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1 Motivation
Imagine the robot in Figure 1a arranging objects in desired configurations on a table,
and estimating the occlusion of objects and stability of object configurations. An object
is occluded if the view of any fraction of its frontal face is hidden by another object,
and a configuration (i.e., a stack of objects) is unstable if any object in it is unstable.
To perform these tasks, the robot extracts information from on-board camera images,
reasons with this information and incomplete domain knowledge, and executes actions
to achieve desired outcomes. The robot also incrementally learns previously unknown
constraints governing domain states, and responds to questions about its plans, deci-
sions, and underlying beliefs. For instance, the plan to achieve the goal of having the
pig on top of the orange block in Figure 1b may be to move the blue block on to the ta-
ble and place the pig on the orange block. When asked to justify a plan step, e.g., “why
do you want to pick up the blue block first?”, the robot answers “I have to put the pig
on the orange block. The blue block is on the orange block”; when asked to explain an
action choice, e.g., “why didn’t you pick up the pig first?”, the robot responds “Because
the blue block is on the orange block”.

Our work seeks to enable such on-demand explanations of a robot’s decisions and
beliefs, and hypothetical situations, in the form of descriptions of relations between rel-
evant objects, actions, and domain attributes. This “explainability” can help improve
the underlying algorithms and establish accountability, but it is challenging to achieve

(a) Test scenario. (b) Image from robot’s camera.

Fig. 1: (a) Motivating scenario of a manipulator arranging objects in desired configura-
tions on a tabletop; (b) Image from the camera on the Baxter robot’s left gripper.
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with integrated robot systems that include knowledge-based reasoning methods (e.g.,
for planning) and data-driven (deep) learning algorithms (e.g., for pattern recognition).
Drawing on research in cognitive systems, which indicates the advantages of reason-
ing with different representations [11], our architecture couples the complementary
strengths of knowledge-based and data-driven algorithms, and provides transparent de-
cision making. It builds on our prior work that combined non-monotonic logical rea-
soning and deep learning for scene understanding in simulated images [14]. Here, we
summarize the ability of the architecture to:

– Incrementally merge newly acquired information with existing knowledge, exploit-
ing the interplay between representation, reasoning, and learning.

– Automatically extract relevant information and construct relational descriptions of
the robot’s decisions and beliefs, including under hypothetical situations.

These capabilities are evaluated in the context of planning and scene understanding
tasks in simulated scenes and on a physical robot manipulating tabletop objects. The
robot (i) computes and executes actions to arrange objects in desired configurations;
and (ii) estimates occlusion of scene objects and stability of object configurations. This
paper is an extended abstract of our recent conference paper [15].

2 Related Work
Early work on explanation generation drew on research in psychology and linguistics
to characterize explanations [6], and developed computational methods for explaining
unexpected observations [8]. Recent work can be broadly categorized into two groups.
Methods in one group modify or transform learned models to make their decisions
more interpretable [9], or bias a reasoning system towards making decisions easier for
humans to understand [18]. Methods in the other group seek to make decisions more
transparent, e.g., by combining classical first order logical reasoning with interface de-
sign [3], or defining proof trees that describe the trace of a computation [5]. There has
also been work on describing why a particular solution was obtained for a given prob-
lem using non-monotonic logical reasoning [4]. These methods are agnostic to how an
explanation is structured or assume comprehensive domain knowledge. Methods are
also being developed to make deep network models more interpretable, e.g., by con-
structing heat maps of relevant features [2].

Our work focuses on integrated robot systems that use a combination of knowledge-
based and data-driven algorithms to represent, reason with, and learn from incomplete
commonsense domain knowledge and noisy observations. We enable such robots to
provide relational descriptions of decisions, beliefs, and hypothetical situations, capa-
bilities that are not supported by existing systems [1,12]. We build on existing work on
making decisions more transparent, and on work in our group on explainable agency [10],
a theory of explanations [17], and on combining non-monotonic logical reasoning and
deep learning for scene understanding [14].

3 Architecture
Figure 2 shows the architecture. Components to the left of the dashed vertical line com-
bine non-monotonic logical reasoning and deep learning for classification in simulated
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Fig. 2: Architecture combines strengths of deep learning, non-monotonic logical rea-
soning with incomplete knowledge, and inductive learning. New components to the
right of the dotted line support desired explainability.

images [14]. Components to the right of the dashed line expand reasoning capabilities
and answer questions about decisions, beliefs, and hypothetical situations. We summa-
rize these components here; see [15] for more details.

The primary sensor inputs to the architecture are RGB images of simulated scenes,
or noisy views of any given scene from the robot’s cameras. From each image, the
feature extraction component uses a probabilistic algorithm to extract objects and at-
tributes. Also, the spatial relations between objects is computed using a learned histogram-
based grounding for prepositional words such as “above”, “far”, and “in” [13].

To represent and reason with incomplete domain knowledge, we use CR-Prolog,
an extension to Answer Set Prolog (ASP)3. ASP is a declarative language that encodes
default negation and epistemic disjunction, and supports non-monotonic logical reason-
ing [7]. A domain’s description comprises a system description D and a history H. D
comprises a sorted signature Σ with basic sorts, actions, and domain attributes (stat-
ics and fluents); and axioms that encode the domain dynamics. H comprises records of
observations (of fluents) and of the execution of an action at a particular time step. Plan-
ning, diagnostics, and inference are reduced to computing answer sets of Π(D,H) [7]
and extracting relevant relations. Other work in our group combined coarse-resolution
non-monotonic logical reasoning with probabilistic reasoning over the relevant part of a
finer resolution representation [16]. In this work, we limit ourselves to logical reasoning
at one resolution to focus on the interplay between reasoning and learning.

For any given image, the robot first tries to estimate occlusion of objects and sta-
bility of object configurations using ASP-based reasoning. If an answer is not found,
or an incorrect answer is found (during training), the robot automatically reasons with

3 We use the terms “CR-Prolog” and “ASP” interchangeably.
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(a) Execution Example 1. (b) Execution Example 2. (c) Additional example.

Fig. 3: (a) Relation between blue cube and red cube is important for the explanation
in Execution Example 1; (b) The rubber duck is the focus of attention in Execution
Example 2; and (c) Example of another trial (not described in this paper).

knowledge of the task to identify and ground the relevant axioms and relations in the
image to determine the relevant regions of interest (ROIs). For instance, to explore the
stability of object configurations in Figure 3a, the robot would automatically identify
the stack with the blue, orange, and red blocks. Parameters of existing Convolutional
Neural Network (CNN) architectures are tuned to map information from each ROI to
the classification labels [14].

Image features and spatial relations extracted from ROIs and used to train a CNN,
along with the labels for occlusion and stability, are also used to incrementally con-
struct a decision tree (during training) that summarizes the corresponding state transi-
tions. Branches of the tree that satisfy certain thresholds are used to construct candidate
axioms that are validated and added to the ASP program for subsequent reasoning.

Human verbal/text input is parsed using existing software and a controlled vocab-
ulary, labeled using a part-of-speech (POS) tagger, and normalized with the lemma list
and WordNet. This text helps identify the type of request, which may be a desired goal
or a question about decisions, beliefs, or hypothetical events. In the former case, the
goal is sent to the ASP program for planning. The robot executes the plan, replanning
when unexpected action outcomes cannot be explained, until the goal is achieved. In
the latter case, the “Program Analyzer” reasons with the domain knowledge and cur-
rent beliefs, and traces the evolution of beliefs by inferring the application of relevant
axioms. The relevant literals are then inserted into generic response templates based on
the controlled vocabulary, resulting in human-understandable (textual) descriptions that
are converted to synthetic speech if needed. For more details, please see [15].

4 Execution Traces
The following execution traces illustrate our architecture’s ability to construct relational
descriptions explaining the decisions, beliefs, and the outcomes of hypothetical actions.

Execution Example 1 [Plans, actions, and beliefs]
Consider a robot that starts with objects as shown in Figure 3a. The robot is assigned
the goal of achieving a state in which the red block is on top of the orange block,
i.e., holds(relation(on, red block, orange block), I). The robot answers the following
questions after executing a plan and successfully achieving the assigned goal:
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– Human: ”Please describe the plan.”
Baxter: ”I picked up the blue block. I put the blue block on the table. I picked up
the orange block. I put the orange block on the table. I picked up the red block. I
put the red block on the orange block.”

– The human may ask the robot to justify a particular action in the executed plan.
Human: ”Why did you pick up the blue block at step 0?”
Baxter: ”Because I had to pick up the red block, and it was below the blue block.”
The constructed answer is also used to automatically highlight the relevant image
regions that influenced this answer, as shown in Figure 3a.

– The human now may ask about particular actions that were not considered.
Human: ”Why did you not put down the orange block on the blue block?”
Baxter: ”Because the blue block is small.” In the absence of a reference to a par-
ticular time step, the robot answers the question based on the single instance (in
the executed plan) of putting the orange block on another block or surface. In addi-
tion, the answer is based on learned axiom, i.e., that objects with a small base are
typically unstable.

– The human may also ask about particular beliefs.
Human: ”Why did you believe that the red block was below the blue block in the
initial state?”
Baxter: ”Because I observed the red block below the blue block in step zero.”

Execution Example 2 [Learning and explanation]
In some situations, the robot may be unable to respond to the human request or question
because it is not possible to achieve the desired object configuration or belief. Even
in such cases, our architecture enables the robot to answer explanatory questions. For
instance, consider the simulated scene in Figure 3b, with the following interaction:

– Human: ”Please put the pitcher on the duck.”
This action is not executed because of a constraint learned during a previous trial
that any object configuration that has an object on another object with an irregular
surface will be unstable.

– If asked, the robot can justify its decision of not executing the action.
Human: ”Why did you not put the pitcher on the duck?”.
Robot: ”Because the duck has an irregular surface.”
The image region relevant to the construction of the robot’s answer to the question
posed by the human is automatically highlighted in the corresponding image, as
indicated in Figure 3b above.

This example illustrates how integrating reasoning and learning helps justify the deci-
sion to not execute a requested action that will have an unfavorable outcome.

Summary: Overall, our architecture automatically reasons with just the relevant infor-
mation; incrementally revises axioms; identifies image regions, attributes, and actions
contributing to particular decisions and beliefs; and provides a partial understanding of
the behavior of the learned CNNs. Experimental results indicate the ability to (i) incre-
mentally reduce uncertainty about the scene by learning previously unknown axioms;
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and (ii) reliably and efficiently construct explanations in the form of relational descrip-
tions by automatically identifying and reasoning with the relevant knowledge despite
noisy sensing and actuation [15]. In the future, we will integrate these capabilities with
the architecture that tightly couples coarse-resolution non-monotonic logical reasoning
and fine-resolution probabilistic reasoning [16].
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