=xplaining ethical
planning using ASP

By Martin Jedwabny, Pierre Bisquert and Madalina Croitoru
XLoKR, 13th September 2020

Introduction

e Weplace ourselves in the intersection between Planning Al and Ethics.

e Question (fundamental): how can we apply ideas from the field of ethics to
make agents behave in a way that we would characterise as ethically correct?

e Planning models define systems of states and actions.

r1_north_north r1_north_north

2_south_south = = r2_north_north|
Ethics Al l location(r1)=north location(r1)=north l

location(r2)=south location(r2)=north

Consequentialist ethics

Normative Planning + south
making _south_

Virtue ethics

location(r1)=south location(r1)=south

l location(r2)=south location(r2)=north .
1_south_south r1_south_sout

2_south_south r2_north_north

#
#
#
#
https://www.draw.io/?page-id=KPic3-CFNzj2jOvbzXE6&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Introduction

Hospital dilemma:

e Anautonomous vehicle is tasked to get its passengers as fast as possible from their
house to a hospital, either through a highway (fast) or a sideroad (slow).

e Totake the highway, the vehicle has to pass through a toll and present its id.

e Ifit presentsits own id ‘A, it will have to pay a fine.

e If the vehicle presents another id ‘B’ i.e. if it lies about its identity, no fine will be paid.

#
#
#
#
https://www.draw.io/?page-id=X9MWKPD9YXAG5H265iy7&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Planning framework

go(house, sideroute)

s_0 ={ at=house,
toll_barrier_open=false,

has_fine=false,
lied=false,
took_highway=false}

go(house, toll)

s_1 ={ at=sideroute, s_3 ={ at=toll,

A STRIPS-like [Helmert2006] domain is a 4-tuple T = <V,s_0,s_* O>:

V is a finite set of fluents (grounded terms) with a domain.
e.g. 'at) ‘toll_barrier_open’ are fluents
Dom(at) = {house, sideroute, toll, highway, hospital}

s_Ois the initial state (a mapping from vin V to Dom(v)).
e.g: s _0={ at=house, toll_barrier_open=false, has_fine=false,
lied=false, took_highway=false}

s_*is the goal condition, i.e. a mapping from some subset of the
fluents vinV to Dom(v),
e.g. {at=hospital}

O s afinite set of actions a=<a_pre, a_eff>, a_pre denotes the

preconditions, and a_eff, the effects of the action.

e.g. go(toll,highway)= <{at=toll, toll_barrier_open=true},
{at=highway, took_highway=true}>

toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

go(sideroute, hospital)

s_2 = { at=hospital,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

present_id(A)

present_id(B)

s_4 ={ at=toll,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=false}

go(toll, highway)

s_6 ={ at=highway,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=true},

go(highway, hospital)

s_7 ={ at=hospital,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=true}

s_5 ={ at=toll,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=false}

go(toll, hi

s_8 ={ at=highway,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

go(highway, hospital)

s_9 ={ at=hospital,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Planning framework

Given a state s and an action a=(a_pre, a_eff), the
successor state succ(s,a):

a. Isdefinediff a_preCs.
b. Ifdefined, for every fluentv € V,let(v=d) € s:

m Ifthereissomed € Dom(v)suchthat(v=d’) €

a_eff,then (v=d’) € succ(s,a)
m Otherwise (v=d) € succ(s,a).
A planis asequence [a_0O,..a_n] of actions that goes
froms_Oto astate thatincludess_*:
s * csucc(a_n,...,succ(a_0,s 0))

e.g: [go(house, sideroute), go(sideroute, hospital)]

go(house, sideroute)

s_0 ={ at=house,
toll_barrier_open=false,

has_fine=false,
lied=false,
took_highway=false}

go(house, toll)

s_1 ={ at=sideroute,

toll_barrier_open=false,

has_fine=false,
lied=false,
took_highway=false}

go(sideroute, hospital)

s_2 = { at=hospital,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

s_3 ={ at=toll,

toll_barrier_open=false,

has_fine=false,
lied=false,

took_highway=false}

present_id(A)

present_id(B)

s_4 ={ at=toll,

toll_barrier_open=true,

has_fine=true,
lied=false,

took_highway=false}

go(toll, highway)

s_6 ={ at=highway,
toll_barrier_open=true,

has_fine=true,
lied=false,

took_highway=true},

go(highway, hospital)

s_7 ={ at=hospital,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=true}

s_5 ={ at=toll,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=false}

go(toll, highway)

s_8 ={ at=highway,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

go(highway, hospital)

s_9 ={ at=hospital,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Normative ethics

V ={at, toll_barrier_open, has_fine, lied, took_highway}, with
Dom(at)={house, sideroute, toll, highway, hospital}

Dom(toll_barrier_open)=... =Dom(took_highway)={true, false},

s 0=

s_*={ at=hospital },

O={

e InSTRIPS-like description:

go(house, sideroute)

s_0 ={ at=house,
toll_barrier_open=false,

has_fine=false,
lied=false,
took_highway=false}

go(house, toll)

s_1 ={ at=sideroute,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

s_3 ={ at=toll,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

{ at=house, toll_barrier_open=false, has_fine=false,

go(sideroute, hospital)

s_2 = { at=hospital,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

lied=false, took_highway=false},

go(house,sideroute)=<{at=house},{at=sideroute}>,
go(sideroute,hospital)=<{at=sideroute},{at=hospital}>,

go(house,toll)=<{at=house},{at=toll}>,

go(toll,highway)=< {at=toll, toll_barrier_open=true}, {at=highway, took_highway=true}>,
go(highway,hospital)=<{at=highway} {at=hospital}>,

present_toll_id(A)=<{at=toll, toll_barrier_open=false},{toll_barrier_open=true, has_fine=true}>,
present_toll_id(B)=<{at=toll, toll_barrier_open=false} {toll_barrier_open=true, lied=true}>}.

present_id(A)

present_id(B)

s_4 ={ at=toll,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=false}

go(toll, hi

s_6 ={ at=highway,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=true},

go(highway, hospital)

s_7 ={ at=hospital,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=true}

s_5 ={ at=toll,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=false}

go(toll, hi

s_8 ={ at=highway,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

go(highway, hospital)

s_9 ={ at=hospital,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Normative ethics

e Question: what kinds of ethics can be applied to planning and decision
making? and how?

e Normative ethics: the subfield of ethics that studies the permissibility of
actionsi.e. what is right to do in a certain situation.
a. Consequentialist: only considers action consequences, then compares sets of
consequences of actions to determine which outcome is the best,

b. Deontological: what is considered permissible is modeled with a set of strict rules
that capture moral obligations and prohibitions, and

#
#
#
#

Normative ethics

e Intheliterature:

a. Consequentialist: obtaining a utility for each possible action:
Action -> Utility
“Going through the highway -> +5”
“Had a fine -> -6"

b. Deontological: obtaining a set of rules/norms:
State x Action -> {Permissible, Forbidden}
“Lying about your identity to avoid being fined is Forbidden”

#
#
#
#

Normative ethics

e InSTRIPS-like description:

V ={at, toll_barrier_open, has_fine, lied, took_highway}, with
Dom(at)={house, sideroute, toll, highway, hospital}

go(house, sideroute)

s_0 ={ at=house,
toll_barrier_open=false,

has_fine=false,
lied=false,
took_highway=false}

go(house, toll)

s_1 ={ at=sideroute,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

s_3 ={ at=toll,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

Dom(toll_barrier_open)=... =Dom(took_highway)={true, false},

s 0=

s_*={ at=hospital },

O={

{ at=house, toll_barrier_open=false, has_fine=false,

go(sideroute, hospital)

s_2 = { at=hospital,
toll_barrier_open=false,
has_fine=false,
lied=false,
took_highway=false}

lied=false, took_highway=false},

go(house,sideroute)=<{at=house},{at=sideroute}>,
go(sideroute,hospital)=<{at=sideroute},{at=hospital}>,
go(house,toll)=<{at=house},{at=toll}>,
go(toll,highway)=< {at=toll, toll_barrier_open=true}, {at=highway, took_highway=true}>,
go(highway,hospital)=<{at=highway} {at=hospital}>,

present_toll_id(A)=<{at=toll, toll_barrier_open=false},{toll_barrier_open=true, has_fine=true}>,
present_toll_id(B)=<{at=toll, toll_barrier_open=false} {toll_barrier_open=true, lied=true}>}.

u(took_highway=true) = 5

Prohibited

present_id(A)

present_id(B)

s_4 ={ at=toll,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=false}

go(toll, hi

s_6 ={ at=highway,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=true},

go(highway, hospital)

s_7 ={ at=hospital,
toll_barrier_open=true,
has_fine=true,
lied=false,
took_highway=true}

s_5 ={ at=toll,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=false}

go(toll, hi

s_8 ={ at=highway,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

go(highway, hospital)

s_9 ={ at=hospital,
toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Consequentialist ethics in planning

e Consequentialism in planning can be implemented with:
a. Atotal order ‘<’ on sets of fluent assignments (v=d) with d in
Dom(v), which we call consequentialist base.

e.g. {has_fine=true, took_highway=true} < {has_fine=false, took_highway=false}

b. Utilitarian: the most typical way of producing this preference order

is with:
m anutility function u(v=d) that maps assignments to numeric
values, and

m anaggregation function on utilities, e.g. overall sum.
e.g. u(has_fine=false)=0, u(has_fine=true)=-6,
u(took_highway=false)=0, u(took_highway=true)=5,
u({has_fine=true, took_highway=true}) = 5-6 = -1.

#
#
#
#

Deontological ethics in planning

Deontological ethics in planning: there two main ways to represent
deontological principles in planning, deontic logics and norms, here
we focus on norms.

A deontological base is a set of norms of the form:
b=<b_type, b_enf>
b_type in {obligation, prohibition}, and
b_enfis a set of fluent assignments ‘v=d,,
denoting the enforced restrictions.

e.g: <prohibition, {lied=true}>
<obligation, {took_highway=true}>
<prohibition, {at=sideroute}>

#
#
#
#

Framework u(s.0)=0 [EiS el
has_fine=false,

lied=false,
took_highway=false}

go(house, sideroute) go(house, toll)
u(s_1)=0 u(s_3)=0
. s_1 ={ at=sideroute, s_3 ={ at=toll,
Our mOdeI‘ toll_barrier_open=false, toll_barrier_open=false,
A 6-tup|e T=<Vs_0,s_*0,u,B>, where: has_fine=false, has_fine=false,
- e . lied=false, lied=false,
e <Vs_0,5_*0>is a STRIPS-like domain took_highway=false} took_highway=false}
e uis a utility function over fluent assignments stssoroge s (5_4) gsen. i s
e Bisasetof norms ’ ULS_4)=-
) u(s_5)=-2
s_2 = { at=hospital, s_4 ={ at=toll, s_5 ={ at=toll,
HH™A . toll_barrier_open=false, toll_barrier_open=true, toll_barrier_open=true,
Utl I Itl es: has_fine=false, has_fine=true, has_fine=false, N b
e u(at=hospital)=10, lied=talse, lied=talse, lied=true, orm
took_highway=false} took_highway=false} took_highway=false} H b k
e u(has_fine=true)=-6, IS broken
e u(took_highway=true)=5 u(s_2)=10 goltol, fighway) goltol, plghway)
) u (l ied=tru e) =-2 u (S 6)_ 1 s_6 ={ at=highway, s_8 ={ at=highway, U(S_8) =3
—_ —_ _O)== toll_barrier_open=true, toll_barrier_open=true,
e u(v=d)=0 for all other fluents/values ha. ot o e
lied=false, lied=true,
Norms: took_highway=true}, took_highway=true}
P b = <pr0hibiti0n, {lied:true}> go(highway, hospital) go(highway, hospital)

s_7 = { at=hospital,
toll_barrier_open=true,
u (5_7) EV M has_fine=true,
lied=false,
took_highway=true}

s_9 = { at=hospital, u (5_9) = 1 3

toll_barrier_open=true,
has_fine=false,
lied=true,
took_highway=true}

#
#
#
#
https://www.draw.io/?page-id=gguVqHqB_r6MY5mzo2Xo&scale=auto#G1GhKcuOmH-romKME4BbS7mfeas6Su603O

Implementation

Answer set programming (ASP) allows us to test ideas using logic programming.

It enables the planning system to be explainable.

There are many ASP planners that are very efficient.

The most popular encoding for planning problems is PDDL. STRIPS and many of its
extensions encoded in PDDL can be translated to ASP, using PLASP [Dimopoulos2017].

PLASP

. . Pl
Planning task Planning task an

and goals and goals

Ground rules and
find answer sets

Select next action
to evaluate

#
#
#
#

Implementation

e Thisis how the Hospital dilemma problem is modeled in ASP using our framework:

Domain (STRIPS-1ike): Domain (ethics):
fluent(at). .. fluent(took_highway). % Utilities

utility(at, hospital, 10).

action(go(house, sideroute)). utility(has_fine, true, -6).
action(go(sideroute, hospital)). .. utility(took_highway, true, 5).
action(present_id(a)). action(present_id(b)). utility(lied, true, -2).

precondition(go(house, sideroute), at, house).

effect(go(house, sideroute), at, sideroute).

initialState(at, house). .. initialState(lied, false).

goal(at, hospital).

#
#
#
#

Implementation

e Thisis how the Hospital dilemma problem is modeled in ASP using our framework:

Planner (fragment):

action_overall_utility(Action, Utility) :- action(Action),

Utility = #sum { U, Fluent, Value : utility(Fluent, Value, U), effect(Action, Fluent, Value) }.

permitted(Action, t, overall_utility) :- possible(Action, t),
not forbidden(Action, t, overall_utility).

forbidden(Action1, t, overall_utility) :- possible(Actionl1, t),possible(Action2, t, overall_utility),
action_overall_utility(Action1, Utility1),

action_overall_utility(Action2, Utility2), Utility1l < Utility2.

:- occurs(Action, t), forbidden(Action, t, EthicalBase), enforce_ethics(EthicalBase).

1 {occurs(Action, t) : action(Action)} 1.

#
#
#
#

Explanations

We want to provide a justification to why an action was chosen, why other actions where not
chosen, on ethical therms with our framework. Some of the work in explainable ASP:

e [Pontelli2009] present two methods for producing a graph-based explanation of the truth
value of an atom w.r.t. a given answer set (offline) or during computation (online).

e [Schulz2014] justify literals w.r.t. a logic program and answer set in
argumentation-theoretic terms using Assumption-Based Argumentation (ABA).

e Survey of explanations in ASP by Fanndinno and Schulz [Fandinno2019].

e.g.: offline justification [Pontelli2009] of ‘p’ w.r.t. answer set {p,q,r,s} and

program P:

P = { p R q r+ —_— t_ —_— J_
g:-rs. . +
r:-nott. pt — gt
s. ’ N

st — T

}

#
#
#
#

\ IERLE

Questions?

#
#
#
#

References

[Helmert2006] The fast downward planning system

[Pontelli2009] Justifications for logic programs under answer set semantics
[Schulz2014] Justifying answer sets using argumentation

[Fandinno2019] Answering the" why" in answer set programming
[Dimopoulos2017] plasp 3: Towards effective ASP planning

#
#
#
#

