Explaining ethical planning using ASP

By Martin Jedwabny, Pierre Bisquert and Madalina Croitoru
XLoKR, 13th September 2020
Introduction

- We place ourselves in the intersection between Planning AI and Ethics.
- **Question (fundamental)**: how can we apply ideas from the field of ethics to make agents behave in a way that we would characterise as ethically correct?
- **Planning** models define systems of states and actions.
Hospital dilemma:

- An autonomous vehicle is tasked to get its passengers as fast as possible from their house to a hospital, either through a **highway** (fast) or a **sideroad** (slow).
- To take the highway, the vehicle has to pass through a **toll** and present its id.
- If it presents its own **id ‘A’**, it will have to pay a **fine**.
- If the vehicle presents another id ‘B’ i.e. if it **lies** about its identity, no fine will be paid.
A STRIPS-like [Helmert2006] domain is a 4-tuple $T = <V, s_0, s_*, O>$:

a. V is a finite set of fluents (grounded terms) with a domain. e.g.: 'at', 'toll_barrier_open' are fluents
 $\text{Dom}(\text{at}) = \{\text{house, sideroute, toll, highway, hospital}\}$

b. s_0 is the initial state (a mapping from v in V to $\text{Dom}(v)$). e.g.: $s_0 = \{\text{at=house, toll_barrier_open=false, has_fine=false, lied=false, took_highway=false}\}$

c. s_* is the goal condition, i.e. a mapping from some subset of the fluents v in V to $\text{Dom}(v)$, e.g.: $\{\text{at=hospital}\}$

d. O is a finite set of actions $a = <a_{\text{pre}}, a_{\text{eff}}>$, a_{pre} denotes the preconditions, and a_{eff}, the effects of the action. e.g. $\text{go(toll,highway)} = <\{\text{at=toll, toll_barrier_open=true}\}, \{\text{at=highway, took_highway=true}\}>$
Given a state s and an action $a = \langle a_{\text{pre}}, a_{\text{eff}} \rangle$, the successor state $\text{succ}(s,a)$:

a. Is defined iff $a_{\text{pre}} \subseteq s$.

b. If defined, for every fluent $v \in V$, let $(v = d) \in s$:

 ▪ If there is some $d' \in \text{Dom}(v)$ such that $(v = d') \in a_{\text{eff}}$, then $(v = d') \in \text{succ}(s,a)$

 ▪ Otherwise $(v = d) \in \text{succ}(s,a)$.

A plan is a sequence $[a_0,...a_n]$ of actions that goes from s_0 to a state that includes s_*: $s_* \subseteq \text{succ}(a_n, ..., \text{succ}(a_0, s_0))$

e.g: $[\text{go(house, sideroute)}, \text{go(sideroute, hospital)}]$
Normative ethics

- In STRIPS-like description:

\[V = \{ \text{at, toll_barrier_open, has_fine, lied, took_highway} \}, \text{with}\]
\[\text{Dom}(\text{at}) = \{\text{house, sideroute, toll, highway, hospital}\}\]
\[\text{Dom}(\text{toll_barrier_open}) = \ldots = \text{Dom}(\text{took_highway}) = \{\text{true, false}\}, \]

\[s_0 = \{ \text{at=house, toll_barrier_open=false, has_fine=false, lied=false, took_highway=false} \}, \]

\[s_* = \{ \text{at=hospital} \}, \]

\[O = \{ \text{go(house, sideroute)=\langle at=house, at=sideroute \rangle, go(sideroute, hospital)=\langle at=sideroute, at=hospital \rangle, go(house, toll)=\langle at=house, at=toll \rangle, go(toll, highway)=\langle at=toll, toll_barrier_open=true, at=highway, took_highway=true \rangle, go(highway, hospital)=\langle at=highway, at=hospital \rangle, present_toll_id(A)=\langle at=toll, toll_barrier_open=false, toll_barrier_open=true, has_fine=true \rangle, present_toll_id(B)=\langle at=toll, toll_barrier_open=false, toll_barrier_open=true, lied=true \rangle} \}. \]
Question: what kinds of ethics can be applied to planning and decision making? and how?

Normative ethics: the subfield of ethics that studies the permissibility of actions i.e. what is right to do in a certain situation.

- **Consequentialist**: only considers action consequences, then compares sets of consequences of actions to determine which outcome is the best,
- **Deontological**: what is considered permissible is modeled with a set of strict rules that capture moral obligations and prohibitions, and
Normative ethics

- In the literature:
 a. **Consequentialist**: obtaining a utility for each possible action:

 Action -> Utility

 “Going through the highway -> +5”
 “Had a fine -> -6”

 b. **Deontological**: obtaining a set of rules/norms:

 State x Action -> {Permissible, Forbidden}

 “Lying about your identity to avoid being fined is Forbidden”
In STRIPS-like description:

\[V = \{ \text{at, toll_barrier_open, has_fine, lied, took_highway} \}, \]
with
\[\text{Dom(at)} = \{ \text{house, sideroute, toll, highway, hospital} \}, \]
\[\text{Dom(toll_barrier_open)} = \ldots = \text{Dom(took_highway)} = \{ \text{true, false} \}, \]

\[s_0 = \{ \text{at=house, toll_barrier_open=false, has_fine=false, lied=false, took_highway=false} \}, \]
\[s^* = \{ \text{at=hospital} \}, \]

\[O = \{ \text{go(house, sideroute)} = \langle \text{at=house}, \text{at=sideroute} \rangle, \]
\[\text{go(sideroute, hospital)} = \langle \text{at=sideroute}, \text{at=hospital} \rangle, \]
\[\text{go(house, toll)} = \langle \text{at=house}, \text{at=toll} \rangle, \]
\[\text{go(toll, highway)} = \langle \text{at=toll, toll_barrier_open=true}, \text{at=highway, took_highway=true} \rangle, \]
\[\text{go(highway, hospital)} = \langle \text{at=highway}, \text{at=hospital} \rangle, \]
\[\text{present_toll_id(A)} = \langle \text{at=toll, toll_barrier_open=false}, \text{toll_barrier_open=true, has_fine=true} \rangle, \]
\[\text{present_toll_id(B)} = \langle \text{at=toll, toll_barrier_open=false}, \text{toll_barrier_open=true, lied=true} \rangle. \]
Consequentialism in planning can be implemented with:

a. A total order ‘<’ on sets of fluent assignments (v=d) with d in Dom(v), which we call consequentialist base.
 e.g. \{has_fine=true, took_highway=true\} < \{has_fine=false, took_highway=false\}

b. **Utilitarian**: the most typical way of producing this preference order is with:
 - an utility function u(v=d) that maps assignments to numeric values, and
 - an aggregation function on utilities, e.g. overall sum.
 e.g.
 \[u(\text{has_fine=false})=0, u(\text{has_fine=true})=-6, \\
 u(\text{took_highway=false})=0, u(\text{took_highway=true})=5, \\
 u(\{\text{has_fine=true, took_highway=true}\}) = 5-6 = -1. \]
Deontological ethics in planning

- **Deontological ethics** in planning: there are two main ways to represent deontological principles in planning, deontic logics and norms. Here, we focus on norms.

- A **deontological base** is a set of norms of the form:

 \[b = (b_{type}, b_{enf}) \]

 where:
 - \(b_{type} \) is in \{obligation, prohibition\}, and
 - \(b_{enf} \) is a set of fluent assignments 'v=d', denoting the enforced restrictions.

 e.g.:
 - <prohibition, {lied=true}>
 - <obligation, {took_highway=true}>
 - <prohibition, {at=sideroute}>

Our model: A 6-tuple $T = \langle V, s_0, s_*, O, u, B \rangle$, where:
- $\langle V, s_0, s_*, O \rangle$ is a STRIPS-like domain
- u is a utility function over fluent assignments
- B is a set of norms

Utilities:
- $u(\text{at=hospital}) = 10$,
- $u(\text{has_fine=true}) = -6$,
- $u(\text{took_highway=true}) = 5$
- $u(\text{lied=true}) = -2$
- $u(v=d) = 0$ for all other fluents/values

Norms:
- $b = \langle \text{prohibition}, \{\text{lied=true}\} \rangle$
Implementation

- Answer set programming (ASP) allows us to test ideas using logic programming.
- It enables the planning system to be explainable.
- There are many ASP planners that are very efficient.
- The most popular encoding for planning problems is PDDL. STRIPS and many of its extensions encoded in PDDL can be translated to ASP, using PLASP [Dimopoulos2017].
Implementation

- This is how the *Hospital dilemma* problem is modeled in ASP using our framework:

Domain (STRIPS-like):

- fluent(at). ... fluent(took_highway).
- action(go(house, sideroute)).
- action(go(sideroute, hospital)). ...
- action(present_id(a)). action(present_id(b)).
- precondition(go(house, sideroute), at, house). ...
- effect(go(house, sideroute), at, sideroute). ...
- initialState(at, house). ...
- initialState(lied, false).
- goal(at, hospital).

Domain (ethics):

- % Utilities
- utility(at, hospital, 10).
- utility(has_fine, true, -6).
- utility(took_highway, true, 5).
- utility(lied, true, -2).
Implementation

- This is how the *Hospital dilemma* problem is modeled in ASP using our framework:

```prolog
Planner (fragment):

action_overall_utility(Action, Utility) :- action(Action),
    Utility = #sum { U, Fluent, Value : utility(Fluent, Value, U), effect(Action, Fluent, Value) }.

permitted(Action, t, overall_utility) :- possible(Action, t),
    not forbidden(Action, t, overall_utility).

forbidden(Action1, t, overall_utility) :- possible(Action1, t), possible(Action2, t, overall_utility),
    action_overall_utility(Action1, Utility1),
    action_overall_utility(Action2, Utility2), Utility1 < Utility2.

:- occurs(Action, t), forbidden(Action, t, EthicalBase), enforce_ethics(EthicalBase).
1 {occurs(Action, t) : action(Action)} 1.
```
Explanations

We want to provide a justification to why an action was chosen, why other actions were not chosen, on ethical terms with our framework. Some of the work in explainable ASP:

- [Pontelli2009] present two methods for producing a graph-based explanation of the truth value of an atom w.r.t. a given answer set (offline) or during computation (online).
- [Schulz2014] justify literals w.r.t. a logic program and answer set in argumentation-theoretic terms using Assumption-Based Argumentation (ABA).
- Survey of explanations in ASP by Fanndinno and Schulz [Fandinno2019].

e.g.: offline justification [Pontelli2009] of ‘p’ w.r.t. answer set \{p,q,r,s\} and program P:

\[
P = \{ \begin{align*}
p & :- q \\
q & :- r, s \\
r & :- \text{not } t \\
s & \\
\end{align*}
\}
\]
Thanks

Questions?
References

- [Helmert2006] The fast downward planning system
- [Pontelli2009] Justifications for logic programs under answer set semantics
- [Schulz2014] Justifying answer sets using argumentation
- [Fandinno2019] Answering the "why" in answer set programming
- [Dimopoulos2017] plasp 3: Towards effective ASP planning