
kwkj a

k
j (x)V kj

bkj (y)

V kj
(10)

=

q∑
k=1

mk∑
j=1

pkj (x)pBk
j
(y) (11)

where V kj =
∫
bkj (y)dy is the volume of the kth SAM’s jth then-part set Bkj .

This gives in turn the Bayesian posterior p(j, k|y, x) in (14) over the rules of the
kth subsystem as in Figure 4.

This mixture’s expected value gives the function approximator F :

F (x) = E[Y |X = x] =

∫
y p(y|x) dy =

q∑
k=1

mk∑
j=1

pkj (x)ckj . (12)
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where ckj is the then-part set’s centroid. This combination also gives an uncer-
tainty measure through its conditional variance:

V [Y |X = x] =

q∑
k=1

mk∑
j=1

pkj (x)σ2
Bk

j
+

q∑
k=1

mk∑
j=1

pkj (x)(ckj − F (x))2 (13)

where σBk
j

is the then-part dispersion. The mixture in (11) also gives a Bayesian

posterior distribution over all the SAMs and their rules.

p(j, k|y, x) =
pkj (x)pBk

j
(y)∑q

k=1

∑mk

j=1 p
k
j (x)pBk

j
(y)

. (14)

A random foam trains and combines several independent foams. The ran-
dom foam measures its uncertainty through its conditional variance in (13). It
also measures the confidence of each constituent foam in their outputs through
equation (4). Random foam gives the contribution of all the rules through the
Bayesian posteriors given by (14). It also measures the contribution of each
constituent foam through a posterior distribution over all the foams.

p(k|y, x) =

mk∑
j=1

p(j, k|y, x) =

∑mk

j=1 p
k
j (x)pBk

j
(y)∑q

k=1

∑mk

j=1 p
k
j (x)pBk

j
(y)

(15)

Figure 4 shows an example of such telescoping posteriors for a 10-foam random
foam trained on the MNIST dataset of handwritten digits.

4 Conclusions

A rule foam can help explain a neural classifier by training on it and then
using the foam’s probabilistic mixture structure. This includes the rule mixture’s
Bayesian posterior over the rules and its conditional variance. A foam suffers from
rule explosion because of its inherent graph cover. The foam’s if-part or bubble
structure can help mitigate this rule explosion. A random rule foam combines
statistically independent foams by additively combining the rules or throughputs
of its constituent foams. This gives a telescoped posteriors and variances both
over the foams that help produce a final output classification and over those
foams’ constituent rules.

A key problem remains: How well does the foam proxy or explainer system
approximate the sampled neural classifier? A foam or a random foam system
is in principle a uniform function approximator [9, 4, 6]. But its approximation
accuracy depends on the sampling and on the foam structure. We can follow
the suggestion of Rudin [10] and just discard the underlying neural network
and work instead with the trained foam if the foam sufficiently approximates
the sampled neural classifier. The trained foam may otherwise serve only an
auxiliary explanatory role.
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Fig. 4. Telescoping Bayesian posteriors in a Random Foam. (a) The random foams
trains 10 foams and then combines them. The random foam then correctly classifies
the input pattern from class ‘3’. (b) The random foam gives a Bayesian posterior over
all its constituent foams for this input. The foam numbers lie along x-axis and their
probabilities lie along the y-axis. Foam 3 contributes most to the classification. (c) The
random foam also gives a posterior distribution over the rules present inside the foams.
The image shows the 10 rules with the highest posterior probabilities. The x-axis gives
the foam numbers and the rule numbers. The y-axis gives their probability. ‘F3 R273’
refers to 273rd rule of the 3rd foam. This rule contributed most to the classification.
The rule if-part centroids appear as the images below their posteriors.
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