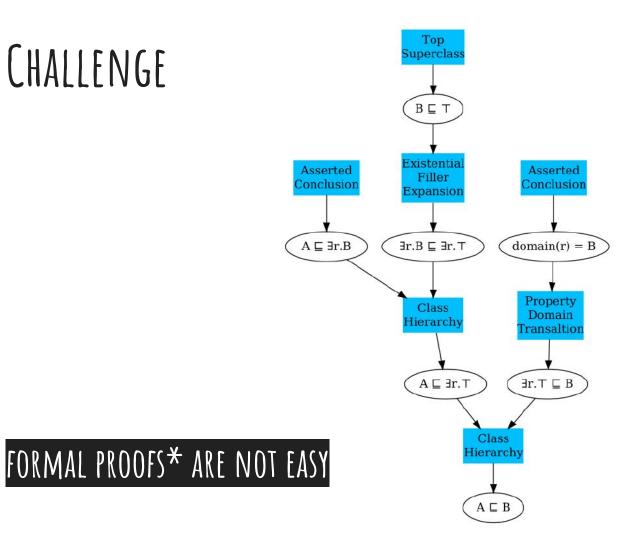


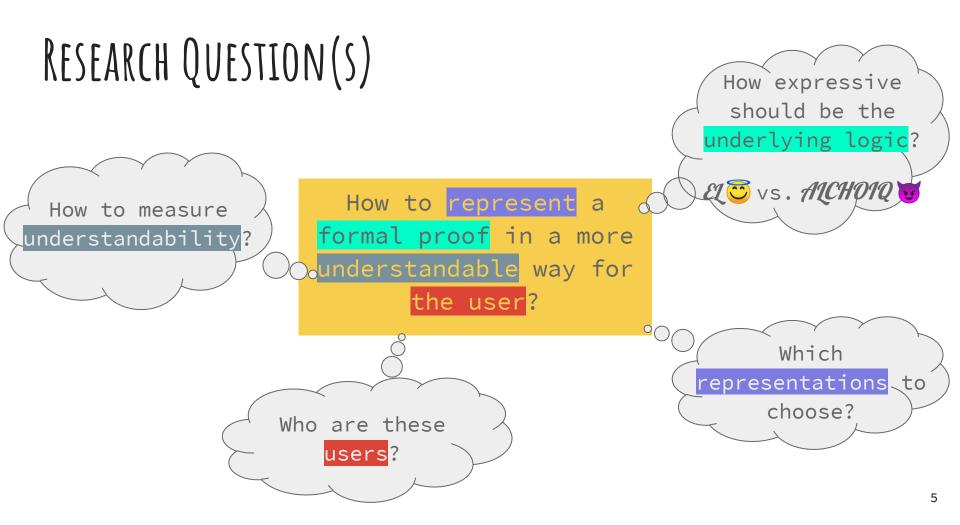
IN THE EYE OF THE BEHOLDER: Which Proofs are Best?

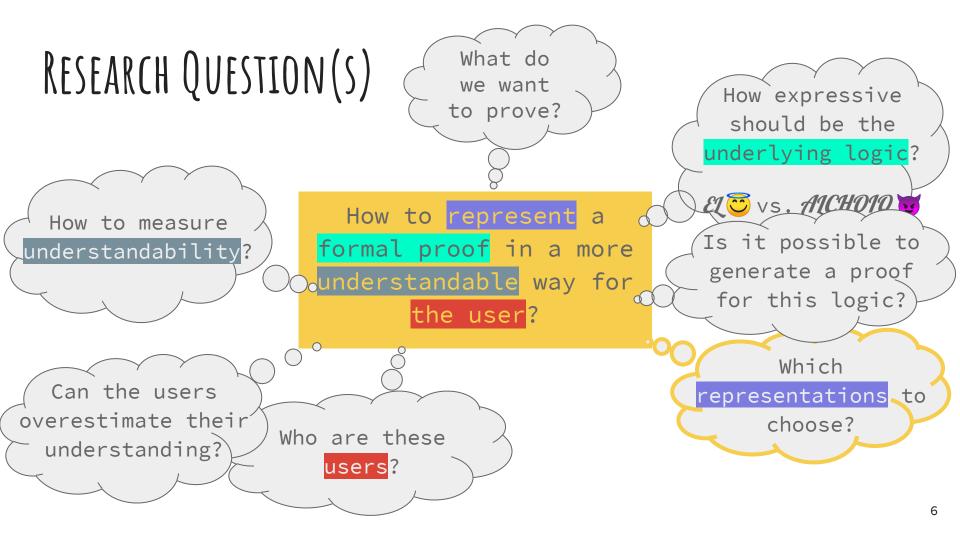

Stefan Borgwardt, Anke Hirsch, Alisa Kovtunova and Frederik Wiehr

HOW TO EXPLAIN A DECISION MADE BY An automated system?

If the knowledge is represented in (some fragment of) first-order logic,

formal proofs!





RESEARCH QUESTION

How to represent a formal proof in a more understandable way for the user?

DL THEORY*:

- Bird, Cage, Egg
 sitsIn, lays
 BirtsIn.Cage
 ∀lays.Egg
- Bird □ ∃sitsIn.Cage ←
- Tweety \sqsubseteq CageBird Axioms CageBird \equiv Bird \sqcap \exists sitsIn.Cage

AN EXAMPLE OF AN ONTOLOGY

Ontology axioms


 $\begin{array}{l} \mathsf{Penguin} \equiv \exists \mathsf{hasPart.Wings} \sqcap \mathsf{NotFlying} \\ \mathsf{Bird} \sqsubseteq \exists \mathsf{hasPart.Wings} \sqcap \forall \mathsf{lays.Egg} \\ \mathsf{CageBird} \equiv \mathsf{Bird} \sqcap \exists \mathsf{sitsIn.Cage} \\ \mathsf{Tweety} \sqsubseteq \mathsf{CageBird} \\ \mathsf{Tweety} \sqsubseteq \mathsf{NotFlying} \end{array}$

AN EXAMPLE OF AN ONTOLOGY

Ontology axioms

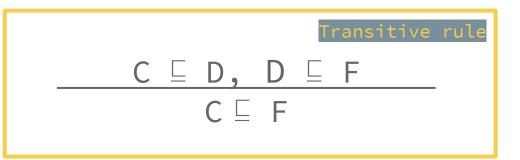
 $\begin{array}{l} \mathsf{Penguin} \equiv \exists \mathsf{hasPart.Wings} \sqcap \mathsf{NotFlying} \\ \mathsf{Bird} \sqsubseteq \exists \mathsf{hasPart.Wings} \sqcap \forall \mathsf{lays.Egg} \\ \mathsf{CageBird} \equiv \mathsf{Bird} \sqcap \exists \mathsf{sitsIn.Cage} \\ \mathsf{Tweety} \sqsubseteq \mathsf{CageBird} \\ \mathsf{Tweety} \sqsubseteq \mathsf{NotFlying} \end{array}$

AN EXAMPLE OF CONSEQUENCE-BASED REASONING RULES

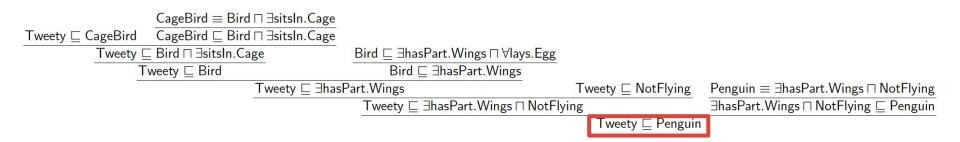
 $\frac{\mathsf{C} \equiv \mathsf{D}}{\mathsf{C} \sqsubseteq \mathsf{D}}$

 $C \sqsubseteq D \sqcap E \sqcap F$ $C \sqsubseteq D, C \sqsubseteq E, C \sqsubseteq F$

C 🗆 C


 $\begin{array}{c|c} C \sqsubseteq D, D \sqsubseteq F \\ \hline C \sqsubseteq F \end{array}$

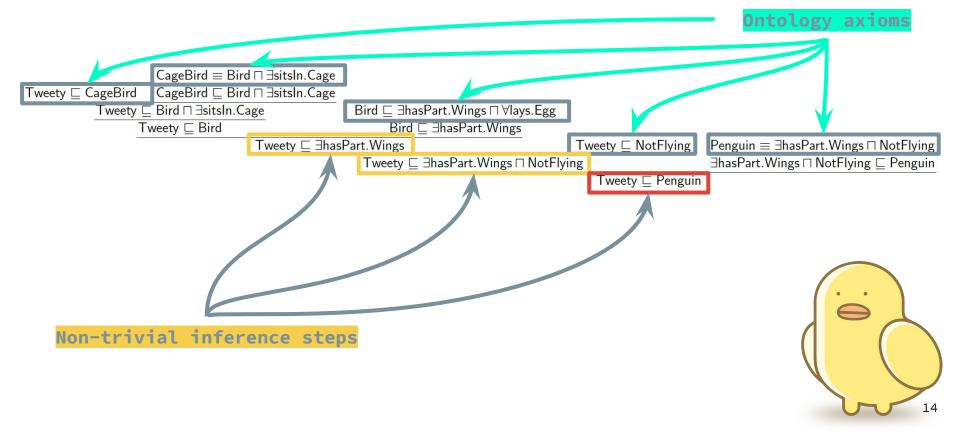
AN EXAMPLE OF CONSEQUENCE-BASED REASONING RULES


 $\begin{array}{ccc} \mathsf{C} & \Xi & \mathsf{D} \\ \mathsf{C} & \Box & \mathsf{D} \end{array}$

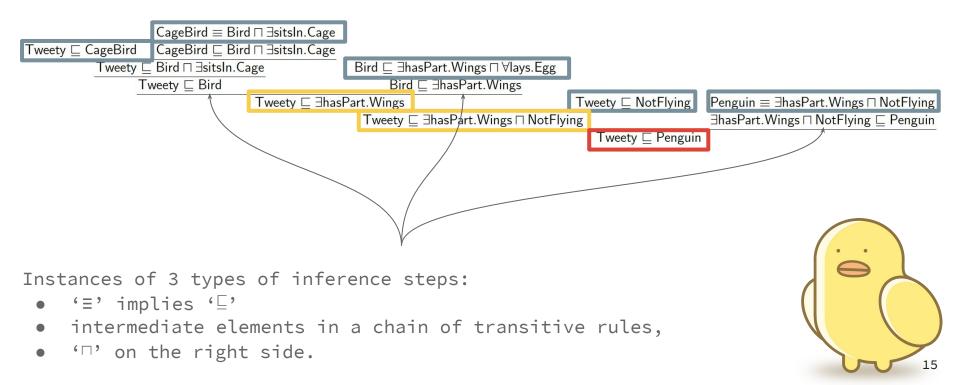
 $C \sqsubseteq D \sqcap E \sqcap F$ $C \sqsubseteq D, C \sqsubseteq E, C \sqsubseteq F$

 $C \sqsubseteq C$

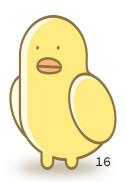
AN EXAMPLE OF A FORMAL PROOF



AN EXAMPLE OF A FORMAL PROOF



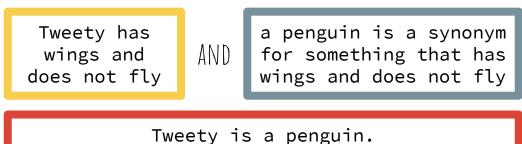
AN EXAMPLE OF FORMAL PROOF SHORTENING



AN EXAMPLE OF FORMAL PROOF SHORTENING

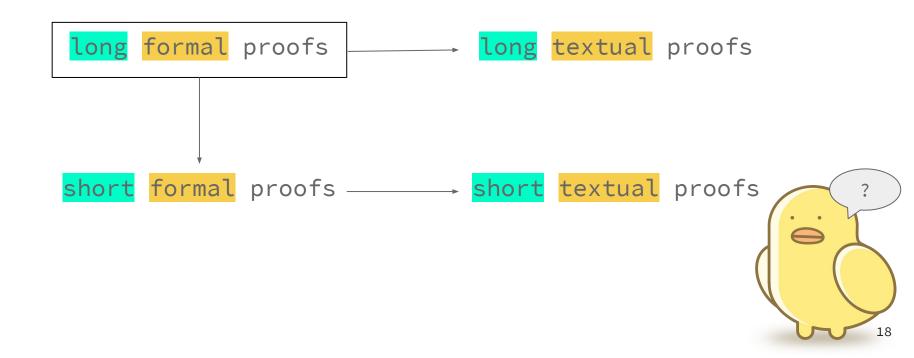
AN EXAMPLE OF FORMAL PROOF SHORTENING

Tweety ⊑ CageBird CageBir	$d \equiv Bird \sqcap \exists sitsIn.Cage \mid Bird \sqsubseteq \exists hasPart.Wings \sqcap \forall lay$	/s.Egg	
	Tweety ⊏ ∃hasPart.Wings	Tweety ⊏ NotFlying	
_	$Tweety \sqsubseteq \exists hasPart.Wings \sqcap Nc$	otFlying	$Penguin \equiv \exists hasPart.Wings \sqcap NotFlying$
		Tweety 드 Penguin	


AXIOM VERBALISATION

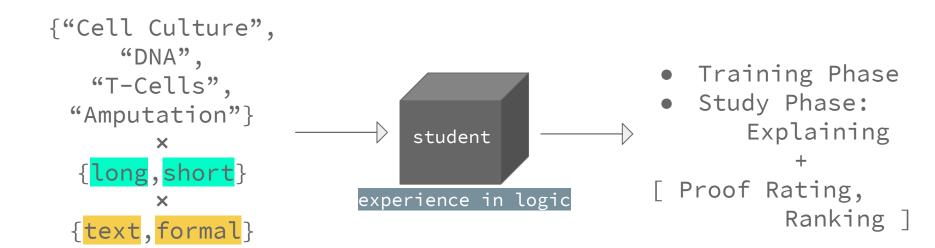
Tweety ⊑ ∃hasPart.Wings ⊓ NotFlying

 $\mathsf{Penguin} \equiv \exists \mathsf{hasPart.Wings} \sqcap \mathsf{NotFlying}$


Tweety ⊑ Penguin

SINCE / FROM THE FACTS THAT

WHICH PROOFS ARE BEST?



HYPOTHESIS

- It is easier to understand a short, concise explanation than a longer version (in the same representation format).
- Users with less experience in logic can understand the longer text better than a short formal proof.
- Users with more experience in logic can understand a long formal proof better than a long text.

SOLUTION FOUND: DL MEETS PSYCHOLOGY!

Let's ask people students!

BONUS SLIDE 1/3: "AMPUTATION" EXAMPLE

 $\begin{array}{l} \mathsf{AmputationOfFinger} \equiv \mathsf{Amputation} \sqcap \exists \mathsf{locatedIn}.\mathsf{FingerStructure} \\ \mathsf{AmputationOfHand} \equiv \mathsf{Amputation} \sqcap \exists \mathsf{locatedIn}.\mathsf{HandStructure} \\ \mathsf{PartOfHand} \sqsubseteq \mathsf{HandStructure} \sqcap \exists \mathsf{partOf}.\mathsf{EntireHand} \\ \mathsf{FingerStructure} \sqsubseteq \mathsf{PartOfHand} \end{array}$

- 1. Amputation of a finger is a synonym for an amputation that is located in a finger structure.
- 2. Amputation of a hand is a synonym for an amputation that is located in a hand structure.
- 3. Every part of a hand is a hand structure that is part of an entire hand.
- 4. Every finger structure is a part of a hand.

BONUS SLIDE 2/3: "AMPUTATION" EXAMPLE

The ontology above implies that every amputation of a finger is an amputation of a hand:

	$FingerStructure \sqsubseteq PartOfHand \qquad PartOfHand \sqsubseteq HandStructure$	ire □ ∃partOf.EntireHand	
$AmputationOfFinger \equiv Amputation \sqcap \exists locatedIn.FingerStructure \qquad \qquad FingerStructure \sqsubseteq HandStructure$			
$AmputationOfFinger\sqsubseteqAmputation\sqcap\existslocatedIn.HandStructure$		$AmputationOfHand \equiv Amputation \sqcap \exists locatedIn.HandStructure$	
$AmputationOfFinger\sqsubseteqAmputationOfHand$			

BONUS SLIDE 3/3: "AMPUTATION" EXAMPLE

Since every finger structure is a part of a hand and every part of a hand is a hand structure that is part of an entire hand, every finger structure is a hand structure.

Since amputation of a finger is a synonym for an amputation that is located in a finger structure and every finger structure is a hand structure, every amputation of a finger is an amputation that is located in a hand structure.

Since every amputation of a finger is an amputation that is located in a hand structure and amputation of a hand is a synonym for an amputation that is located in a hand structure, every amputation of a finger is an amputation of a hand.

<mark>short</mark> textual proof

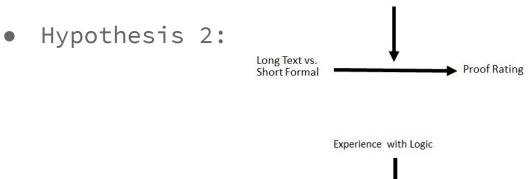
PROCEDURE

Where: Online with Zoom and Go2Meeting

Who: 16 students with some experience in formal logic, Mean Age = 23, SD = 1.71

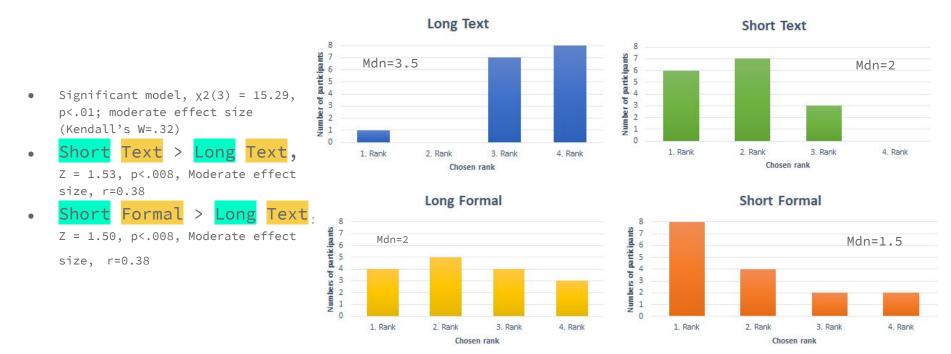
Statistics: Multiple linear regression with contrast coding, Friedman's ANOVA for the ranking

	Mean	SD	Range
Propositional Logic	3.25	1.00	1-5
First-Order Logic	2.94	0.68	2-4
Description Logic	2.31	0.79	1-4


QUANTITATIVE RESULTS

 Hypothesis 1: shorter proofs rated as easier than the longer ones (independent of the presentation format)

Proof Rating


• 14.2% explained variance in the rating after each proof, R^2 = .14, F(3,60) = 3.30, p < .05, β = -.29, t(60) = -2.42, p < .05

Experience with Logic

QUANTITATIVE RESULTS - RANKING

QUALITATIVE RESULTS

• Formal proofs preferred over textual proofs

Formal Proof	Textual Proof	
<pre>"easier to understand" "clearer" "easier to find certain parts" "orientation is better" within the proof "easy to follow the proof"</pre>	Inconvenient "less understandable" "hard to understand" "annoying"	

THANK YOU FOR YOUR ATTENTION