
By Martin Jedwabny, Pierre Bisquert and Madalina Croitoru

XLoKR, 13th September 2020

Explaining ethical
planning using ASP

● We place ourselves in the intersection between Planning AI and Ethics.

● Question (fundamental): how can we apply ideas from the field of ethics to

make agents behave in a way that we would characterise as ethically correct?

● Planning models define systems of states and actions.

Introduction

#
#
#
#
https://www.draw.io/?page-id=KPic3-CFNzj2jOvbzXE6&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Introduction
Hospital dilemma:

● An autonomous vehicle is tasked to get its passengers as fast as possible from their

house to a hospital, either through a highway (fast) or a sideroad (slow).

● To take the highway, the vehicle has to pass through a toll and present its id.

● If it presents its own id ‘A’, it will have to pay a fine.

● If the vehicle presents another id ‘B’ i.e. if it lies about its identity, no fine will be paid.

#
#
#
#
https://www.draw.io/?page-id=X9MWKPD9YXAG5H265iy7&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

● A STRIPS-like [Helmert2006] domain is a 4-tuple T = <V, s_0, s_*, O> :
a. V is a finite set of fluents (grounded terms) with a domain.

e.g: ’at’, ‘toll_barrier_open’ are fluents
Dom(at) = {house, sideroute, toll, highway, hospital}

b. s_0 is the initial state (a mapping from v in V to Dom(v)).
e.g: s_0 = { at=house, toll_barrier_open=false, has_fine=false,

lied=false, took_highway=false}

c. s_* is the goal condition, i.e. a mapping from some subset of the
fluents v in V to Dom(v),
e.g: {at=hospital}

d. O is a finite set of actions a=<a_pre, a_eff>, a_pre denotes the
preconditions, and a_eff, the effects of the action.
e.g. go(toll,highway)= <{at=toll, toll_barrier_open=true},

{at=highway, took_highway=true}>

Planning framework

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

● Given a state s and an action a=⟨a_pre, a_eff⟩, the

successor state succ(s,a):
a. Is defined iff a_pre⊆s.

b. If defined, for every fluent v ∈ V , let (v = d) ∈ s:

■ If there is some d’ ∈ Dom(v) such that (v = d’) ∈

a_ef f , then (v = d’) ∈ succ(s,a)

■ Otherwise (v = d) ∈ succ(s,a).

● A plan is a sequence [a_0,...a_n] of actions that goes

from s_0 to a state that includes s_*:

s_* ⊆ succ(a_n, … , succ(a_0, s_0))

e.g: [go(house, sideroute), go(sideroute, hospital)]

Planning framework

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

V = {at, toll_barrier_open, has_fine, lied, took_highway}, with
Dom(at)={house, sideroute, toll, highway, hospital}
Dom(toll_barrier_open)= … =Dom(took_highway)={true, false},

s_0 = { at=house, toll_barrier_open=false, has_fine=false,
lied=false, took_highway=false},

s_* = { at=hospital },

O = { go(house,sideroute)=<{at=house},{at=sideroute}>,
go(sideroute,hospital)=<{at=sideroute},{at=hospital}>,
go(house,toll)=<{at=house},{at=toll}>,
go(toll,highway)=< {at=toll, toll_barrier_open=true}, {at=highway, took_highway=true}>,
go(highway,hospital)=<{at=highway},{at=hospital}>,
present_toll_id(A)=<{at=toll, toll_barrier_open=false},{toll_barrier_open=true, has_fine=true}>,
present_toll_id(B)=<{at=toll, toll_barrier_open=false},{toll_barrier_open=true, lied=true}>}.

● In STRIPS-like description:

Normative ethics

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

● Question: what kinds of ethics can be applied to planning and decision

making? and how?

● Normative ethics: the subfield of ethics that studies the permissibility of

actions i.e. what is right to do in a certain situation.
a. Consequentialist: only considers action consequences, then compares sets of

consequences of actions to determine which outcome is the best,

b. Deontological: what is considered permissible is modeled with a set of strict rules

that capture moral obligations and prohibitions, and

Normative ethics

#
#
#
#

● In the literature:
a. Consequentialist: obtaining a utility for each possible action:

Action -> Utility

“Going through the highway -> +5”

“Had a fine -> -6”

b. Deontological: obtaining a set of rules/norms:

State x Action -> {Permissible, Forbidden}

“Lying about your identity to avoid being fined is Forbidden”

Normative ethics

#
#
#
#

V = {at, toll_barrier_open, has_fine, lied, took_highway}, with
Dom(at)={house, sideroute, toll, highway, hospital}
Dom(toll_barrier_open)= … =Dom(took_highway)={true, false},

s_0 = { at=house, toll_barrier_open=false, has_fine=false,
lied=false, took_highway=false},

s_* = { at=hospital },

O = { go(house,sideroute)=<{at=house},{at=sideroute}>,
go(sideroute,hospital)=<{at=sideroute},{at=hospital}>,
go(house,toll)=<{at=house},{at=toll}>,
go(toll,highway)=< {at=toll, toll_barrier_open=true}, {at=highway, took_highway=true}>,
go(highway,hospital)=<{at=highway},{at=hospital}>,
present_toll_id(A)=<{at=toll, toll_barrier_open=false},{toll_barrier_open=true, has_fine=true}>,
present_toll_id(B)=<{at=toll, toll_barrier_open=false},{toll_barrier_open=true, lied=true}>}.

● In STRIPS-like description:

Normative ethics

u(took_highway=true) = 5

Prohibited

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

● Consequentialism in planning can be implemented with:

a. A total order ‘<’ on sets of fluent assignments (v=d) with d in
Dom(v), which we call consequentialist base.
e.g. {has_fine=true, took_highway=true} < {has_fine=false, took_highway=false}

b. Utilitarian: the most typical way of producing this preference order
is with:
■ an utility function u(v=d) that maps assignments to numeric

values, and
■ an aggregation function on utilities, e.g. overall sum.

e.g. u(has_fine=false)=0, u(has_fine=true)=-6,
u(took_highway=false)=0, u(took_highway=true)=5,
u({has_fine=true, took_highway=true}) = 5-6 = -1.

Consequentialist ethics in planning

#
#
#
#

● Deontological ethics in planning: there two main ways to represent
deontological principles in planning, deontic logics and norms, here
we focus on norms.

● A deontological base is a set of norms of the form:
b=<b_type, b_enf>

b_type in {obligation, prohibition}, and
b_enf is a set of fluent assignments ‘v=d’,

 denoting the enforced restrictions.

e.g: <prohibition, {lied=true}>
<obligation, {took_highway=true}>
<prohibition, {at=sideroute}>

Deontological ethics in planning

#
#
#
#

Our model:
A 6-tuple T=<V,s_0,s_*,O,u,B>, where:
● <V,s_0,s_*,O> is a STRIPS-like domain
● u is a utility function over fluent assignments
● B is a set of norms

Utilities:
● u(at=hospital)=10,
● u(has_fine=true)=-6,
● u(took_highway=true)=5
● u(lied=true)=-2
● u(v=d)=0 for all other fluents/values

Norms:
● b = <prohibition, {lied=true}>

Framework u(s_0)=0

u(s_1)=0

u(s_2)=10

u(s_3)=0

u(s_4)=-6
u(s_5)=-2

u(s_6)=-1

u(s_7)=9

u(s_8)=3

u(s_9)=13

Norm b
is broken

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Implementation
● Answer set programming (ASP) allows us to test ideas using logic programming.

● It enables the planning system to be explainable.

● There are many ASP planners that are very efficient.

● The most popular encoding for planning problems is PDDL. STRIPS and many of its

extensions encoded in PDDL can be translated to ASP, using PLASP [Dimopoulos2017].

PDDL
domain

ASP
domain

ASP
planner

Clingo
ASP

solver

PLASP

Select next action
to evaluate

Planning task
and goals

Planning task
and goals

Ground rules and
find answer sets

Plan
π

#
#
#
#

Implementation
● This is how the Hospital dilemma problem is modeled in ASP using our framework:

Domain (ethics):

% Utilities

utility(at, hospital, 10).

utility(has_fine, true, -6).

utility(took_highway, true, 5).

utility(lied, true, -2).

Domain (STRIPS-like):

fluent(at). … fluent(took_highway).

action(go(house, sideroute)).

action(go(sideroute, hospital)). …

action(present_id(a)). action(present_id(b)).

precondition(go(house, sideroute), at, house). …

effect(go(house, sideroute), at, sideroute). …

initialState(at, house). … initialState(lied, false).

goal(at, hospital).

#
#
#
#

Implementation
● This is how the Hospital dilemma problem is modeled in ASP using our framework:

Planner (fragment):

action_overall_utility(Action, Utility) :- action(Action),

Utility = #sum { U, Fluent, Value : utility(Fluent, Value, U), effect(Action, Fluent, Value) }.

permitted(Action, t, overall_utility) :- possible(Action, t),

not forbidden(Action, t, overall_utility).

forbidden(Action1, t, overall_utility) :- possible(Action1, t),possible(Action2, t, overall_utility),

action_overall_utility(Action1, Utility1),

action_overall_utility(Action2, Utility2), Utility1 < Utility2.

:- occurs(Action, t), forbidden(Action, t, EthicalBase), enforce_ethics(EthicalBase).

1 {occurs(Action, t) : action(Action)} 1.

#
#
#
#

e.g.: offline justification [Pontelli2009] of ‘p’ w.r.t. answer set {p,q,r,s} and

program P:

P = { p :- q

q :- r,s.

r :- not t.

s.

}

We want to provide a justification to why an action was chosen, why other actions where not

chosen, on ethical therms with our framework. Some of the work in explainable ASP:

● [Pontelli2009] present two methods for producing a graph-based explanation of the truth

value of an atom w.r.t. a given answer set (offline) or during computation (online).

● [Schulz2014] justify literals w.r.t. a logic program and answer set in

argumentation-theoretic terms using Assumption-Based Argumentation (ABA).

● Survey of explanations in ASP by Fanndinno and Schulz [Fandinno2019].

Explanations

q+p+

r+

s+

t-

T

T

+

-

+

+
+

-

#
#
#
#

Questions?

Thanks

#
#
#
#

References

● [Helmert2006] The fast downward planning system

● [Pontelli2009] Justifications for logic programs under answer set semantics

● [Schulz2014] Justifying answer sets using argumentation

● [Fandinno2019] Answering the" why" in answer set programming

● [Dimopoulos2017] plasp 3: Towards effective ASP planning

#
#
#
#

