Explaining Classifiers in Ontology-Based Data Access

Federico Croce and Maurizio Lenzerini

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Explainable Logic-Based Knowledge Representation (XLoKR 2020)

Workshop at KR2020 (17th International Conference on Principles of Knowledge Representation and Reasoning)

September 13th, 2020

Introduction

Problem statement

- Machine Learning (ML) has many elegant and efficient solutions to very difficult problems: Machine Translation, Vision, Autonomous Driving, and more
- An empiric rule shows that the more a ML algorithm is accurate, the less we understand its "magic"
- Deep learning is an extreme example of a high accuracy, black-box model

ML interpretability (empiric)

Accuracy

Why should we care?

- Caring only about performances is not the right choice in many fields: finance, justice, healthcare, privacy
- One famous example is COMPAS algorithm [1], used across the US to predict future criminals, and proved to be biased against black people

[1] https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Why should we care? (cont.)

AARON HOLMES SEP 11, 2020

- A sheriff launched an algorithm to predict who might commit a crime. Dozens of people said they were harassed by deputies for no reason [2].
- But according to a six-month investigation published this week by the Tampa Bay Times, the high-tech tool deployed by the Pasco Sheriff's Office didn't lead to a reduction in violent crimes. Instead, 21 families singled out by the algorithm said they were routinely harassed by deputies, even when there was no evidence of a specific crime.

[2] https://www.businessinsider.com/predictive-policing-algorithm-monitors-harasses-families-report-2020-9

Possible Solutions

State-of-the-art: LIME, SHAP, Scoped Rules, Counterfactual and Adversarial Examples, Feature Visualization

Tulio Ribeiro, M., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier. arXiv, arXiv-1602.

Possible Solutions (cont.)

 Our solution is a form of reverse engineering of an Ontology-Based Data Management (OBDM) system: finding a query over the ontology that semantically describes the tagged individuals in the dataset

Preliminaries

Ontology-Based Data Management

It is a three-layered architecture:

- The ontology is a declarative and explicit representation of the domain of interest
- The data layer is constituted by the existing dataset
- The mapping layer is a set of declarative assertions specifying how the sources in the data layer relate to the ontology

The notion of *certain answers*

- Let \mathcal{O} be an ontology, S a dataset, and \mathcal{M} a set of mappings, we call $\mathcal{J} = \langle \mathcal{O}, S, \mathcal{M} \rangle$ an OBDM specification
- Let $q_{\mathcal{O}}$ be a query over \mathcal{O} , we define the *certain* answers of $q_{\mathcal{O}}$ w.r.t. \mathcal{J} and a database D, denoted by $cert_{q_{\mathcal{O}},\mathcal{J}}^{D}$ as the set of tuples \vec{t} of \mathcal{S} -constants, such that

 $\vec{t} \in q_{\mathcal{O}}^{B}$ for every possible interpretation B that satisfies \mathcal{J} for an \mathcal{S} -database D (called a *model* of \mathcal{J} w.r.t. D)

The Classifier

Given a dataset *D*, we consider a binary classifier:

$$\lambda: dom(D)^n \to \{+1, -1\}$$

Also, we will denote the set of tuples that have been classified positively (resp. negatively) as:

$$\lambda^{+} = \{ \vec{t} \in dom(D)^{n} \mid \lambda(\vec{t}) = +1 \}$$

(resp. $\lambda^{-} = \{ \vec{t} \in dom(D)^{n} \mid \lambda(\vec{t}) = -1 \}$)

The Framework

The Notion of Border

• For each tuple $\vec{t} \in D$ and natural number r, we define $\mathcal{B}_{\vec{t},r}(D)$ as the **Border** of radius r for t in D, representing all the atoms in D that are *reachable* from \vec{t} in at most r joins

Example: Let a database be $D = \{R(a, b), S(a, c), Z(c, d), W(d, e), W(e, h), R(f, g)\}$ and let $\mathbf{t} = \langle a \rangle$. By denoting with $\mathcal{W}_{t,n}(D)$ the atoms in D that are reachable from \mathbf{t} in at most n joins, we have that:

- $\mathcal{W}_{t,0}(D) = \{R(a,b), S(a,c)\}$
- $\mathcal{W}_{t,1}(D) = \{Z(c,d)\}$
- $\mathcal{W}_{t,2}(D) = \{W(d,e)\}$

Therefore, the border of radius 2 of t in D is:

 $\mathcal{B}_{t,2}(D) = \{R(a,b), S(a,c), Z(c,d), W(d,e)\}$

The *J-match*

• A query $q_{\mathcal{O}} \mathcal{J}$ -matches a Border $\mathcal{B}_{\vec{t},r}(D)$ of radius rof a tuple \vec{t} in a source database D, if \vec{t} is in the certain answers of $q_{\mathcal{O}}$ w.r.t to \mathcal{J} and D, i.e. if

$$\boldsymbol{t} \in cert_{q_{\mathcal{O}},\mathcal{I}}^{\mathcal{B}_{\boldsymbol{t},r}(D)}$$

The goal of the framework

- The goal of our framework, is to find a semantic description of λ that is as close as possible to a set of user-defined criteria.
- Each criterion has a function associated to it, that returns a quantitative measure of how much a given query meets the criteria
- The user also defines an expression to compute, for a given query, a unique value out of all the measures returned by the functions of each criterion

The criteria, the functions and the expression

- $\delta_1 =$ "Maximize the number of tuples $t \in \lambda^+$ such that $q_O \mathcal{J}$ -matches $\mathcal{B}_{t,r}(D)$ "
- $\delta_2 =$ "Minimize the number of tuples $t \in \lambda^-$ such that $q_0 \mathcal{J}$ -matches $\mathcal{B}_{t,r}(D)$ "
- $\delta_3 =$ "Minimize the number of disjuncts of the query q_0 "

•
$$f_{\delta_1}(q_0) = \frac{|\{t \in \lambda^+ \text{ s.t. } q_0 \text{ } \mathcal{J}-matches \mathcal{B}_{t,r}(D)\}|}{|\lambda^+|}$$

•
$$f_{\delta_2}(q_0) = 1 - \frac{|\{t \in \lambda^- \text{ s.t. } q_0 \text{ } \mathcal{J}-matches \mathcal{B}_{t,r}(D)\}|}{|\lambda^-|}$$

•
$$f_{\delta_3}(q_0) = \frac{1}{|CQs \ in \ q_0|}$$

• $\mathcal{Z}_{\mathcal{F}}(q_{\mathcal{O}}) = \frac{\alpha f_{\delta_1}(q_{\mathcal{O}}) + \beta f_{\delta_2}(q_{\mathcal{O}}) + \gamma f_{\delta_3}(q_{\mathcal{O}})}{\alpha + \beta + \gamma}$ (we call this the \mathcal{Z} score of $q_{\mathcal{O}}$ under \mathcal{F})

where α , β , γ represents the importance of criterion δ_1 , δ_2 , δ_3 respectively

The Algorithm

Example (1/7)

Consider the following database D

	STUD λ					ENR		
λ^+	A10	+1	I	.OC		A10	Math	TV
	B80	+1	Sap	Rome		B80	80 Math 12 Science	Sap ce Norm ce TV Pol
	C12	+1	TV	Rome Milan		C12		
	D50	+1	Pol			D50 Science E25 Arts	Science	
λ^{-}	E25	-1				Ľ20	ALUS	ΓΟΙ

.

Example (2/7)

Let the ontology be:

$$\mathcal{O} = \{ MathStudent \sqsubseteq ScientificStudent, ScienceStudent \sqsubseteq ScientificStudent \}$$

And the mappings:

 $\mathcal{M} = \operatorname{ENR}(\mathbf{x}, \operatorname{Math}, \mathbf{z}) \rightsquigarrow \operatorname{MathStudent}(\mathbf{x})$ $\operatorname{ENR}(\mathbf{x}, \operatorname{Science}, \mathbf{z}) \rightsquigarrow \operatorname{ScienceStudent}(\mathbf{x})$ $\operatorname{ENR}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \rightsquigarrow \operatorname{enrolledIn}(\mathbf{x}, \mathbf{z})$ $\operatorname{LOC}(\mathbf{x}, \mathbf{y}) \rightsquigarrow \operatorname{locatedIn}(\mathbf{x}, \mathbf{y})$

Example (3/7)

The corresponding borders of radius 1, for each tuple are:

 $\begin{aligned} \mathcal{B}_{A10,1}(D) &= \{ \text{STUD}(\text{A10}), \text{ ENR}(\text{A10}, \text{ Math, TV}), \text{ LOC}(\text{TV}, \text{ Rome}) \} \\ \mathcal{B}_{\text{B80,1}}(D) &= \{ \text{STUD}(\text{B80}), \text{ ENR}(\text{B80}, \text{ Math, Sap}), \text{ LOC}(\text{Sap, Rome}) \} \\ \mathcal{B}_{\text{C12,1}}(D) &= \{ \text{STUD}(\text{C12}), \text{ ENR}(\text{C12}, \text{ Science, Norm}) \} \\ \mathcal{B}_{\text{D50,1}}(D) &= \{ \text{STUD}(\text{D50}), \text{ ENR}(\text{D50}, \text{ Science, TV}), \text{ LOC}(\text{TV}, \text{ Rome}) \} \\ \mathcal{B}_{\text{E25,1}}(D) &= \{ \text{STUD}(\text{E25}), \text{ ENR}(\text{E25}, \text{ Arts, Pol}), \text{ LOC}(\text{Pol, Milan}) \} \end{aligned}$

Example (4/7)

Consider each border associated to the tuples in λ^+ as a CQ, and compute the complete s-to-o rewriting of each query, as described in [3]. In a nutshell, this means to apply all the mappings to the queries.

 $\begin{array}{l} q_1(A10) \leftarrow \operatorname{MathStudent}(A10) \wedge \operatorname{enrolledIn}(A10, \operatorname{TV}) \wedge \operatorname{locatedIn}(\operatorname{TV}, \operatorname{Rome}) \\ q_2(B80) \leftarrow \operatorname{MathStudent}(B80) \wedge \operatorname{enrolledIn}(B80, \operatorname{Sap}) \wedge \operatorname{locatedIn}(\operatorname{Sap}, \operatorname{Rome}) \\ q_3(C12) \leftarrow \operatorname{ScienceStudent}(C12) \wedge \operatorname{enrolledIn}(C12, \operatorname{Norm}) \\ q_4(D50) \leftarrow \operatorname{ScienceStudent}(D50) \wedge \operatorname{enrolledIn}(D50, \operatorname{TV}) \wedge \operatorname{locatedIn}(\operatorname{TV}, \operatorname{Rome}) \end{array}$

[3] Cima, G., Lenzerini, M., & Poggi, A. (2019). Semantic Characterization of Data Services through Ontologies. In IJCAI.

Example (5/7)

- To reduce the number of queries generated, we introduce the notion of **query patterns**
- We say that two CQs have the same *pattern*, if they are conjunctions of the same set of atoms
- Our intuition is that similar tuples of the database will be described by similar properties, and will form similar query patterns when processed by the previous steps of the algorithm
- For each *pattern*, we only keep the constants that are shared by all the queries of the pattern. All the other constants will be substituted by new variables.

Example (6/7)

• The query patterns of the example are:

$$\begin{split} q_5(x) &\leftarrow \mathrm{MathStudent}(\mathbf{x}) \wedge \mathrm{enrolledIn}(\mathbf{x}, \, \mathbf{y}) \wedge \mathrm{locatedIn}(\mathbf{y}, \, \mathrm{Rome}) \\ q_6(C12) &\leftarrow \mathrm{ScienceStudent}(C12) \wedge \mathrm{enrolledIn}(C12, \, \mathrm{Norm}) \\ q_7(D50) &\leftarrow \mathrm{ScienceStudent}(\mathrm{D50}) \wedge \mathrm{enrolledIn}(\mathrm{D50}, \, \mathrm{TV}) \wedge \mathrm{locatedIn}(\mathrm{TV}, \, \mathrm{Rome}) \end{split}$$

Example (7/7)

- Let k be the highest number of atoms appearing in a query pattern. We enumerate and compute the Z score of all the possible UCQs such that:
 - i. Each CQ only uses atoms that either belong to a query pattern, or are implied by one of such atoms and the ontology
 - ii. Each CQ has at most k atoms

One can verify that the query $q(x) \leftarrow \text{ScientificStudent}(x)$ achieves the highest \mathcal{Z} score of 1.0, and is therefore the best explanation of the classifier λ .

Conclusions

- Our framework uses the Ontology-Based Data Management paradigm to provide an explanation to the behavior of a classifier
- The short-term goal is to explore possible optimizations of the algorithm drafted in this presentation
- The future work includes an evaluation of the framework to real world scenarios, as well as comparison with other similar works

